135 results on '"Schnabel RD"'
Search Results
2. A simple procedure for directly obtaining haplotype sequences of diploid genomes
- Author
-
Noyes, HA, Daly, D, Goodhead, IB, Kay, S, Kemp, SJ, Kenny, J, Saccheri, I, Schnabel, RD, Taylor, JF, and Hall, N
- Subjects
Genome ,Methodology Article ,Cow ,Computational Biology ,High-Throughput Nucleotide Sequencing ,Reproducibility of Results ,Genomics ,Sequence Analysis, DNA ,Diploidy ,Scaffold ,Haplotypes ,Next generation sequencing ,Genetics ,Haplotype ,Protocol ,Diploid genome sequence ,Single-Cell Analysis ,Software ,Biotechnology - Abstract
Background\ud \ud Almost all genome sequencing projects neglect the fact that diploid organisms contain two genome copies and consequently what is published is a composite of the two. This means that the relationship between alternate alleles at two or more linked loci is lost. We have developed a simplified method of directly obtaining the haploid sequences of each genome copy from an individual organism.\ud \ud \ud Results\ud \ud The diploid sequences of three groups of cattle samples were obtained using a simple sample preparation procedure requiring only a microscope and a haemocytometer. Samples were: 1) lymphocytes from a single Angus steer; 2) sperm cells from an Angus bull; 3) lymphocytes from East African Zebu (EAZ) cattle collected and processed in a field laboratory in Eastern Kenya. Haploid sequence from a fosmid library prepared from lymphocytes of an EAZ cow was used for comparison. Cells were serially diluted to a concentration of one cell per microlitre by counting with a haemocytometer at each dilution. One microlitre samples, each potentially containing a single cell, were lysed and divided into six aliquots (except for the sperm samples which were not divided into aliquots). Each aliquot was amplified with phi29 polymerase and sequenced. Contigs were obtained by mapping to the bovine UMD3.1 reference genome assembly and scaffolds were assembled by joining adjacent contigs that were within a threshold distance of each other. Scaffolds that appeared to contain artefacts of CNV or repeats were filtered out leaving scaffolds with an N50 length of 27–133 kb and a 88–98 % genome coverage. SNP haplotypes were assembled with the Single Individual Haplotyper program to generate an N50 size of 97–201 kb but only ~27–68 % genome coverage. This method can be used in any laboratory with no special equipment at only slightly higher costs than conventional diploid genome sequencing. A substantial body of software for analysis and workflow management was written and is available as supplementary data.\ud \ud \ud Conclusions\ud \ud We have developed a set of laboratory protocols and software tools that will enable any laboratory to obtain haplotype sequences at only modestly greater cost than traditional mixed diploid sequences.
- Published
- 2015
- Full Text
- View/download PDF
3. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds
- Author
-
Bovine HapMap Consortium, Gibbs RA, Taylor JF, Van Tassell CP, Barendse W, Eversole KA, Gill CA, Green RD, Hamernik DL, Kappes SM, Lien S, Matukumalli LK, McEwan JC, Nazareth LV, Schnabel RD, Weinstock GM, Wheeler DA, Ajmone-Marsan P, and Boettcher PJ
- Abstract
The imprints of domestication and breed development on the genomes of livestock likely differ from those of companion animals. A deep draft sequence assembly of shotgun reads from a single Hereford female and comparative sequences sampled from six additional breeds were used to develop probes to interrogate 37,470 single-nucleotide polymorphisms (SNPs) in 497 cattle from 19 geographically and biologically diverse breeds. These data show that cattle have undergone a rapid recent decrease in effective population size from a very large ancestral population, possibly due to bottlenecks associated with domestication, selection, and breed formation. Domestication and artificial selection appear to have left detectable signatures of selection within the cattle genome, yet the current levels of diversity within breeds are at least as great as exists within humans.
- Published
- 2009
4. Genomic tools for characterizing monogenic and polygenic traits in ruminants - using the bovine as an example
- Author
-
Taylor, JF, primary, Chapple, RH, additional, Decker, JE, additional, Gregg, SJ, additional, Kim, JW, additional, McKay, SD, additional, Ramey, HR, additional, Rolf, MM, additional, Taxis, TM, additional, and Schnabel, RD, additional
- Full Text
- View/download PDF
5. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds.
- Author
-
Bovine Hap Map, Consortium, Gibbs, Ra, Taylor, Jf, Van Tassel, Cp, Barendse, W, Eversole, Ka, Gill, Ca, Green, Rd, Hamernik, Dl, Kappes, Sm, Lien, S, Matukumalli, Lk, Mcevan, Jc, Mazareth, Lv, Schnabel, Rd, Weinstock, Gm, Wheeler, Da, Ajmone Marsan, Paolo, Boettcher, Pj, Caetano, Ar, Garcia, Jf, Hanotte, O, Mariani, P, Skow, Lc, Sonstegard, T, Williams, Jl, Diallo, B, Hailemariam, L, Martinez, Ml, Morris, Ca, Silva, Lo, Spelman, Rj, Malatu, W, Zhao, K, Abbey, Ca, Agaba, M, Araujo, Fr, Bunch, Rj, Burton, J, Gorni, C, Olivier, H, Harrison, Be, Luff, B, Machado, Ma, Mwakaya, J, Plastow, G, Sim, W, Smith, T, Thomas, Mb, Valentini, A, Williams, P, Womack, J, Wolliams, Ja, Liu, Y, Qin, X, Worley, Kc, Gao, C, Jiang, H, Moore, S, Ren, Y, Song, Xz, Bustamante, Cd, Hernandez, Rd, Muzny, Dm, Patil, S, San Lucas, A, Fu, Q, Kent, Mp, Vega, R, Matukumalli, A, Mcwilliam, S, Sclep, G, Bryc, K, Choi, J, Gao, H, Grefenstette, Jj, Murdoch, B, Stella, A, Villa Angulo, R, Wright, M, Aerts, J, Jann, O, Negrini, Riccardo, Goddard, Me, Hayes, Bj, Bradley, Dg, Lau, Lp, Liu, Ge, Lynn, Dj, Panzitta, F, Dodds, Kg, Ajmone Marsan, Paolo (ORCID:0000-0003-3165-4579), Negrini, Riccardo (ORCID:0000-0002-8735-0286), Bovine Hap Map, Consortium, Gibbs, Ra, Taylor, Jf, Van Tassel, Cp, Barendse, W, Eversole, Ka, Gill, Ca, Green, Rd, Hamernik, Dl, Kappes, Sm, Lien, S, Matukumalli, Lk, Mcevan, Jc, Mazareth, Lv, Schnabel, Rd, Weinstock, Gm, Wheeler, Da, Ajmone Marsan, Paolo, Boettcher, Pj, Caetano, Ar, Garcia, Jf, Hanotte, O, Mariani, P, Skow, Lc, Sonstegard, T, Williams, Jl, Diallo, B, Hailemariam, L, Martinez, Ml, Morris, Ca, Silva, Lo, Spelman, Rj, Malatu, W, Zhao, K, Abbey, Ca, Agaba, M, Araujo, Fr, Bunch, Rj, Burton, J, Gorni, C, Olivier, H, Harrison, Be, Luff, B, Machado, Ma, Mwakaya, J, Plastow, G, Sim, W, Smith, T, Thomas, Mb, Valentini, A, Williams, P, Womack, J, Wolliams, Ja, Liu, Y, Qin, X, Worley, Kc, Gao, C, Jiang, H, Moore, S, Ren, Y, Song, Xz, Bustamante, Cd, Hernandez, Rd, Muzny, Dm, Patil, S, San Lucas, A, Fu, Q, Kent, Mp, Vega, R, Matukumalli, A, Mcwilliam, S, Sclep, G, Bryc, K, Choi, J, Gao, H, Grefenstette, Jj, Murdoch, B, Stella, A, Villa Angulo, R, Wright, M, Aerts, J, Jann, O, Negrini, Riccardo, Goddard, Me, Hayes, Bj, Bradley, Dg, Lau, Lp, Liu, Ge, Lynn, Dj, Panzitta, F, Dodds, Kg, Ajmone Marsan, Paolo (ORCID:0000-0003-3165-4579), and Negrini, Riccardo (ORCID:0000-0002-8735-0286)
- Published
- 2009
6. Genomic tools for characterizing monogenic and polygenic traits in ruminants - using the bovine as an example
- Author
-
Taylor, JF, primary, Chapple, RH, additional, Decker, JE, additional, Gregg, SJ, additional, Kim, JW, additional, McKay, SD, additional, Ramey, HR, additional, Rolf, MM, additional, Taxis, TM, additional, and Schnabel, RD, additional
- Published
- 2010
- Full Text
- View/download PDF
7. Biomarker-based high-throughput sperm phenotyping: Andrology in the age of precision medicine and agriculture.
- Author
-
Tirpak F, Hamilton LE, Schnabel RD, and Sutovsky P
- Subjects
- Animals, Male, Andrology, Precision Medicine, Agriculture methods, Semen Analysis veterinary, Semen Analysis methods, Spermatozoa physiology, Biomarkers, Phenotype
- Abstract
Reproductive efficiency is crucial for animal agriculture. This economically important aspect can be influenced by environmental burdens, nutritional imbalance, and gonadal or gametic malformations of genetic origin. Successful implementation of genomic-driven selective breeding in cattle depends on the reproductive performance of artificial insemination (AI) sires with valuable genomic production traits. Reproduction is traditionally viewed as a complex set of polygenic traits that are negatively impacted by using a small number of often closely related sires selected for AI due to their superior genetics. Despite recent progress, it remains difficult to define relationships between sire genome and variation in sperm phenotypes, even though several types of heritable, non-compensable sperm defects have been identified. In this review, we discuss the concept of sperm quality biomarker discovery and genomics of male fertility. We also outline a multidisciplinary genome-to-phenome approach for investigating heritable mutations and their impacts on bull fertility, sperm phenotypes and paternal contributions to early pregnancy. High-precision phenotyping requires novel, state-of-the-art instrumentation for sperm quality evaluation and development of new biomarkers of sperm quality in farm animals, with potential for incorporation into andrology-specific machine learning protocols and translation to human andrology. We conclude that reproduction is a complex phenotype that can be deciphered and explored for more precise male fertility evaluation and higher reproductive efficiency., Competing Interests: Declaration of Competing Interest The authors have declared that no conflict of interest exists., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
8. The Ruminant Telomere-to-Telomere (RT2T) Consortium.
- Author
-
Kalbfleisch TS, McKay SD, Murdoch BM, Adelson DL, Almansa-Villa D, Becker G, Beckett LM, Benítez-Galeano MJ, Biase F, Casey T, Chuong E, Clark E, Clarke S, Cockett N, Couldrey C, Davis BW, Elsik CG, Faraut T, Gao Y, Genet C, Grady P, Green J, Green R, Guan D, Hagen D, Hartley GA, Heaton M, Hoyt SJ, Huang W, Jarvis E, Kalleberg J, Khatib H, Koepfi KP, Koltes J, Koren S, Kuehn C, Leeb T, Leonard A, Liu GE, Low WY, McConnell H, McRae K, Miga K, Mousel M, Neibergs H, Olagunju T, Pennell M, Petry B, Pewsner M, Phillippy AM, Pickett BD, Pineda P, Potapova T, Rachagani S, Rhie A, Rijnkels M, Robic A, Rodriguez Osorio N, Safonova Y, Schettini G, Schnabel RD, Sirpu Natesh N, Stegemiller M, Storer J, Stothard P, Stull C, Tosser-Klopp G, Traglia GM, Tuggle CK, Van Tassell CP, Watson C, Weikard R, Wimmers K, Xie S, Yang L, Smith TPL, O'Neill RJ, and Rosen BD
- Subjects
- Animals, Evolution, Molecular, Genome genetics, Selection, Genetic, Phylogeny, Diploidy, Telomere genetics, Ruminants genetics
- Abstract
Telomere-to-telomere (T2T) assemblies reveal new insights into the structure and function of the previously 'invisible' parts of the genome and allow comparative analyses of complete genomes across entire clades. We present here an open collaborative effort, termed the 'Ruminant T2T Consortium' (RT2T), that aims to generate complete diploid assemblies for numerous species of the Artiodactyla suborder Ruminantia to examine chromosomal evolution in the context of natural selection and domestication of species used as livestock., (© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
