7 results on '"Schrader Echeverri E"'
Search Results
2. Impact of allele-selective silencing of von Willebrand factor in mice based on a single nucleotide allelic difference in von Willebrand factor.
- Author
-
Jongejan YK, Linthorst NA, Schrader Echeverri E, Laan SNJ, Dirven RJ, Dahlman JE, van Vlijmen BJM, Denis CV, and Eikenboom JCJ
- Subjects
- Animals, Mice, Alleles, Hemorrhage genetics, Mice, Inbred C57BL, RNA, Messenger, Thrombosis genetics, von Willebrand Diseases, Hemostatic Disorders, von Willebrand Factor genetics
- Abstract
Introduction: Von Willebrand factor (VWF) plays a pathophysiological role in hemostatic disorders. Partial inhibition of the VWF gene through small interfering RNA (siRNA)-mediated allele-selective silencing could be a promising therapeutic strategy. For von Willebrand disease, allele-selectively inhibiting dominant-negative VWF-alleles might ameliorate the phenotype. For thrombotic disorders, partial VWF reduction can lower thrombotic risk, while avoiding bleeding. Previously, we demonstrated the feasibility of Vwf-silencing in homozygous C57BL/6J (B6) or 129S1/SvImJ (129S) mice. The present study investigated allele-selective Vwf-silencing in a complex heterozygous setting of crossed B6 and 129S mice and its subsequent hemostatic impact., Materials and Methods: Heterozygous B6.129S mice were treated with siRNAs targeting Vwf expressed from either B6- (siVwf.B6) or 129S-alleles (siVwf.129S). Plasma VWF and lung Vwf mRNA were determined. siVwf.B6-treated B6.129S mice were subjected to ferric chloride-induced mesenteric vessel thrombosis and tail-bleeding., Results: In B6.129S mice, siVwf.B6 reduced Vwf mRNA of the targeted B6-allele by 72% vs. only 12% of the non-targeted 129S-allele (41% total mRNA reduction), lowering plasma VWF by 46%. Oppositely, siVwf.129S reduced Vwf mRNA by 45%, now selectively inhibiting the 129S-allele over the B6-allele (58% vs. 9%), decreasing plasma VWF by 43%. The allele-selective VWF reduction by siVwf.B6 coincided with decreased thrombus formation in mesenteric arterioles, without prolonging tail-bleeding times., Conclusions: This study demonstrates the feasibility of allele-selective Vwf-silencing in a heterozygous setting, achieving a controlled close to 50% reduction of plasma VWF. The observed thromboprotection and absence of prolonged bleeding times underline the potential of allele-selective Vwf-silencing as a therapeutic strategy in hemostatic disorders., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: YKJ and JCJE – Dutch Thrombosis Foundation (TSN) grant #2018-01. NAL and JCJE – Netherlands Organization for Scientific Research (NWO) NWO-AES grant #18712. SNJL and JCJE – Netherlands Organization for Scientific Research (NWO) NWA-ORC grant #1160.18.038. JCJE – CSL Behring research funding. RJD, ESE, JED, BJMvV, CVD declare they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. Small interfering RNA-mediated allele-selective silencing of von Willebrand factor in vitro and in vivo.
- Author
-
Jongejan YK, Schrader Echeverri E, Dirven RJ, Paunovska K, Linthorst NA, de Jong A, Wellershoff JC, van der Gouw KD, van Vlijmen BJM, Dahlman JE, and Eikenboom JCJ
- Abstract
An imbalance in von Willebrand factor (VWF) may either lead to bleeding (von Willebrand disease, VWD) or thrombosis. Both disorders have shortcomings in the currently available treatments. VWF itself could be a potential therapeutic target because of its role in both bleeding and thrombosis. Inhibiting VWF gene expression through allele-selective silencing of VWF with small interfering RNAs (siRNAs) could be a personalized approach to specifically inhibit mutant VWF in VWD or to normalize increased VWF levels in thrombotic disorders without complete VWF knockdown. Therefore, we investigated a method to allele-selectively silence the VWF gene in mice as a therapeutic strategy. Fourteen candidate siRNAs targeting murine Vwf of either the C57BL/6J (B6) or the 129S1/SvImJ (129S) strain were tested in vitro in cells expressing B6- and 129S-Vwf for inhibitory effect and allele-selective potential. Together with a nonselective siVwf, 2 lead candidate siRNAs, siVwf.B6 and siVwf.129S, were further tested in vivo in B6 and 129S mice. Efficient endothelial siRNA delivery was achieved by siRNA encapsulation into 7C1 oligomeric lipid nanoparticles. Treatment with the nonselective siVwf resulted in dose-dependent inhibition of up to 80% of both lung messenger RNA and plasma VWF protein in both mouse strains. In contrast, the allele-selective siVwf.B6 and siVwf.129S were shown to be effective in and selective solely for their corresponding mouse strain. To conclude, we showed efficient endothelial delivery of siRNAs that are highly effective in allele-selective inhibition of Vwf in mice, which constitutes an in vivo proof of principle of allele-selective VWF silencing as a therapeutic approach., (© 2023 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
