1. Autonomous Artificial Intelligence Agents for Clinical Decision Making in Oncology
- Author
-
Ferber, Dyke, Nahhas, Omar S. M. El, Wölflein, Georg, Wiest, Isabella C., Clusmann, Jan, Leßman, Marie-Elisabeth, Foersch, Sebastian, Lammert, Jacqueline, Tschochohei, Maximilian, Jäger, Dirk, Salto-Tellez, Manuel, Schultz, Nikolaus, Truhn, Daniel, and Kather, Jakob Nikolas
- Subjects
Computer Science - Artificial Intelligence ,Quantitative Biology - Tissues and Organs - Abstract
Multimodal artificial intelligence (AI) systems have the potential to enhance clinical decision-making by interpreting various types of medical data. However, the effectiveness of these models across all medical fields is uncertain. Each discipline presents unique challenges that need to be addressed for optimal performance. This complexity is further increased when attempting to integrate different fields into a single model. Here, we introduce an alternative approach to multimodal medical AI that utilizes the generalist capabilities of a large language model (LLM) as a central reasoning engine. This engine autonomously coordinates and deploys a set of specialized medical AI tools. These tools include text, radiology and histopathology image interpretation, genomic data processing, web searches, and document retrieval from medical guidelines. We validate our system across a series of clinical oncology scenarios that closely resemble typical patient care workflows. We show that the system has a high capability in employing appropriate tools (97%), drawing correct conclusions (93.6%), and providing complete (94%), and helpful (89.2%) recommendations for individual patient cases while consistently referencing relevant literature (82.5%) upon instruction. This work provides evidence that LLMs can effectively plan and execute domain-specific models to retrieve or synthesize new information when used as autonomous agents. This enables them to function as specialist, patient-tailored clinical assistants. It also simplifies regulatory compliance by allowing each component tool to be individually validated and approved. We believe, that our work can serve as a proof-of-concept for more advanced LLM-agents in the medical domain., Comment: 91 pages, 2 Figures
- Published
- 2024