- Published
- 2024
- Full Text
- View/download PDF
9. Overcoming Limitations to Deep Learning in Domesticated Animals with TrioTrain.
- Author
-
Kalleberg J, Rissman J, and Schnabel RD
- Abstract
Variant calling across diverse species remains challenging as most bioinformatics tools default to assumptions based on human genomes. DeepVariant (DV) excels without joint genotyping while offering fewer implementation barriers. However, the growing appeal of a "universal" algorithm has magnified the unknown impacts when used with non-human genomes. Here, we use bovine genomes to assess the limits of human-genome-trained models in other species. We introduce the first multi-species DV model that achieves a lower Mendelian Inheritance Error (MIE) rate during single-sample genotyping. Our novel approach, TrioTrain, automates extending DV for species without Genome In A Bottle (GIAB) resources and uses region shuffling to mitigate barriers for SLURM-based clusters. To offset imperfect truth labels for animal genomes, we remove Mendelian discordant variants before training, where models are tuned to genotype the offspring correctly. With TrioTrain, we use cattle, yak, and bison trios to build 30 model iterations across five phases. We observe remarkable performance across phases when testing the GIAB human trios with a mean SNP F1 score >0.990. In HG002, our phase 4 bovine model identifies more variants at a lower MIE rate than DeepTrio. In bovine F1-hybrid genomes, our model substantially reduces inheritance errors with a mean MIE rate of 0.03 percent. Although constrained by imperfect labels, we find that multi-species, trio-based training produces a robust variant calling model. Our research demonstrates that exclusively training with human genomes restricts the application of deep-learning approaches for comparative genomics., Competing Interests: COMPETING INTEREST STATEMENT The authors declare that they have no competing interests.
- Published
- 2024
- Full Text
- View/download PDF
10. Uncovering the architecture of selection in two Bos taurus cattle breeds.
- Author
-
Rowan TN, Schnabel RD, and Decker JE
- Abstract
Directional selection alters the genome via hard sweeps, soft sweeps, and polygenic selection. However, mapping polygenic selection is difficult because it does not leave clear signatures on the genome like a selective sweep. In populations with temporally stratified genotypes, the Generation Proxy Selection Mapping (GPSM) method identifies variants associated with generation number (or appropriate proxy) and thus variants undergoing directional allele frequency changes. Here, we use GPSM on two large datasets of beef cattle to detect associations between an animal's generation and 11 million imputed SNPs. Using these datasets with high power and dense mapping resolution, GPSM detected a total of 294 unique loci actively under selection in two cattle breeds. We observed that GPSM has a high power to detect selection in the very recent past (<10 years), even when allele frequency changes are small. Variants identified by GPSM reside in genomic regions associated with known breed-specific selection objectives, such as fertility and maternal ability in Red Angus, and carcass merit and coat color in Simmental. Over 60% of the selected loci reside in or near (<50 kb) annotated genes. Using haplotype-based and composite selective sweep statistics, we identify hundreds of putative selective sweeps that likely occurred earlier in the evolution of these breeds; however, these sweeps have little overlap with recent polygenic selection. This makes GPSM a complementary approach to sweep detection methods when temporal genotype data are available. The selected loci that we identify across methods demonstrate the complex architecture of selection in domesticated cattle., Competing Interests: The authors declare no conflicts of interest related to this work., (© 2024 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
11. Genomic loci involved in sensing environmental cues and metabolism affect seasonal coat shedding in Bos taurus and Bos indicus cattle.
- Author
-
Durbin HJ, Yampara-Iquise H, Rowan TN, Schnabel RD, Koltes JE, Powell JG, and Decker JE
- Subjects
- Cattle genetics, Animals, Seasons, Genome, Genotype, Genomics, Polymorphism, Single Nucleotide, Genome-Wide Association Study, Cues
- Abstract
Seasonal shedding of winter hair at the start of summer is well studied in wild and domesticated populations. However, the genetic influences on this trait and their interactions are poorly understood. We use data from 13,364 cattle with 36,899 repeated phenotypes to investigate the relationship between hair shedding and environmental variables, single nucleotide polymorphisms, and their interactions to understand quantitative differences in seasonal shedding. Using deregressed estimated breeding values from a repeated records model in a genome-wide association analysis (GWAA) and meta-analysis of year-specific GWAA gave remarkably similar results. These GWAA identified hundreds of variants associated with seasonal hair shedding. There were especially strong associations between chromosomes 5 and 23. Genotype-by-environment interaction GWAA identified 1,040 day length-by-genotype interaction associations and 17 apparent temperature-by-genotype interaction associations with hair shedding, highlighting the importance of day length on hair shedding. Accurate genomic predictions of hair shedding were created for the entire dataset, Angus, Hereford, Brangus, and multibreed datasets. Loci related to metabolism and light-sensing have a large influence on seasonal hair shedding. This is one of the largest genetic analyses of a phenological trait and provides insight into both agriculture production and basic science., Competing Interests: Conflicts of interest Jared Decker and James Koltes were previously on the scientific advisory board of Vytelle, LLC., (© The Author(s) 2023. Published by Oxford University Press on behalf of The Genetics Society of America.)
- Published
- 2024
- Full Text
- View/download PDF
12. The Bovine Pangenome Consortium: democratizing production and accessibility of genome assemblies for global cattle breeds and other bovine species.
- Author
-
Smith TPL, Bickhart DM, Boichard D, Chamberlain AJ, Djikeng A, Jiang Y, Low WY, Pausch H, Demyda-Peyrás S, Prendergast J, Schnabel RD, and Rosen BD
- Subjects
- Cattle genetics, Animals, Genome, Polymorphism, Single Nucleotide, Genomics
- Abstract
The Bovine Pangenome Consortium (BPC) is an international collaboration dedicated to the assembly of cattle genomes to develop a more complete representation of cattle genomic diversity. The goal of the BPC is to provide genome assemblies and a community-agreed pangenome representation to replace breed-specific reference assemblies for cattle genomics. The BPC invites partners sharing our vision to participate in the production of these assemblies and the development of a common, community-approved, pangenome reference as a public resource for the research community ( https://bovinepangenome.github.io/ ). This community-driven resource will provide the context for comparison between studies and the future foundation for cattle genomic selection., (© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
- Published
- 2023
- Full Text
- View/download PDF
13. Evidence of rare misassemblies in the bovine reference genome revealed by population genetic metrics.
- Author
-
Qanbari S, Schnabel RD, and Wittenburg D
- Subjects
- Animals, Cattle genetics, Chromosome Mapping, Genetic Linkage, Pedigree, Genetics, Population, Polymorphism, Single Nucleotide
- Abstract
Creation of the bovine reference assembly paved the way to develop the high-throughput genotyping arrays of the single nucleotide polymorphisms (SNPs) based on the available map coordinates that facilitated major advances in gene mapping and selection programs. The assembly flaws, however, may cause false results in the downstream gene mapping studies. The most recent bovine reference genome (ARS-UCD1.2) is built on the long-read sequences that provides improved quality and continuity. By applying population genetic metrics in this study, we aimed to evaluate the map coordinates to which SNP markers were assigned. We employed a three-step approach by combining the recombination and linkage disequilibrium analyses to test if the markers fit into the assigned physical map coordinates. We applied the method to the bovine 50k array in a large pedigree of Holstein cattle and revealed a panel of 65 candidate markers, most of which were re-located either on a different chromosome or re-mapped as far as several million base pairs away on the same chromosome. This list of candidates accounts for 0.1% of the SNPs in the widely used 50k genotyping array and we foresee a reasonably larger set of markers being misplaced in the BovineHD 700K BeadChip. We suggest pre-removal of the candidate misplaced markers to reduce false signals in association mapping studies., (© 2022 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.)
- Published
- 2022
- Full Text
- View/download PDF
14. Genome-wide association and genotype by environment interactions for growth traits in U.S. Red Angus cattle.
- Author
-
Smith JL, Wilson ML, Nilson SM, Rowan TN, Schnabel RD, Decker JE, and Seabury CM
- Subjects
- Animals, Birth Weight genetics, Cattle genetics, Genome, Genotype, Phenotype, Polymorphism, Single Nucleotide, Gene-Environment Interaction, Genome-Wide Association Study veterinary
- Abstract
Background: Genotypic information produced from single nucleotide polymorphism (SNP) arrays has routinely been used to identify genomic regions associated with complex traits in beef and dairy cattle. Herein, we assembled a dataset consisting of 15,815 Red Angus beef cattle distributed across the continental U.S. and a union set of 836,118 imputed SNPs to conduct genome-wide association analyses (GWAA) for growth traits using univariate linear mixed models (LMM); including birth weight, weaning weight, and yearling weight. Genomic relationship matrix heritability estimates were produced for all growth traits, and genotype-by-environment (GxE) interactions were investigated., Results: Moderate to high heritabilities with small standard errors were estimated for birth weight (0.51 ± 0.01), weaning weight (0.25 ± 0.01), and yearling weight (0.42 ± 0.01). GWAA revealed 12 pleiotropic QTL (BTA6, BTA14, BTA20) influencing Red Angus birth weight, weaning weight, and yearling weight which met a nominal significance threshold (P ≤ 1e-05) for polygenic traits using 836K imputed SNPs. Moreover, positional candidate genes associated with Red Angus growth traits in this study (i.e., LCORL, LOC782905, NCAPG, HERC6, FAM184B, SLIT2, MMRN1, KCNIP4, CCSER1, GRID2, ARRDC3, PLAG1, IMPAD1, NSMAF, PENK, LOC112449660, MOS, SH3PXD2B, STC2, CPEB4) were also previously associated with feed efficiency, growth, and carcass traits in beef cattle. Collectively, 14 significant GxE interactions were also detected, but were less consistent among the investigated traits at a nominal significance threshold (P ≤ 1e-05); with one pleiotropic GxE interaction detected on BTA28 (24 Mb) for Red Angus weaning weight and yearling weight., Conclusions: Sixteen well-supported QTL regions detected from the GWAA and GxE GWAA for growth traits (birth weight, weaning weight, yearling weight) in U.S. Red Angus cattle were found to be pleiotropic. Twelve of these pleiotropic QTL were also identified in previous studies focusing on feed efficiency and growth traits in multiple beef breeds and/or their composites. In agreement with other beef cattle GxE studies our results implicate the role of vasodilation, metabolism, and the nervous system in the genetic sensitivity to environmental stress., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
15. A Non-Synonymous Point Mutation in a WD-40 Domain Repeat of EML5 Leads to Decreased Bovine Sperm Quality and Fertility.