4. The Transcriptional Response to Lung-Targeting Lipid Nanoparticles in Vivo .
- Author
-
Radmand A, Lokugamage MP, Kim H, Dobrowolski C, Zenhausern R, Loughrey D, Huayamares SG, Hatit MZC, Ni H, Del Cid A, Da Silva Sanchez AJ, Paunovska K, Schrader Echeverri E, Shajii A, Peck H, Santangelo PJ, and Dahlman JE
- Subjects
- Humans, Liposomes metabolism, Hepatocytes metabolism, RNA, Messenger genetics, RNA, Small Interfering, Lipids, Nanoparticles
- Abstract
Lipid nanoparticles (LNPs) have delivered RNA to hepatocytes in patients, underscoring the potential impact of nonliver delivery. Scientists can shift LNP tropism to the lung by adding cationic helper lipids; however, the biological response to these LNPs remains understudied. To evaluate the hypothesis that charged LNPs lead to differential cellular responses, we quantified how 137 LNPs delivered mRNA to 19 cell types in vivo . Consistent with previous studies, we observed helper lipid-dependent tropism. After identifying and individually characterizing three LNPs that targeted different tissues, we studied the in vivo transcriptomic response to these using single-cell RNA sequencing. Out of 835 potential pathways, 27 were upregulated in the lung, and of these 27, 19 were related to either RNA or protein metabolism. These data suggest that endogenous cellular RNA and protein machinery affects mRNA delivery to the lung in vivo .
- Published
- 2023
- Full Text
- View/download PDF
5. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery.
- Author
-
Dobrowolski C, Paunovska K, Schrader Echeverri E, Loughrey D, Da Silva Sanchez AJ, Ni H, Hatit MZC, Lokugamage MP, Kuzminich Y, Peck HE, Santangelo PJ, and Dahlman JE
- Subjects
- Liposomes, RNA, Messenger genetics, RNA, Messenger metabolism, RNA, Small Interfering genetics, Lipids, Nanoparticles
- Abstract
Cells that were previously described as homogeneous are composed of subsets with distinct transcriptional states. However, it remains unclear whether this cell heterogeneity influences the efficiency with which lipid nanoparticles (LNPs) deliver messenger RNA therapies in vivo. To test the hypothesis that cell heterogeneity influences LNP-mediated mRNA delivery, we report here a new multiomic nanoparticle delivery system called single-cell nanoparticle targeting-sequencing (SENT-seq). SENT-seq quantifies how dozens of LNPs deliver DNA barcodes and mRNA into cells, the subsequent protein production and the transcriptome, with single-cell resolution. Using SENT-seq, we have identified cell subtypes that exhibit particularly high or low LNP uptake as well as genes associated with those subtypes. The data suggest that cell subsets have distinct responses to LNPs that may affect mRNA therapies., (© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
- Published
- 2022
- Full Text
- View/download PDF
6. Computational modeling of corneal and scleral collagen photocrosslinking.
- Author
-
Gerberich BG, Wood-Yang AJ, Radmand A, Nichols LM, Hejri A, Schrader Echeverri E, Gersch HG, and Prausnitz MR
- Subjects
- Collagen, Computer Simulation, Cross-Linking Reagents, Oxygen, Methylene Blue, Sclera
- Abstract
Scleral photocrosslinking is increasingly investigated for treatment of myopia and glaucoma. In this study a computational model was developed to predict crosslinking efficiency of visible/near infrared photosensitizers in the sclera. Photocrosslinking was validated against riboflavin corneal crosslinking experimental studies and subsequently modeled for the sensitizer, methylene blue, administered by retrobulbar injection to the posterior sclera and irradiated with a transpupillary light beam. Optimal ranges were determined for treatment parameters including light intensity, methylene blue concentration, injection volume, and inspired oxygen concentration. Additionally, sensitivity of crosslinking to various parameters was quantified. The most sensitive parameters were oxygen concentration in the injection solution, scleral thickness, and injection reservoir thickness (i.e., injection volume)., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
7. Evaluation of Spatially Targeted Scleral Stiffening on Neuroprotection in a Rat Model of Glaucoma.
- Author
-
Gerberich BG, Hannon BG, Brown DM, Read AT, Ritch MD, Schrader Echeverri E, Nichols L, Potnis C, Sridhar S, Toothman MG, Schwaner SA, Winger EJ, Huang H, Gershon GS, Feola AJ, Pardue MT, Prausnitz MR, and Ethier CR
- Subjects
- Animals, Intraocular Pressure, Methylene Blue pharmacology, Methylene Blue therapeutic use, Neuroprotection, Rats, Glaucoma, Sclera
- Abstract
Purpose: Scleral stiffening may protect against glaucomatous retinal ganglion cell (RGC) loss or dysfunction associated with ocular hypertension. Here, we assess the potential neuroprotective effects of two treatments designed to stiffen either the entire posterior sclera or only the sclera adjacent to the peripapillary sclera in an experimental model of glaucoma., Methods: Rat sclerae were stiffened in vivo using either genipin (crosslinking the entire posterior sclera) or a regionally selective photosensitizer, methylene blue (stiffening only the juxtaperipapillary region surrounding the optic nerve). Ocular hypertension was induced using magnetic microbeads delivered to the anterior chamber. Morphological and functional outcomes, including optic nerve axon count and appearance, retinal thickness measured by optical coherence tomography, optomotor response, and electroretinography traces, were assessed., Results: Both local (juxtaperipapillary) and global (whole posterior) scleral stiffening treatments were successful at increasing scleral stiffness, but neither provided demonstrable neuroprotection in hypertensive eyes as assessed by RGC axon counts and appearance, optomotor response, or electroretinography. There was a weak indication that scleral crosslinking protected against retinal thinning as assessed by optical coherence tomography., Conclusions: Scleral stiffening was not demonstrated to be neuroprotective in ocular hypertensive rats. We hypothesize that the absence of benefit may in part be due to RGC loss associated with the scleral stiffening agents themselves (mild in the case of genipin, and moderate in the case of methylene blue), negating any potential benefit of scleral stiffening., Translational Relevance: The development of scleral stiffening as a neuroprotective treatment will require the identification of better tolerated stiffening protocols and further preclinical testing.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.