- Author
-
Nogueira E, Tirpák F, Hamilton LE, Zigo M, Kerns K, Sutovsky M, Kim J, Volkmann D, Jovine L, Taylor JF, Schnabel RD, and Sutovsky P
- Abstract
This study is part of a concerted effort to identify and phenotype rare, deleterious mutations that adversely affect sperm quality, or convey high developmental and fertility potential to embryos and ensuing progeny. A rare, homozygous mutation in EML5 ( EML5
R1654W ), which encodes a microtubule-associated protein with high expression in testis and brain was identified in an Angus bull used extensively in artificial insemination (AI) for its outstanding progeny production traits. The bull's fertility was low in cross-breeding timed AI (TAI) (Pregnancy/TAI = 25.2%; n = 222) and, in general, AI breeding to Nellore cows (41%; n = 822). A search of the 1,000 Bull Genomes Run9 database revealed an additional 74 heterozygous animals and 8 homozygous animals harboring this exact mutation across several different breeds (0.7% frequency within the 6,191 sequenced animals). Phenotypically, spermatozoa from the homozygous Angus bull displayed prominent piriform and tapered heads, and outwardly protruding knobbed acrosomes. Additionally, an increased retention of EML5 was also observed in the sperm head of both homozygous and heterozygous Angus bulls compared to wild-type animals. This non-synonymous point mutation is located within a WD40 signaling domain repeat of EML5 and is predicted to be detrimental to overall protein function by genomic single nucleotide polymorphism (SNP) analysis and protein modeling. Future work will examine how this rare mutation affects field AI fertility and will characterize the role of EML5 in spermatogenesis., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Nogueira, Tirpák, Hamilton, Zigo, Kerns, Sutovsky, Kim, Volkmann, Jovine, Taylor, Schnabel and Sutovsky.)- Published
- 2022
- Full Text
- View/download PDF
16. Exploring genetic variation and population structure in a threatened species, Noturus placidus, with whole-genome sequence data.
- Author
-
Whitacre LK, Wildhaber ML, Johnson GS, Durbin HJ, Rowan TN, Tribe P, Schnabel RD, Mhlanga-Mutangadura T, Tabor VM, Fenner D, and Decker JE
- Subjects
- Animals, Endangered Species, Genetic Variation, Genome, Zebrafish genetics, Ictaluridae genetics
- Abstract
The Neosho madtom (Noturus placidus) is a small catfish, generally less than 3 inches in length, unique to the Neosho-Spring River system within the Arkansas River Basin. It was federally listed as threatened in 1990, largely due to habitat loss. For conservation efforts, we generated whole-genome sequence data from 10 Neosho madtom individuals originating from 3 geographically separated populations to evaluate genetic diversity and population structure. A Neosho madtom genome was de novo assembled, and genome size and content were assessed. Single nucleotide polymorphisms were assessed from de Bruijn graphs, and via reference alignment with both the channel catfish (Ictalurus punctatus) reference genome and Neosho madtom reference genome. Principal component analysis and structure analysis indicated weak population structure, suggesting fish from the 3 locations represent a single population. Using a novel method, genome-wide conservation and divergence between the Neosho madtom, channel catfish, and zebrafish (Danio rerio) was assessed by pairwise contig alignment, which demonstrated that genes important to embryonic development frequently had conserved sequences. This research in a threatened species with no previously published genomic resources provides novel genetic information to guide current and future conservation efforts and demonstrates that using whole-genome sequencing provides detailed information of population structure and demography using only a limited number of rare and valuable samples., (Published by Oxford University Press on behalf of Genetics Society of America 2022. This work is written by US Government employees and is in the public domain in the US.)
- Published
- 2022
- Full Text
- View/download PDF
17. Fourth Report on Chicken Genes and Chromosomes 2022.
- Author
-
Smith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LAF, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JAM, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, Stevens MP, Stiers K, Tiambo CK, Tixier-Boichard M, Torgasheva AA, Tracey A, Tregaskes CA, Vervelde L, Wang Y, Warren WC, Waters PD, Webb D, Weigend S, Wolc A, Wright AE, Wright D, Wu Z, Yamagata M, Yang C, Yin ZT, Young MC, Zhang G, Zhao B, and Zhou H
- Published
- 2022
- Full Text
- View/download PDF
18. Taurine and Indicine Haplotype Representation in Advanced Generation Individuals From Three American Breeds.
- Author
-
Crum TE, Schnabel RD, Decker JE, and Taylor JF
- Abstract
Development of the American Breeds of beef cattle began in the 1920s as breeders and U. S. Experiment Station researchers began to create Bos taurus taurus × Bos taurus indicus hybrids using Brahman as the B. t. indicus source. By 1954, U.S. Breed Associations had been formed for Brangus (5/8 Angus × 3/8 Brahman), Beefmaster (½ Brahman × ¼ Shorthorn × ¼ Hereford), and Santa Gertrudis (5/8 Shorthorn × 3/8 Brahman). While these breeds were developed using mating designs expected to create base generation animals with the required genome contributions from progenitor breeds, each association has now registered advanced generation animals in which selection or drift may have caused the realized genome compositions to differ from initial expected proportions. The availability of high-density SNP genotypes for 9,161 Brangus, 3,762 Beefmaster, and 1,942 Santa Gertrudis animals allowed us to compare the realized genomic architectures of breed members to the base generation expectations. We used RFMix to estimate local ancestry and identify genomic regions in which the proportion of Brahman ancestry differed significantly from a priori expectations. For all three breeds, lower than expected levels of Brahman composition were found genome-wide, particularly in early-generation animals where we demonstrate that selection on beef production traits was likely responsible for the taurine enrichment. Using a proxy for generation number, we also contrasted the genomes of early- and advanced-generation animals and found that the indicine composition of the genome has increased with generation number likely due to selection on adaptive traits. Many of the most-highly differentiated genomic regions were breed specific, suggesting that differences in breeding objectives and selection intensities exist between the breeds. Global ancestry estimation is commonly performed in admixed animals to control for stratification in association studies. However, local ancestry estimation provides the opportunity to investigate the evolution of specific chromosomal segments and estimate haplotype effects on trait variation in admixed individuals. Investigating the genomic architecture of the American Breeds not only allows the estimation of indicine and taurine genome proportions genome-wide, but also the locations within the genome where either taurine or indicine alleles confer a selective advantage., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Crum, Schnabel, Decker and Taylor.)
- Published
- 2021
- Full Text
- View/download PDF
19. Powerful detection of polygenic selection and evidence of environmental adaptation in US beef cattle.
- Author
-
Rowan TN, Durbin HJ, Seabury CM, Schnabel RD, and Decker JE
- Subjects
- Acclimatization genetics, Adaptation, Physiological genetics, Alleles, Animals, Biological Evolution, Environment, Gene Frequency genetics, Genome-Wide Association Study methods, Genomics, Genotype, Models, Genetic, Phenotype, Polymorphism, Single Nucleotide genetics, Quantitative Trait Loci genetics, Selection, Genetic genetics, Adaptation, Biological genetics, Cattle genetics, Multifactorial Inheritance genetics
- Abstract
Selection on complex traits can rapidly drive evolution, especially in stressful environments. This polygenic selection does not leave intense sweep signatures on the genome, rather many loci experience small allele frequency shifts, resulting in large cumulative phenotypic changes. Directional selection and local adaptation are changing populations; but, identifying loci underlying polygenic or environmental selection has been difficult. We use genomic data on tens of thousands of cattle from three populations, distributed over time and landscapes, in linear mixed models with novel dependent variables to map signatures of selection on complex traits and local adaptation. We identify 207 genomic loci associated with an animal's birth date, representing ongoing selection for monogenic and polygenic traits. Additionally, hundreds of additional loci are associated with continuous and discrete environments, providing evidence for historical local adaptation. These candidate loci highlight the nervous system's possible role in local adaptation. While advanced technologies have increased the rate of directional selection in cattle, it has likely been at the expense of historically generated local adaptation, which is especially problematic in changing climates. When applied to large, diverse cattle datasets, these selection mapping methods provide an insight into how selection on complex traits continually shapes the genome. Further, understanding the genomic loci implicated in adaptation may help us breed more adapted and efficient cattle, and begin to understand the basis for mammalian adaptation, especially in changing climates. These selection mapping approaches help clarify selective forces and loci in evolutionary, model, and agricultural contexts., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
20. Genome-wide association analyses identify genotype-by-environment interactions of growth traits in Simmental cattle.
- Author
-
Braz CU, Rowan TN, Schnabel RD, and Decker JE
- Subjects
- Animals, Birth Weight genetics, Cattle, Gene-Environment Interaction, Genomics methods, Genotype, Phenotype, Polymorphism, Single Nucleotide genetics, Weaning, Genome-Wide Association Study veterinary, Quantitative Trait Loci genetics
- Abstract
Understanding genotype-by-environment interactions (G × E) is crucial to understand environmental adaptation in mammals and improve the sustainability of agricultural production. Here, we present an extensive study investigating the interaction of genome-wide SNP markers with a vast assortment of environmental variables and searching for SNPs controlling phenotypic variance (vQTL) using a large beef cattle dataset. We showed that G × E contribute 10.1%, 3.8%, and 2.8% of the phenotypic variance of birth weight, weaning weight, and yearling weight, respectively. G × E genome-wide association analysis (GWAA) detected a large number of G × E loci affecting growth traits, which the traditional GWAA did not detect, showing that functional loci may have non-additive genetic effects regardless of differences in genotypic means. Further, variance-heterogeneity GWAA detected loci enriched with G × E effects without requiring prior knowledge of the interacting environmental factors. Functional annotation and pathway analysis of G × E genes revealed biological mechanisms by which cattle respond to changes in their environment, such as neurotransmitter activity, hypoxia-induced processes, keratinization, hormone, thermogenic and immune pathways. We unraveled the relevance and complexity of the genetic basis of G × E underlying growth traits, providing new insights into how different environmental conditions interact with specific genes influencing adaptation and productivity in beef cattle and potentially across mammals.
- Published
- 2021
- Full Text
- View/download PDF
21. Introgression, admixture, and selection facilitate genetic adaptation to high-altitude environments in cattle.
- Author
-
Wang X, Ju Z, Jiang Q, Zhong J, Liu C, Wang J, Hoff JL, Schnabel RD, Zhao H, Gao Y, Liu W, Wang L, Gao Y, Yang C, Hou M, Huang N, Regitano LCA, Porto-Neto LR, Decker JE, Taylor JF, and Huang J
- Subjects
- Acclimatization genetics, Alleles, Animals, Cattle genetics, Genotype, Selection, Genetic, Altitude, Polymorphism, Single Nucleotide
- Abstract
Domestication and subsequent selection of cattle to form breeds and biological types that can adapt to different environments partitioned ancestral genetic diversity into distinct modern lineages. Genome-wide selection particularly for adaptation to extreme environments left detectable signatures genome-wide. We used high-density genotype data for 42 cattle breeds and identified the influence of Bos grunniens and Bos javanicus on the formation of Chinese indicine breeds that led to their divergence from India-origin zebu. We also found evidence for introgression, admixture, and migration in most of the Chinese breeds. Selection signature analyses between high-altitude (≥1800 m) and low-altitude adapted breeds (<1500 m) revealed candidate genes (ACSS2, ALDOC, EPAS1, EGLN1, NUCB2) and pathways that are putatively involved in hypoxia adaptation. Immunohistochemical, real-time PCR and CRISPR/cas9 ACSS2-knockout analyses suggest that the up-regulation of ACSS2 expression in the liver promotes the metabolic adaptation of cells to hypoxia via the hypoxia-inducible factor pathway. High altitude adaptation involved the introgression of alleles from high-altitude adapted yaks into Chinese Bos taurus taurus prior to their formation into recognized breeds and followed by selection. In addition to selection, adaptation to high altitude environments has been facilitated by admixture and introgression with locally adapted cattle populations., (Copyright © 2021. Published by Elsevier Inc.)
- Published
- 2021
- Full Text
- View/download PDF
22. Using online tools at the Bovine Genome Database to manually annotate genes in the new reference genome.
- Author
-
Triant DA, Le Tourneau JJ, Diesh CM, Unni DR, Shamimuzzaman M, Walsh AT, Gardiner J, Goldkamp AK, Li Y, Nguyen HN, Roberts C, Zhao Z, Alexander LJ, Decker JE, Schnabel RD, Schroeder SG, Sonstegard TS, Taylor JF, Rivera RM, Hagen DE, and Elsik CG
- Subjects
- Animals, Cattle genetics, Databases, Genetic, Genome, Molecular Sequence Annotation, Online Systems
- Abstract
With the availability of a new highly contiguous Bos taurus reference genome assembly (ARS-UCD1.2), it is the opportune time to upgrade the bovine gene set by seeking input from researchers. Furthermore, advances in graphical genome annotation tools now make it possible for researchers to leverage sequence data generated with the latest technologies to collaboratively curate genes. For many years the Bovine Genome Database (BGD) has provided tools such as the Apollo genome annotation editor to support manual bovine gene curation. The goal of this paper is to explain the reasoning behind the decisions made in the manual gene curation process while providing examples using the existing BGD tools. We will describe the sources of gene annotation evidence provided at the BGD, including RNA-seq and Iso-Seq data. We will also explain how to interpret various data visualizations when curating gene models, and will demonstrate the value of manual gene annotation. The process described here can be applied to manual gene curation for other species with similar tools. With a better understanding of manual gene annotation, researchers will be encouraged to edit gene models and contribute to the enhancement of livestock gene sets., (© 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
23. Spliced genes in muscle from Nelore Cattle and their association with carcass and meat quality.
- Author
-
Silva DBS, Fonseca LFS, Pinheiro DG, Magalhães AFB, Muniz MMM, Ferro JA, Baldi F, Chardulo LAL, Schnabel RD, Taylor JF, and Albuquerque LG
- Subjects
- Animals, Food Quality, Microfilament Proteins genetics, Muscle Proteins genetics, Muscles metabolism, RNA, Messenger genetics, Alternative Splicing, Cattle genetics, Red Meat analysis, Transcriptome
- Abstract
Transcript data obtained by RNA-Seq were used to identify differentially expressed alternatively spliced genes in ribeye muscle tissue between Nelore cattle that differed in their ribeye area (REA) or intramuscular fat content (IF). A total of 166 alternatively spliced transcripts from 125 genes were significantly differentially expressed in ribeye muscle between the highest and lowest REA groups (p ≤ 0.05). For animals selected on their IF content, 269 alternatively spliced transcripts from 219 genes were differentially expressed in ribeye muscle between the highest and lowest IF animals. Cassette exons and alternative 3' splice sites were the most frequently found alternatively spliced transcripts for REA and IF content. For both traits, some differentially expressed alternatively spliced transcripts belonged to myosin and myotilin gene families. The hub transcripts were identified for REA (LRRFIP1, RCAN1 and RHOBTB1) and IF (TRIP12, HSPE1 and MAP2K6) have an important role to play in muscle cell degradation, development and motility. In general, transcripts were found for both traits with biological process GO terms that were involved in pathways related to protein ubiquitination, muscle differentiation, lipids and hormonal systems. Our results reinforce the biological importance of these known processes but also reveal new insights into the complexity of the whole cell muscle mRNA of Nelore cattle.
- Published
- 2020
- Full Text
- View/download PDF
24. Symposium review: Advances in sequencing technology herald a new frontier in cattle genomics and genome-enabled selection.
- Author
-
Bickhart DM, McClure JC, Schnabel RD, Rosen BD, Medrano JF, and Smith TPL
- Subjects
- Animals, Cattle genetics, Genome, Genomics instrumentation, Selection, Genetic, Sequence Analysis, DNA veterinary
- Abstract
The cattle reference genome assembly has underpinned major innovations in beef and dairy genetics through genome-enabled selection, including removal of deleterious recessive variants and selection for favorable alleles affecting quantitative production traits. The initial reference assemblies, up to and including UMD3.1 and Btau4.1, were based on a combination of clone-by-clone sequencing of bacterial artificial chromosome clones generated from blood DNA of a Hereford bull and whole-genome shotgun sequencing of blood DNA from his inbred daughter/granddaughter named L1 Dominette 01449 (Dominette). The approach introduced assembly gaps, misassemblies, and errors, and it limited the ability to assemble regions that undergo rearrangement in blood cells, such as immune gene clusters. Nonetheless, the reference supported the creation of genotyping tools and provided a basis for many studies of gene expression. Recently, long-read sequencing technologies have emerged that facilitated a re-assembly of the reference genome, using lung tissue from Dominette to resolve many of the problems and providing a bridge to place historical studies in common context. The new reference, ARS-UCD1.2, successfully assembled germline immune gene clusters and improved overall continuity (i.e., reduction of gaps and inversions) by over 250-fold. This reference properly places nearly all of the legacy genetic markers used for over a decade in the industry. In this review, we discuss the improvements made to the cattle reference; remaining issues present in the assembly; tools developed to support genome-based studies in beef and dairy cattle; and the emergence of newer genome assembly methods that are producing even higher-quality assemblies for other breeds of cattle at a fraction of the cost. The new frontier for cattle genomics research will likely include a transition from the individual Hereford reference genome, to a "pan-genome" reference, representing all the DNA segments existing in commonly used cattle breeds, bringing the cattle reference into line with the current direction of human genome research., (Copyright © 2020 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
25. De novo assembly of the cattle reference genome with single-molecule sequencing.
- Author
-
Rosen BD, Bickhart DM, Schnabel RD, Koren S, Elsik CG, Tseng E, Rowan TN, Low WY, Zimin A, Couldrey C, Hall R, Li W, Rhie A, Ghurye J, McKay SD, Thibaud-Nissen F, Hoffman J, Murdoch BM, Snelling WM, McDaneld TG, Hammond JA, Schwartz JC, Nandolo W, Hagen DE, Dreischer C, Schultheiss SJ, Schroeder SG, Phillippy AM, Cole JB, Van Tassell CP, Liu G, Smith TPL, and Medrano JF
- Subjects
- Animals, Breeding methods, Genomics methods, RNA-Seq methods, RNA-Seq standards, Reference Standards, Sequence Analysis, DNA methods, Sequence Analysis, DNA standards, Breeding standards, Cattle genetics, Genome, Genomics standards, Polymorphism, Genetic
- Abstract
Background: Major advances in selection progress for cattle have been made following the introduction of genomic tools over the past 10-12 years. These tools depend upon the Bos taurus reference genome (UMD3.1.1), which was created using now-outdated technologies and is hindered by a variety of deficiencies and inaccuracies., Results: We present the new reference genome for cattle, ARS-UCD1.2, based on the same animal as the original to facilitate transfer and interpretation of results obtained from the earlier version, but applying a combination of modern technologies in a de novo assembly to increase continuity, accuracy, and completeness. The assembly includes 2.7 Gb and is >250× more continuous than the original assembly, with contig N50 >25 Mb and L50 of 32. We also greatly expanded supporting RNA-based data for annotation that identifies 30,396 total genes (21,039 protein coding). The new reference assembly is accessible in annotated form for public use., Conclusions: We demonstrate that improved continuity of assembled sequence warrants the adoption of ARS-UCD1.2 as the new cattle reference genome and that increased assembly accuracy will benefit future research on this species., (© The Author(s) 2020. Published by Oxford University Press.)
- Published
- 2020
- Full Text
- View/download PDF
26. A multi-breed reference panel and additional rare variants maximize imputation accuracy in cattle.
- Author
-
Rowan TN, Hoff JL, Crum TE, Taylor JF, Schnabel RD, and Decker JE
- Subjects
- Animals, Genomics, Genotype, Genotyping Techniques, Breeding, Cattle genetics, Polymorphism, Single Nucleotide
- Abstract
Background: During the last decade, the use of common-variant array-based single nucleotide polymorphism (SNP) genotyping in the beef and dairy industries has produced an astounding amount of medium-to-low density genomic data. Although low-density assays work well in the context of genomic prediction, they are less useful for detecting and mapping causal variants and the effects of rare variants are not captured. The objective of this project was to maximize the accuracies of genotype imputation from medium- and low-density assays to the marker set obtained by combining two high-density research assays (~ 850,000 SNPs), the Illumina BovineHD and the GGP-F250 assays, which contains a large proportion of rare and potentially functional variants and for which the assay design is described here. This 850 K SNP set is useful for both imputation to sequence-level genotypes and direct downstream analysis., Results: We found that a large multi-breed composite imputation reference panel that includes 36,131 samples with either BovineHD and/or GGP-F250 genotypes significantly increased imputation accuracy compared with a within-breed reference panel, particularly at variants with low minor allele frequencies. Individual animal imputation accuracies were maximized when more genetically similar animals were represented in the composite reference panel, particularly with complete 850 K genotypes. The addition of rare variants from the GGP-F250 assay to our composite reference panel significantly increased the imputation accuracy of rare variants that are exclusively present on the BovineHD assay. In addition, we show that an assay marker density of 50 K SNPs balances cost and accuracy for imputation to 850 K., Conclusions: Using high-density genotypes on all available individuals in a multi-breed reference panel maximized imputation accuracy for tested cattle populations. Admixed animals or those from breeds with a limited representation in the composite reference panel were still imputed at high accuracy, which is expected to further increase as the reference panel expands. We anticipate that the addition of rare variants from the GGP-F250 assay will increase the accuracy of imputation to sequence level.
- Published
- 2019
- Full Text
- View/download PDF
27. Genome-wide association and genotype by environment interactions for growth traits in U.S. Gelbvieh cattle.
- Author
-
Smith JL, Wilson ML, Nilson SM, Rowan TN, Oldeschulte DL, Schnabel RD, Decker JE, and Seabury CM
- Subjects
- Animals, Cattle, Gene-Environment Interaction, Polymorphism, Single Nucleotide, Quantitative Trait, Heritable, Species Specificity, Weaning, Birth Weight genetics, Genome-Wide Association Study veterinary, Oligonucleotide Array Sequence Analysis veterinary, Quantitative Trait Loci
- Abstract
Background: Single nucleotide polymorphism (SNP) arrays have facilitated discovery of genetic markers associated with complex traits in domestic cattle; thereby enabling modern breeding and selection programs. Genome-wide association analyses (GWAA) for growth traits were conducted on 10,837 geographically diverse U.S. Gelbvieh cattle using a union set of 856,527 imputed SNPs. Birth weight (BW), weaning weight (WW), and yearling weight (YW) were analyzed using GEMMA and EMMAX (via imputed genotypes). Genotype-by-environment (GxE) interactions were also investigated., Results: GEMMA and EMMAX produced moderate marker-based heritability estimates that were similar for BW (0.36-0.37, SE = 0.02-0.06), WW (0.27-0.29, SE = 0.01), and YW (0.39-0.41, SE = 0.01-0.02). GWAA using 856K imputed SNPs (GEMMA; EMMAX) revealed common positional candidate genes underlying pleiotropic QTL for Gelbvieh growth traits on BTA6, BTA7, BTA14, and BTA20. The estimated proportion of phenotypic variance explained (PVE) by the lead SNP defining these QTL (EMMAX) was larger and most similar for BW and YW, and smaller for WW. Collectively, GWAAs (GEMMA; EMMAX) produced a highly concordant set of BW, WW, and YW QTL that met a nominal significance level (P ≤ 1e-05), with prioritization of common positional candidate genes; including genes previously associated with stature, feed efficiency, and growth traits (i.e., PLAG1, NCAPG, LCORL, ARRDC3, STC2). Genotype-by-environment QTL were not consistent among traits at the nominal significance threshold (P ≤ 1e-05); although some shared QTL were apparent at less stringent significance thresholds (i.e., P ≤ 2e-05)., Conclusions: Pleiotropic QTL for growth traits were detected on BTA6, BTA7, BTA14, and BTA20 for U.S. Gelbvieh beef cattle. Seven QTL detected for Gelbvieh growth traits were also recently detected for feed efficiency and growth traits in U.S. Angus, SimAngus, and Hereford cattle. Marker-based heritability estimates and the detection of pleiotropic QTL segregating in multiple breeds support the implementation of multiple-breed genomic selection.
- Published
- 2019
- Full Text
- View/download PDF
28. Neuronal ceroid lipofuscinosis in a German Shorthaired Pointer associated with a previously reported CLN8 nonsense variant.
- Author
-
Guo J, Johnson GS, Cook J, Harris OK, Mhlanga-Mutangadura T, Schnabel RD, Jensen CA, and Katz ML
- Abstract
Two littermate German Shorthaired Pointers, a male and a female, were adopted as puppies from an animal shelter. Both puppies developed normally until approximately 11 months of age when the male began to exhibit neurological signs including ataxia, vision loss, and behavioral changes indicative of cognitive decline. These signs increased in severity over time. The female remained neurologically normal and healthy. The affected dog was euthanized at approximately 21 months of age. Autofluorescent cytoplasmic storage bodies were detected in neurons in unstained tissue sections from the cerebellum, the cerebrum, and the retina. Electron micrographs of these storage bodies showed that they were membrane bound and that most contained tightly packed aggregates of membranous whorls along with a variety of other ultrastructural features. This ultrastructure, along with the autofluorescence and the clinical signs supported a diagnosis of neuronal ceroid lipofuscinosis (NCL). Unlike earlier investigated forms of canine NCL with causal alleles in ATP13A2 , TPP1 , MFSD8 and CLN5 that had autofluorescent cytoplasmic storage bodies in cardiac muscle, no autofluorescence was detected in cardiac muscle from the affected German Shorthaired Pointer. A 39-fold average coverage whole genome sequence indicated that the affected German Shorthaired Pointer was homozygous for the A allele of a G > A transversion at position 30,895,648 chromosome 37. This 37:30895648G > A mutation created a CLN8 termination codon that had been previously reported to cause NCL in a mixed breed dog with Australian Shepherd and Australian Cattle Dog ancestry. This nonsense allele was heterozygous in the clinically normal female sibling, while archived DNA samples from 512 other German Shorthaired Pointers were all homozygous for the reference allele. The affected German Shorthaired Pointer and the previously diagnosed mixed breed dog with the same nonsense mutation shaired an identical homozygous haplotype that extended for 4.41 Mb at the telomeric end of chromosome 37, indicating the both dogs inherited the nonsense mutation from a common ancestor., (© 2019 The Authors.)
- Published
- 2019
- Full Text
- View/download PDF
29. A homozygous ADAMTS2 nonsense mutation in a Doberman Pinscher dog with Ehlers Danlos syndrome and extreme skin fragility.
- Author
-
Jaffey JA, Bullock G, Teplin E, Guo J, Villani NA, Mhlanga-Mutangadura T, Schnabel RD, Cohn LA, and Johnson GS
- Subjects
- Animals, Dogs, Ehlers-Danlos Syndrome genetics, Skin Diseases genetics, ADAMTS Proteins genetics, Dog Diseases genetics, Ehlers-Danlos Syndrome veterinary, Skin Diseases veterinary
- Abstract
An eight-week old Doberman Pinscher was diagnosed with Ehlers Danlos syndrome based on the dog's hyper-mobile carpal, tarsal and stifle joints and abnormal skin. The skin was loose and hyper-elastic with several wounds and large atrophic scars. The dog was euthanized after a severe degloving injury from minimal trauma. A whole-genome sequence, generated with DNA from the dog's blood, contained a rare, homozygous C-to-T transition at position 2408978 on chromosome 11. This transition is predicted to alter the ADAMTS2 transcript (ADAMTS2:c.769C>T) and encode a nonsense mutation (p.Arg257Ter). Biallelic ADAMTS2 mutations have caused a type of Ehlers Danlos syndrome known as dermatosparaxis in other species., (© 2019 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.)
- Published
- 2019
- Full Text
- View/download PDF
30. Identification of bovine CpG SNPs as potential targets for epigenetic regulation via DNA methylation.
- Author
-
Maldonado MBC, de Rezende Neto NB, Nagamatsu ST, Carazzolle MF, Hoff JL, Whitacre LK, Schnabel RD, Behura SK, McKay SD, Taylor JF, and Lopes FL
- Subjects
- Animals, DNA genetics, DNA Methylation genetics, Databases, Genetic, Epigenomics methods, Genome genetics, Genome-Wide Association Study methods, Polymorphism, Single Nucleotide genetics, Sequence Analysis, DNA methods, Cattle genetics, CpG Islands genetics, Epigenesis, Genetic genetics
- Abstract
Methylation patterns established and maintained at CpG sites may be altered by single nucleotide polymorphisms (SNPs) within these sites and may affect the regulation of nearby genes. Our aims were to: 1) identify and generate a database of SNPs potentially subject to epigenetic control by DNA methylation via their involvement in creating, removing or displacing CpG sites (meSNPs), and; 2) investigate the association of these meSNPs with CpG islands (CGIs), and with methylation profiles of DNA extracted from tissues from cattle with divergent feed efficiencies detected using MIRA-Seq. Using the variant annotation for 56,969,697 SNPs identified in Run5 of the 1000 Bull Genomes Project and the UMD3.1.1 bovine reference genome sequence assembly, we identified and classified 12,836,763 meSNPs according to the nature of variation created at CpGs. The majority of the meSNPs were located in intergenic regions (68%) or introns (26.3%). We found an enrichment (p<0.01) of meSNPs located in CGIs relative to the genome as a whole, and also in differentially methylated sequences in tissues from animals divergent for feed efficiency. Seven meSNPs, located in differentially methylated regions, were fixed for methylation site creating (MSC) or destroying (MSD) alleles in the differentially methylated genomic sequences of animals differing in feed efficiency. These meSNPs may be mechanistically responsible for creating or deleting methylation targets responsible for the differential expression of genes underlying differences in feed efficiency. Our methyl SNP database (dbmeSNP) is useful for identifying potentially functional "epigenetic polymorphisms" underlying variation in bovine phenotypes., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2019
- Full Text
- View/download PDF
31. CRUMBLER: A tool for the prediction of ancestry in cattle.
- Author
-
Crum TE, Schnabel RD, Decker JE, Regitano LCA, and Taylor JF
- Subjects
- Animals, Breeding, Gene Pool, Genetic Markers, Genotype, Hybridization, Genetic, Pedigree, Polymorphism, Single Nucleotide genetics, Reference Standards, Reproducibility of Results, Sample Size, Cattle genetics, Phylogeny, Software
- Abstract
In many beef and some dairy production systems, crossbreeding is used to take advantage of breed complementarity and heterosis. Admixed animals are frequently identified by their coat color and body conformation phenotypes, however, without pedigree information it is not possible to identify the expected breed composition of an admixed animal and in the presence of selection, the actual composition may differ from expectation. As the roles of DNA and genotype data become more pervasive in animal agriculture, a systematic method for estimating the breed composition (the proportions of an animal's genome originating from ancestral pure breeds) has utility for a variety of downstream analyses including the estimation of genomic breeding values for crossbred animals, the estimation of quantitative trait locus effects, and heterosis and heterosis retention in advanced generation composite animals. Currently, there is no automated or semi-automated ancestry estimation platform for cattle and the objective of this study was to evaluate the utility of extant public software for ancestry estimation and determine the effects of reference population size and composition and number of utilized single nucleotide polymorphism loci on ancestry estimation. We also sought to develop an analysis pipeline that would simplify this process for members of the livestock genomics research community. We developed and tested a tool, "CRUMBLER", to estimate the global ancestry of cattle using ADMIXTURE and SNPweights based on a defined reference panel. CRUMBLER, was developed and evaluated in cattle, but is a species agnostic pipeline that facilitates the streamlined estimation of breed composition for individuals with potentially complex ancestries using publicly available global ancestry software and a specified reference population SNP dataset. We developed the reference panel from a large cattle genotype data set and breed association pedigree information using iterative analyses to identify purebred individuals that were representative of each breed. We also evaluated the numbers of markers necessary for breed composition estimation and simulated genotypes for advanced generation composite animals to evaluate the precision of the developed tool. The developed CRUMBLER pipeline extracts a specified subset of genotypes that is common to all current commercially available genotyping platforms, processes these into the file formats required for the analysis software, and predicts admixture proportions using the specified reference population allele frequencies., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2019
- Full Text
- View/download PDF
32. QTL-mapping and genomic prediction for bovine respiratory disease in U.S. Holsteins using sequence imputation and feature selection.
- Author
-
Hoff JL, Decker JE, Schnabel RD, Seabury CM, Neibergs HL, and Taylor JF
- Subjects
- Animals, Bayes Theorem, California, Case-Control Studies, Cattle, Gene Frequency, Genetic Predisposition to Disease, Genome-Wide Association Study, Models, Genetic, New Mexico, Reproducibility of Results, Sequence Analysis, RNA, Whole Genome Sequencing, Bovine Respiratory Disease Complex genetics, Quantitative Trait Loci
- Abstract
Background: National genetic evaluations for disease resistance do not exist, precluding the genetic improvement of cattle for these traits. We imputed BovineHD genotypes to whole genome sequence for 2703 Holsteins that were cases or controls for Bovine Respiratory Disease and sampled from either California or New Mexico to construct and compare genomic prediction models. The sequence variation reference dataset comprised variants called for 1578 animals from Run 5 of the 1000 Bull Genomes Project, including 450 Holsteins and 29 animals sequenced from this study population. Genotypes for 9,282,726 variants with minor allele frequencies ≥5% were imputed and used to obtain genomic predictions in GEMMA using a Bayesian Sparse Linear Mixed Model., Results: Variation explained by markers increased from 13.6% using BovineHD data to 14.4% using imputed whole genome sequence data and the resolution of genomic regions detected as harbouring QTL substantially increased. Explained variation in the analysis of the combined California and New Mexico data was less than when data for each state were separately analysed and the estimated genetic correlation between risk of Bovine Respiratory Disease in California and New Mexico Holsteins was - 0.36. Consequently, genomic predictions trained using the data from one state did not accurately predict disease risk in the other state. To determine if a prediction model could be developed with utility in both states, we selected variants within genomic regions harbouring: 1) genes involved in the normal immune response to infection by pathogens responsible for Bovine Respiratory Disease detected by RNA-Seq analysis, and/or 2) QTL identified in the association analysis of the imputed sequence variants. The model based on QTL selected variants is biased but when trained in one state generated BRD risk predictions with positive accuracies in the other state., Conclusions: We demonstrate the utility of sequence-based and biology-driven model development for genomic selection. Disease phenotypes cannot be routinely recorded in most livestock species and the observed phenotypes may vary in their genomic architecture due to variation in the pathogen composition across environments. Elucidation of trait biology and genetic architecture may guide the development of prediction models with utility across breeds and environments.
- Published
- 2019
- Full Text
- View/download PDF
33. Genome-Wide SNP Discovery in Indigenous Cattle Breeds of South Africa.
- Author
-
Zwane AA, Schnabel RD, Hoff J, Choudhury A, Makgahlela ML, Maiwashe A, Van Marle-Koster E, and Taylor JF
- Abstract
Single nucleotide polymorphism arrays have created new possibilities for performing genome-wide studies to detect genomic regions harboring sequence variants that affect complex traits. However, the majority of validated SNPs for which allele frequencies have been estimated are limited primarily to European breeds. The objective of this study was to perform SNP discovery in three South African indigenous breeds (Afrikaner, Drakensberger, and Nguni) using whole genome sequencing. DNA was extracted from blood and hair samples, quantified and prepared at 50 ng/μl concentration for sequencing at the Agricultural Research Council Biotechnology Platform using an Illumina HiSeq 2500. The fastq files were used to call the variants using the Genome Analysis Tool Kit. A total of 1,678,360 were identified as novel using Run 6 of 1000 Bull Genomes Project. Annotation of the identified variants classified them into functional categories. Within the coding regions, about 30% of the SNPs were non-synonymous substitutions that encode for alternate amino acids. The study of distribution of SNP across the genome identified regions showing notable differences in the densities of SNPs among the breeds and highlighted many regions of functional significance. Gene ontology terms identified genes such as MLANA , SYT10 , and CDC42EP5 that have been associated with coat color in mouse, and ADAMS3, DNAJC3 , and PAG5 genes have been associated with fertility in cattle. Further analysis of the variants detected 688 candidate selective sweeps (ZH
p Z-scores ≤ -4) across all three breeds, of which 223 regions were assigned as being putative selective sweeps (ZHp scores ≤-5). We also identified 96 regions with extremely low ZHp Z-scores (≤-6) in Afrikaner and Nguni. Genes such as KIT and MITF that have been associated with skin pigmentation in cattle and CACNA1C , which has been associated with biopolar disorder in human, were identified in these regions. This study provides the first analysis of sequence data to discover SNPs in indigenous South African cattle breeds. The information will play an important role in our efforts to understand the genetic history of our cattle and in designing appropriate breed improvement programmes.- Published
- 2019
- Full Text
- View/download PDF
34. Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation.
- Author
-
Yurchenko AA, Daetwyler HD, Yudin N, Schnabel RD, Vander Jagt CJ, Soloshenko V, Lhasaranov B, Popov R, Taylor JF, and Larkin DM
- Subjects
- Acclimatization, Animals, Female, Male, Russia, Cattle genetics, Genome, Quantitative Trait, Heritable, Selective Breeding
- Abstract
Domestication and selective breeding has resulted in over 1000 extant cattle breeds. Many of these breeds do not excel in important traits but are adapted to local environments. These adaptations are a valuable source of genetic material for efforts to improve commercial breeds. As a step toward this goal we identified candidate regions to be under selection in genomes of nine Russian native cattle breeds adapted to survive in harsh climates. After comparing our data to other breeds of European and Asian origins we found known and novel candidate genes that could potentially be related to domestication, economically important traits and environmental adaptations in cattle. The Russian cattle breed genomes contained regions under putative selection with genes that may be related to adaptations to harsh environments (e.g., AQP5, RAD50, and RETREG1). We found genomic signatures of selective sweeps near key genes related to economically important traits, such as the milk production (e.g., DGAT1, ABCG2), growth (e.g., XKR4), and reproduction (e.g., CSF2). Our data point to candidate genes which should be included in future studies attempting to identify genes to improve the extant breeds and facilitate generation of commercial breeds that fit better into the environments of Russia and other countries with similar climates.
- Published
- 2018
- Full Text
- View/download PDF
35. Identification of genomic variants causing sperm abnormalities and reduced male fertility.
- Author
-
Taylor JF, Schnabel RD, and Sutovsky P
- Subjects
- Animals, Cattle, Male, Phenotype, Selection, Genetic, Sperm Motility, Spermatozoa metabolism, Whole Genome Sequencing, Gene Expression Regulation, Genetic Variation, Infertility, Male etiology, Spermatozoa pathology, Teratozoospermia genetics, Teratozoospermia pathology
- Abstract
Whole genome sequencing has identified millions of bovine genetic variants; however, there is currently little understanding about which variants affect male fertility. It is imperative that we begin to link detrimental genetic variants to sperm phenotypes via the analysis of semen samples and measurement of fertility for bulls with alternate genotypes. Artificial insemination (AI) bulls provide a useful model system because of extensive fertility records, measured as sire conception rates (SCR). Genetic variants with moderate to large effects on fertility can be identified by sequencing the genomes of fertile and subfertile or infertile sires identified with high or low SCR as adult AI bulls or yearling bulls that failed Breeding Soundness Evaluation. Variants enriched in frequency in the sequences of subfertile/infertile bulls, particularly those likely to result in the loss of protein function or predicted to be severely deleterious to genes involved in sperm protein structure and function, semen quality or sperm morphology can be designed onto genotyping assays for validation of their effects on fertility. High throughput conventional and image-based flow cytometry, proteomics and cell imaging can be used to establish the functional effects of variants on sperm phenotypes. Integrating the genetic, fertility and sperm phenotype data will accelerate biomarker discovery and validation, improve routine semen testing in bull studs and identify new targets for cost-efficient AI dose optimization approaches such as semen nanopurification. This will maximize semen output from genetically superior sires and will increase the fertility of cattle. Better understanding of the relationships between male genotype and sperm phenotype may also yield new diagnostic tools and treatments for human male and idiopathic infertility., (Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
36. Review: Genomics of bull fertility.
- Author
-
Taylor JF, Schnabel RD, and Sutovsky P
- Subjects
- Animals, Breeding, Dairying, Female, Genomics, Male, Semen, Cattle genetics, Fertility genetics, Insemination, Artificial veterinary
- Abstract
Fertility is one of the most economically important traits in both beef and dairy cattle production; however, only female fertility is typically subjected to selection. Male and female fertility have only a small positive genetic correlation which is likely due to the existence of a relatively small number of genetic variants within each breed that cause embryonic and developmental losses. Genomic tools have been developed that allow the identification of lethal recessive loci based upon marker haplotypes. Selection against haplotypes harbouring lethal alleles in conjunction with selection to improve female fertility will result in an improvement in male fertility. Genomic selection has resulted in a two to fourfold increase in the rate of genetic improvement of most dairy traits in US Holstein cattle, including female fertility. Considering the rapidly increasing rate of adoption of high-throughput single nucleotide polymorphism genotyping in both the US dairy and beef industries, genomic selection should be the most effective of all currently available approaches to improve male fertility. However, male fertility phenotypes are not routinely recorded in natural service mating systems and when artificial insemination is used, semen doses may be titrated to lower post-thaw progressively motile sperm numbers for high-merit and high-demand bulls. Standardization of sperm dosages across bull studs for semen distributed from young bulls would allow the capture of sire conception rate phenotypes for young bulls that could be used to generate predictions of genetic merit for male fertility in both males and females. These data would allow genomic selection to be implemented for male fertility in addition to female fertility within the US dairy industry. While the rate of use of artificial insemination is much lower within the US beef industry, the adoption of sexed semen in the dairy industry has allowed dairy herds to select cows from which heifer replacements are produced and cows that are used to produce terminal crossbred bull calves sired by beef breed bulls. Capture of sire conception rate phenotypes in dairy herds utilizing sexed semen will contribute data enabling genomic selection for male fertility in beef cattle breeds. As the commercial sector of the beef industry increasingly adopts fixed-time artificial insemination, sire conception rate phenotypes can be captured to facilitate the development of estimates of genetic merit for male fertility within US beef breeds.
- Published
- 2018
- Full Text
- View/download PDF
37. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals.
- Author
-
Bouwman AC, Daetwyler HD, Chamberlain AJ, Ponce CH, Sargolzaei M, Schenkel FS, Sahana G, Govignon-Gion A, Boitard S, Dolezal M, Pausch H, Brøndum RF, Bowman PJ, Thomsen B, Guldbrandtsen B, Lund MS, Servin B, Garrick DJ, Reecy J, Vilkki J, Bagnato A, Wang M, Hoff JL, Schnabel RD, Taylor JF, Vinkhuyzen AAE, Panitz F, Bendixen C, Holm LE, Gredler B, Hozé C, Boussaha M, Sanchez MP, Rocha D, Capitan A, Tribout T, Barbat A, Croiseau P, Drögemüller C, Jagannathan V, Vander Jagt C, Crowley JJ, Bieber A, Purfield DC, Berry DP, Emmerling R, Götz KU, Frischknecht M, Russ I, Sölkner J, Van Tassell CP, Fries R, Stothard P, Veerkamp RF, Boichard D, Goddard ME, and Hayes BJ
- Subjects
- Animals, Body Height genetics, Cattle classification, Genetic Association Studies veterinary, Genetic Variation, Humans, Phenotype, Polymorphism, Single Nucleotide, Quantitative Trait Loci genetics, Body Size genetics, Cattle genetics, Conserved Sequence, Genome-Wide Association Study statistics & numerical data, Genome-Wide Association Study veterinary, Mammals genetics
- Abstract
Stature is affected by many polymorphisms of small effect in humans
1 . In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes2,3 . Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10-8 ) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP-seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals.- Published
- 2018
- Full Text
- View/download PDF
38. Tissue Tropism in Host Transcriptional Response to Members of the Bovine Respiratory Disease Complex.
- Author
-
Behura SK, Tizioto PC, Kim J, Grupioni NV, Seabury CM, Schnabel RD, Gershwin LJ, Van Eenennaam AL, Toaff-Rosenstein R, Neibergs HL, Regitano LCA, and Taylor JF
- Subjects
- Animals, Bovine Respiratory Disease Complex microbiology, Bovine Respiratory Disease Complex virology, Cattle, Diarrhea Viruses, Bovine Viral physiology, Herpesvirus 1, Bovine physiology, Host-Pathogen Interactions, Lung metabolism, Lung virology, Male, Mannheimia haemolytica physiology, Mycoplasma bovis physiology, Respiratory Syncytial Virus, Bovine physiology, Transcriptome, Bovine Respiratory Disease Complex metabolism, Transcription, Genetic, Viral Tropism
- Abstract
Bovine respiratory disease (BRD) is the most common infectious disease of beef and dairy cattle and is characterized by a complex infectious etiology that includes a variety of viral and bacterial pathogens. We examined the global changes in mRNA abundance in healthy lung and lung lesions and in the lymphoid tissues bronchial lymph node, retropharyngeal lymph node, nasopharyngeal lymph node and pharyngeal tonsil collected at the peak of clinical disease from beef cattle experimentally challenged with either bovine respiratory syncytial virus, infectious bovine rhinotracheitis, bovine viral diarrhea virus, Mannheimia haemolytica or Mycoplasma bovis. We identified signatures of tissue-specific transcriptional responses indicative of tropism in the coordination of host's immune tissue responses to infection by viral or bacterial infections. Furthermore, our study shows that this tissue tropism in host transcriptional response to BRD pathogens results in the activation of different networks of response genes. The differential crosstalk among genes expressed in lymphoid tissues was predicted to be orchestrated by specific immune genes that act as 'key players' within expression networks. The results of this study serve as a basis for the development of innovative therapeutic strategies and for the selection of cattle with enhanced resistance to BRD.
- Published
- 2017
- Full Text
- View/download PDF
39. Candidate lethal haplotypes and causal mutations in Angus cattle.
- Author
-
Hoff JL, Decker JE, Schnabel RD, and Taylor JF
- Subjects
- Animals, Cattle, Female, Homozygote, Male, Pedigree, Sequence Analysis, Haplotypes genetics, Mutation
- Abstract
Background: If unmanaged, high rates of inbreeding in livestock populations adversely impact their reproductive fitness. In beef cattle, historical selection strategies have increased the frequency of several segregating fatal autosomal recessive polymorphisms. Selective breeding has also decreased the extent of haplotypic diversity genome-wide. By identifying haplotypes for which homozygotes are not observed but would be expected based on their frequency, candidates for developmentally lethal recessive loci can be localized. This analysis comes without the need for observation of the loss-associated phenotype (e.g., failure to implant, first trimester abortion, deformity at birth). In this study, haplotypes were estimated for 3961 registered Angus individuals using 52,545 SNP loci using findhap v2, which exploited the complex pedigree among the individuals in this population., Results: Seven loci were detected to possess haplotypes that were not observed in homozygous form despite a sufficiently high frequency and pedigree-based expectation of homozygote occurrence. These haplotypes were identified as candidates for harboring autosomal recessive lethal alleles. Of the genotyped individuals, 109 were resequenced to an average 27X depth of coverage to identify putative loss-of-function alleles genome-wide and had variants called using a custom in-house developed pipeline. For the candidate lethal-harboring haplotypes present in these bulls, sequence-called genotypes were used to identify concordant variants. In addition, whole-genome sequence imputation of variants was performed into the set of 3961 genotyped animals using the 109 resequenced animals to identify candidate lethal recessive variants at the seven loci. Following the imputation, no variants were identified that were fully concordant with the marker-based diplotypes., Conclusions: Selective breeding programs could utilize the predicted lethal haplotypes associated with SNP genotypes. Sequencing and other methods for identifying the causal variants underlying these haplotypes can allow for more efficient methods of management such as gene editing. These two methods in total will reduce the negative impacts of inbreeding on fertility and maximize overall genetic gains.
- Published
- 2017
- Full Text
- View/download PDF
40. GM2 Gangliosidosis in Shiba Inu Dogs with an In-Frame Deletion in HEXB.
- Author
-
Kolicheski A, Johnson GS, Villani NA, O'Brien DP, Mhlanga-Mutangadura T, Wenger DA, Mikoloski K, Eagleson JS, Taylor JF, Schnabel RD, and Katz ML
- Subjects
- Animals, Dog Diseases pathology, Dogs, Female, Gangliosidoses, GM2 genetics, Gangliosidoses, GM2 pathology, Homozygote, Microscopy, Electron veterinary, Dog Diseases genetics, Gangliosidoses, GM2 veterinary, Gene Deletion, beta-Hexosaminidase beta Chain genetics
- Abstract
Consistent with a tentative diagnosis of neuronal ceroid lipofuscinosis (NCL), autofluorescent cytoplasmic storage bodies were found in neurons from the brains of 2 related Shiba Inu dogs with a young-adult onset, progressive neurodegenerative disease. Unexpectedly, no potentially causal NCL-related variants were identified in a whole-genome sequence generated with DNA from 1 of the affected dogs. Instead, the whole-genome sequence contained a homozygous 3 base pair (bp) deletion in a coding region of HEXB. The other affected dog also was homozygous for this 3-bp deletion. Mutations in the human HEXB ortholog cause Sandhoff disease, a type of GM2 gangliosidosis. Thin-layer chromatography confirmed that GM2 ganglioside had accumulated in an affected Shiba Inu brain. Enzymatic analysis confirmed that the GM2 gangliosidosis resulted from a deficiency in the HEXB encoded protein and not from a deficiency in products from HEXA or GM2A, which are known alternative causes of GM2 gangliosidosis. We conclude that the homozygous 3-bp deletion in HEXB is the likely cause of the Shiba Inu neurodegenerative disease and that whole-genome sequencing can lead to the early identification of potentially disease-causing DNA variants thereby refocusing subsequent diagnostic analyses toward confirming or refuting candidate variant causality., (Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.)
- Published
- 2017
- Full Text
- View/download PDF
41. Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle.
- Author
-
Seabury CM, Oldeschulte DL, Saatchi M, Beever JE, Decker JE, Halley YA, Bhattarai EK, Molaei M, Freetly HC, Hansen SL, Yampara-Iquise H, Johnson KA, Kerley MS, Kim J, Loy DD, Marques E, Neibergs HL, Schnabel RD, Shike DW, Spangler ML, Weaber RL, Garrick DJ, and Taylor JF
- Subjects
- Animals, Body Weight genetics, Breeding, Cattle metabolism, Cattle physiology, Eating genetics, Phenotype, Polymorphism, Single Nucleotide, United States, Animal Feed, Cattle genetics, Cattle growth & development, Genome-Wide Association Study
- Abstract
Background: Single nucleotide polymorphism (SNP) arrays for domestic cattle have catalyzed the identification of genetic markers associated with complex traits for inclusion in modern breeding and selection programs. Using actual and imputed Illumina 778K genotypes for 3887 U.S. beef cattle from 3 populations (Angus, Hereford, SimAngus), we performed genome-wide association analyses for feed efficiency and growth traits including average daily gain (ADG), dry matter intake (DMI), mid-test metabolic weight (MMWT), and residual feed intake (RFI), with marker-based heritability estimates produced for all traits and populations., Results: Moderate and/or large-effect QTL were detected for all traits in all populations, as jointly defined by the estimated proportion of variance explained (PVE) by marker effects (PVE ≥ 1.0%) and a nominal P-value threshold (P ≤ 5e-05). Lead SNPs with PVE ≥ 2.0% were considered putative evidence of large-effect QTL (n = 52), whereas those with PVE ≥ 1.0% but < 2.0% were considered putative evidence for moderate-effect QTL (n = 35). Identical or proximal lead SNPs associated with ADG, DMI, MMWT, and RFI collectively supported the potential for either pleiotropic QTL, or independent but proximal causal mutations for multiple traits within and between the analyzed populations. Marker-based heritability estimates for all investigated traits ranged from 0.18 to 0.60 using 778K genotypes, or from 0.17 to 0.57 using 50K genotypes (reduced from Illumina 778K HD to Illumina Bovine SNP50). An investigation to determine if QTL detected by 778K analysis could also be detected using 50K genotypes produced variable results, suggesting that 50K analyses were generally insufficient for QTL detection in these populations, and that relevant breeding or selection programs should be based on higher density analyses (imputed or directly ascertained)., Conclusions: Fourteen moderate to large-effect QTL regions which ranged from being physically proximal (lead SNPs ≤ 3Mb) to fully overlapping for RFI, DMI, ADG, and MMWT were detected within and between populations, and included evidence for pleiotropy, proximal but independent causal mutations, and multi-breed QTL. Bovine positional candidate genes for these traits were functionally conserved across vertebrate species.
- Published
- 2017
- Full Text
- View/download PDF
42. Association of single nucleotide polymorphisms in candidate genes previously related to genetic variation in fertility with phenotypic measurements of reproductive function in Holstein cows.
- Author
-
Ortega MS, Denicol AC, Cole JB, Null DJ, Taylor JF, Schnabel RD, and Hansen PJ
- Subjects
- Animals, Breeding, Cattle, Female, Male, Pregnancy, Pregnancy Rate, Reproduction genetics, Fertility genetics, Polymorphism, Single Nucleotide
- Abstract
Many genetic markers related to health or production traits are not evaluated in populations independent of the discovery population or related to phenotype. Here we evaluated 68 single nucleotide polymorphisms (SNP) in candidate genes previously associated with genetic merit for fertility and production traits for association with phenotypic measurements of fertility in a population of Holstein cows that was selected based on predicted transmitting ability (PTA) for daughter pregnancy rate (DPR; high, ≥1, n = 989; low, ≤ -1.0, n = 1,285). Cows with a high PTA for DPR had higher pregnancy rate at first service, fewer services per conception, and fewer days open than cows with a low PTA for DPR. Of the 68 SNP, 11 were associated with pregnancy rate at first service, 16 with services per conception, and 19 with days open. Single nucleotide polymorphisms in 12 genes (BDH2, BSP3, CAST, CD2, CD14, FUT1, FYB, GCNT3, HSD17B7, IBSP, OCLN, and PCCB) had significant associations with 2 fertility traits, and SNP in 4 genes (CSPP1, FCER1G, PMM2, and TBC1D24) had significant associations with each of the 3 traits. Results from this experiment were compared with results from 2 earlier studies in which the SNP were associated with genetic estimates of fertility. One study involved the same animals as used here, and the other study was of an independent population of bulls. A total of 13 SNP associated with 1 or more phenotypic estimates of fertility were directionally associated with genetic estimates of fertility in the same cow population. Moreover, 14 SNP associated with reproductive phenotype were directionally associated with genetic estimates of fertility in the bull population. Nine SNP (located in BCAS, BSP3, CAST, FUT1, HSD17B7, OCLN, PCCB, PMM2, and TBC1D24) had a directional association with fertility in all 3 studies. Examination of the function of the genes with SNP associated with reproduction in more than one study indicates the importance of steroid hormones and immune function as determinants of reproductive function. All but 1 of the 68 evaluated SNP were variable in 11 breeds besides Holstein, indicating the potential effects of these SNP on reproductive function across breeds of cattle., (Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
43. Corrigendum: Gene expression differences in Longissimus muscle of Nelore steers genetically divergent for residual feed intake.
- Author
-
Tizioto PC, Coutinho LL, Oliveira PS, Cesar AS, Diniz WJ, Lima AO, Rocha MI, Decker JE, Schnabel RD, Mourão GB, Tullio RR, Zerlotini A, Taylor JF, and Regitano LC
- Published
- 2017
- Full Text
- View/download PDF
44. Elucidating the genetic basis of an oligogenic birth defect using whole genome sequence data in a non-model organism, Bubalus bubalis.
- Author
-
Whitacre LK, Hoff JL, Schnabel RD, Albarella S, Ciotola F, Peretti V, Strozzi F, Ferrandi C, Ramunno L, Sonstegard TS, Williams JL, Taylor JF, and Decker JE
- Subjects
- Animals, Cattle, Genes, Modifier genetics, Genome-Wide Association Study, Multifactorial Inheritance, Polymorphism, Single Nucleotide, Whole Genome Sequencing, Animal Diseases genetics, Buffaloes physiology, DNA Helicases genetics, Ectromelia genetics, Receptor, Notch1 genetics, Receptors, Retinoic Acid genetics, Wnt Proteins genetics
- Abstract
Recent strong selection for dairy traits in water buffalo has been associated with higher levels of inbreeding, leading to an increase in the prevalence of genetic diseases such as transverse hemimelia (TH), a congenital developmental abnormality characterized by absence of a variable distal portion of the hindlimbs. Limited genomic resources available for water buffalo required an original approach to identify genetic variants associated with the disease. The genomes of 4 bilateral and 7 unilateral affected cases and 14 controls were sequenced. A concordance analysis of SNPs and INDELs requiring homozygosity unique to all unilateral and bilateral cases revealed two genes, WNT7A and SMARCA4, known to play a role in embryonic hindlimb development. Additionally, SNP alleles in NOTCH1 and RARB were homozygous exclusively in the bilateral cases, suggesting an oligogenic mode of inheritance. Homozygosity mapping by whole genome de novo assembly also supported oligogenic inheritance; implicating 13 genes involved in hindlimb development in bilateral cases and 11 in unilateral cases. A genome-wide association study (GWAS) predicted additional modifier genes. Although our data show a complex inheritance of TH, we predict that homozygous variants in WNT7A and SMARCA4 are necessary for expression of TH and selection against these variants should eradicate TH.
- Published
- 2017
- Full Text
- View/download PDF
45. A homozygous PIGN missense mutation in Soft-Coated Wheaten Terriers with a canine paroxysmal dyskinesia.
- Author
-
Kolicheski AL, Johnson GS, Mhlanga-Mutangadura T, Taylor JF, Schnabel RD, Kinoshita T, Murakami Y, and O'Brien DP
- Subjects
- Animals, Chorea veterinary, Dogs, Female, Glycosylphosphatidylinositols metabolism, HEK293 Cells, Homozygote, Humans, Male, Pedigree, Phenotype, Phosphotransferases metabolism, Chorea genetics, Dog Diseases genetics, Mutation, Missense, Phosphotransferases genetics
- Abstract
Hereditary paroxysmal dyskinesias (PxD) are a heterogeneous group of movement disorders classified by frequency, duration, and triggers of the episodes. A young-adult onset canine PxD has segregated as an autosomal recessive trait in Soft-Coated Wheaten Terriers. The medical records and videos of episodes from 25 affected dogs were reviewed. The episodes of hyperkinesia and dystonia lasted from several minutes to several hours and could occur as often as >10/day. They were not associated with strenuous exercise or fasting but were sometimes triggered by excitement. The canine PxD phenotype most closely resembled paroxysmal non-kinesigenic dyskinesia (PNKD) of humans. Whole genome sequences were generated with DNA from 2 affected dogs and analyzed in comparison to 100 control canid whole genome sequences. The two whole genome sequences from dogs with PxD had a rare homozygous PIGN:c.398C > T transition, which predicted the substitution of an isoleucine for a highly conserved threonine in the encoded enzyme. All 25 PxD-affected dogs were PIGN:c.398T allele homozygotes, whereas there were no c.398T homozygotes among 1185 genotyped dogs without known histories of PxD. PIGN encodes an enzyme involved in the biosynthesis of glycosylphosphatidylinositol (GPI), which anchors a variety of proteins including CD59 to the cell surface. Flow cytometry of PIGN-knockout HEK239 cells expressing recombinant human PIGN with the c.398T variant showed reduced CD59 expression. Mutations in human PIGN have been associated with multiple congenital anomalies-hypotonia-seizures syndrome-1 (MCAHS1). Movement disorders can be a part of MCAHS1, but this is the first PxD associated with altered GPI anchor function., Competing Interests: The authors declare that they have no conflict of interest. Ethical approval All studies were approved by the University of Missouri Animal Care and Use Committee, and informed consent was obtained from the dogs’ owners.
- Published
- 2017
- Full Text
- View/download PDF
46. Homozygous PPT1 Splice Donor Mutation in a Cane Corso Dog With Neuronal Ceroid Lipofuscinosis.
- Author
-
Kolicheski A, Barnes Heller HL, Arnold S, Schnabel RD, Taylor JF, Knox CA, Mhlanga-Mutangadura T, O'Brien DP, Johnson GS, Dreyfus J, and Katz ML
- Subjects
- Animals, Dog Diseases genetics, Dogs, Female, Frameshift Mutation genetics, Magnetic Resonance Imaging veterinary, Neuronal Ceroid-Lipofuscinoses diagnosis, Neuronal Ceroid-Lipofuscinoses diagnostic imaging, Neuronal Ceroid-Lipofuscinoses genetics, Dog Diseases diagnosis, Neuronal Ceroid-Lipofuscinoses veterinary
- Abstract
A 10-month-old spayed female Cane Corso dog was evaluated after a 2-month history of progressive blindness, ataxia, and lethargy. Neurologic examination abnormalities indicated a multifocal lesion with primarily cerebral and cerebellar signs. Clinical worsening resulted in humane euthanasia. On necropsy, there was marked astrogliosis throughout white matter tracts of the cerebrum, most prominently in the corpus callosum. In the cerebral cortex and midbrain, most neurons contained large amounts of autofluorescent storage material in the perinuclear area of the cells. Cerebellar storage material was present in the Purkinje cells, granular cell layer, and perinuclear regions of neurons in the deep nuclei. Neuronal ceroid lipofuscinosis (NCL) was diagnosed. Whole genome sequencing identified a PPT1c.124 + 1G>A splice donor mutation. This nonreference assembly allele was homozygous in the affected dog, has not previously been reported in dbSNP, and was absent from the whole genome sequences of 45 control dogs and 31 unaffected Cane Corsos. Our findings indicate a novel mutation causing the CLN1 form of NCL in a previously unreported dog breed. A canine model for CLN1 disease could provide an opportunity for therapeutic advancement, benefiting both humans and dogs with this disorder., (Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.)
- Published
- 2017
- Full Text
- View/download PDF
47. Gene expression differences in Longissimus muscle of Nelore steers genetically divergent for residual feed intake.
- Author
-
Tizioto PC, Coutinho LL, Oliveira PS, Cesar AS, Diniz WJ, Lima AO, Rocha MI, Decker JE, Schnabel RD, Mourão GB, Tullio RR, Zerlotini A, Taylor JF, and Regitano LC
- Subjects
- Animals, Digestion, Early Growth Response Protein 1 metabolism, Gene Expression Profiling, Genetic Association Studies veterinary, Genetic Drift, Genome, Lipids chemistry, Male, Methane chemistry, Oxidative Stress, Oxygen chemistry, Phenotype, Sequence Analysis, RNA, Xenobiotics chemistry, Animal Feed, Cattle genetics, Gene Expression Regulation, Muscle, Skeletal metabolism
- Abstract
Residual feed intake (RFI), a measure of feed efficiency (FE), is defined as the difference between the observed and the predictable feed intake considering size and growth of the animal. It is extremely important to beef production systems due to its impact on the allocation of land areas to alternative agricultural production, animal methane emissions, food demand and cost of production. Global differential gene expression analysis between high and low RFI groups (HRFI and LRFI: less and more efficient, respectively) revealed 73 differentially expressed (DE) annotated genes in Longissimus thoracis (LT) muscle of Nelore steers. These genes are involved in the overrepresented pathways Metabolism of Xenobiotics by Cytochrome P450 and Butanoate and Tryptophan Metabolism. Among the DE transcripts were several proteins related to mitochondrial function and the metabolism of lipids. Our findings indicate that observed gene expression differences are primarily related to metabolic processes underlying oxidative stress. Genes involved in the metabolism of xenobiotics and antioxidant mechanisms were primarily down-regulated, while genes responsible for lipid oxidation and ketogenesis were up-regulated in HRFI group. By using LT muscle, this study reinforces our previous findings using liver tissue and reveals new genes and likely tissue-specific regulators playing key-roles in these processes.
- Published
- 2016
- Full Text
- View/download PDF
48. Early cave art and ancient DNA record the origin of European bison.
- Author
-
Soubrier J, Gower G, Chen K, Richards SM, Llamas B, Mitchell KJ, Ho SY, Kosintsev P, Lee MS, Baryshnikov G, Bollongino R, Bover P, Burger J, Chivall D, Crégut-Bonnoure E, Decker JE, Doronichev VB, Douka K, Fordham DA, Fontana F, Fritz C, Glimmerveen J, Golovanova LV, Groves C, Guerreschi A, Haak W, Higham T, Hofman-Kamińska E, Immel A, Julien MA, Krause J, Krotova O, Langbein F, Larson G, Rohrlach A, Scheu A, Schnabel RD, Taylor JF, Tokarska M, Tosello G, van der Plicht J, van Loenen A, Vigne JD, Wooley O, Orlando L, Kowalczyk R, Shapiro B, and Cooper A
- Subjects
- Animals, Bison classification, Cattle, Cell Nucleus genetics, DNA, Mitochondrial chemistry, DNA, Mitochondrial genetics, Europe, Evolution, Molecular, Genome, Mitochondrial genetics, Phylogeny, Sequence Analysis, DNA, Bison genetics, Caves, DNA, Ancient chemistry, Fossils, Paintings
- Abstract
The two living species of bison (European and American) are among the few terrestrial megafauna to have survived the late Pleistocene extinctions. Despite the extensive bovid fossil record in Eurasia, the evolutionary history of the European bison (or wisent, Bison bonasus) before the Holocene (<11.7 thousand years ago (kya)) remains a mystery. We use complete ancient mitochondrial genomes and genome-wide nuclear DNA surveys to reveal that the wisent is the product of hybridization between the extinct steppe bison (Bison priscus) and ancestors of modern cattle (aurochs, Bos primigenius) before 120 kya, and contains up to 10% aurochs genomic ancestry. Although undetected within the fossil record, ancestors of the wisent have alternated ecological dominance with steppe bison in association with major environmental shifts since at least 55 kya. Early cave artists recorded distinct morphological forms consistent with these replacement events, around the Last Glacial Maximum (LGM, ∼21-18 kya).
- Published
- 2016
- Full Text
- View/download PDF
49. Lessons for livestock genomics from genome and transcriptome sequencing in cattle and other mammals.
- Author
-
Taylor JF, Whitacre LK, Hoff JL, Tizioto PC, Kim J, Decker JE, and Schnabel RD
- Subjects
- Animals, Bison genetics, Breeding, Buffaloes genetics, Canidae genetics, Female, Genetic Association Studies, Genome, Male, Polymorphism, Single Nucleotide, Rats, Sequence Analysis, DNA, Transcriptome, Cattle genetics, Genomics methods, Livestock genetics
- Abstract
Background: Decreasing sequencing costs and development of new protocols for characterizing global methylation, gene expression patterns and regulatory regions have stimulated the generation of large livestock datasets. Here, we discuss experiences in the analysis of whole-genome and transcriptome sequence data., Methods: We analyzed whole-genome sequence (WGS) data from 132 individuals from five canid species (Canis familiaris, C. latrans, C. dingo, C. aureus and C. lupus) and 61 breeds, three bison (Bison bison), 64 water buffalo (Bubalus bubalis) and 297 bovines from 17 breeds. By individual, data vary in extent of reference genome depth of coverage from 4.9X to 64.0X. We have also analyzed RNA-seq data for 580 samples representing 159 Bos taurus and Rattus norvegicus animals and 98 tissues. By aligning reads to a reference assembly and calling variants, we assessed effects of average depth of coverage on the actual coverage and on the number of called variants. We examined the identity of unmapped reads by assembling them and querying produced contigs against the non-redundant nucleic acids database. By imputing high-density single nucleotide polymorphism data on 4010 US registered Angus animals to WGS using Run4 of the 1000 Bull Genomes Project and assessing the accuracy of imputation, we identified misassembled reference sequence regions., Results: We estimate that a 24X depth of coverage is required to achieve 99.5 % coverage of the reference assembly and identify 95 % of the variants within an individual's genome. Genomes sequenced to low average coverage (e.g., <10X) may fail to cover 10 % of the reference genome and identify <75 % of variants. About 10 % of genomic DNA or transcriptome sequence reads fail to align to the reference assembly. These reads include loci missing from the reference assembly and misassembled genes and interesting symbionts, commensal and pathogenic organisms., Conclusions: Assembly errors and a lack of annotation of functional elements significantly limit the utility of the current draft livestock reference assemblies. The Functional Annotation of Animal Genomes initiative seeks to annotate functional elements, while a 70X Pac-Bio assembly for cow is underway and may result in a significantly improved reference assembly.
- Published
- 2016
- Full Text
- View/download PDF
50. Australian Cattle Dogs with Neuronal Ceroid Lipofuscinosis are Homozygous for a CLN5 Nonsense Mutation Previously Identified in Border Collies.
- Author
-
Kolicheski A, Johnson GS, O'Brien DP, Mhlanga-Mutangadura T, Gilliam D, Guo J, Anderson-Sieg TD, Schnabel RD, Taylor JF, Lebowitz A, Swanson B, Hicks D, Niman ZE, Wininger FA, Carpentier MC, and Katz ML
- Subjects
- Animals, Codon, Nonsense, Dogs, Female, Genetic Predisposition to Disease, Male, Neuronal Ceroid-Lipofuscinoses genetics, Pedigree, Dog Diseases genetics, Membrane Proteins genetics, Neuronal Ceroid-Lipofuscinoses veterinary
- Abstract
Background: Neuronal ceroid lipofuscinosis (NCL), a fatal neurodegenerative disease, has been diagnosed in young adult Australian Cattle Dogs., Objective: Characterize the Australian Cattle Dog form of NCL and determine its molecular genetic cause., Animals: Tissues from 4 Australian Cattle Dogs with NCL-like signs and buccal swabs from both parents of a fifth affected breed member. Archived DNA samples from 712 individual dogs were genotyped., Methods: Tissues were examined by fluorescence, electron, and immunohistochemical microscopy. A whole-genome sequence was generated for 1 affected dog. A TaqMan allelic discrimination assay was used for genotyping., Results: The accumulation of autofluorescent cytoplasmic storage material with characteristic ultrastructure in tissues from the 4 affected dogs supported a diagnosis of NCL. The whole-genome sequence contained a homozygous nonsense mutation: CLN5:c.619C>T. All 4 DNA samples from clinically affected dogs tested homozygous for the variant allele. Both parents of the fifth affected dog were heterozygotes. Archived DNA samples from 346 Australian Cattle Dogs, 188 Border Collies, and 177 dogs of other breeds were homozygous for the reference allele. One archived Australian Cattle Dog sample was from a heterozygote., Conclusions and Clinical Importance: The homozygous CLN5 nonsense is almost certainly causal because the same mutation previously had been reported to cause a similar form of NCL in Border Collies. Identification of the molecular genetic cause of Australian Cattle Dog NCL will allow the use of DNA tests to confirm the diagnosis of NCL in this breed., (Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.)
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.