6 results on '"Sellinger T"'
Search Results
2. Improved inference of population histories by integrating genomic and epigenomic data.
- Author
-
Sellinger T, Johannes F, and Tellier A
- Subjects
- Polymorphism, Single Nucleotide, Genomics methods, Genetics, Population methods, Arabidopsis genetics, Epigenomics methods, DNA Methylation genetics
- Abstract
With the availability of high-quality full genome polymorphism (SNPs) data, it becomes feasible to study the past demographic and selective history of populations in exquisite detail. However, such inferences still suffer from a lack of statistical resolution for recent, for example bottlenecks, events, and/or for populations with small nucleotide diversity. Additional heritable (epi)genetic markers, such as indels, transposable elements, microsatellites, or cytosine methylation, may provide further, yet untapped, information on the recent past population history. We extend the Sequential Markovian Coalescent (SMC) framework to jointly use SNPs and other hyper-mutable markers. We are able to (1) improve the accuracy of demographic inference in recent times, (2) uncover past demographic events hidden to SNP-based inference methods, and (3) infer the hyper-mutable marker mutation rates under a finite site model. As a proof of principle, we focus on demographic inference in Arabidopsis thaliana using DNA methylation diversity data from 10 European natural accessions. We demonstrate that segregating single methylated polymorphisms (SMPs) satisfy the modeling assumptions of the SMC framework, while differentially methylated regions (DMRs) are not suitable as their length exceeds that of the genomic distance between two recombination events. Combining SNPs and SMPs while accounting for site- and region-level epimutation processes, we provide new estimates of the glacial age bottleneck and post-glacial population expansion of the European A. thaliana population. Our SMC framework readily accounts for a wide range of heritable genomic markers, thus paving the way for next-generation inference of evolutionary history by combining information from several genetic and epigenetic markers., Competing Interests: TS, FJ, AT No competing interests declared, (© 2023, Sellinger et al.)
- Published
- 2024
- Full Text
- View/download PDF
3. Determinants of rapid adaptation in species with large variance in offspring production.
- Author
-
Korfmann K, Temple-Boyer M, Sellinger T, and Tellier A
- Subjects
- Alleles, Animals, Genetics, Population, Mutation, Population Density, Computer Simulation, Adaptation, Physiological genetics, Mutation Rate, Stochastic Processes, Selection, Genetic, Models, Genetic, Fertility genetics, Reproduction genetics, Genetic Drift
- Abstract
The speed of population adaptation to changing biotic and abiotic environments is determined by the interaction between genetic drift, positive selection and linkage effects. Many marine species (fish, crustaceans), invertebrates and pathogens of humans and crops, exhibit sweepstakes reproduction characterized by the production of a very large amount of offspring (fecundity phase) from which only a small fraction may survive to the next generation (viability phase). Using stochastic simulations, we investigate whether the occurrence of sweepstakes reproduction affects the efficiency of a positively selected unlinked locus, and thus, the speed of adaptation since fecundity and/or viability have distinguishable consequences on mutation rate, probability and fixation time of advantageous alleles. We observe that the mean number of mutations at the next generation is always the function of the population size, but the variance increases with stronger sweepstakes reproduction when mutations occur in the parents. On the one hand, stronger sweepstakes reproduction magnifies the effect of genetic drift thus increasing the probability of fixation of neutral allele and decreasing that of selected alleles. On the other hand, the time to fixation of advantageous (as well as neutral) alleles is shortened by stronger sweepstakes reproduction. Importantly, fecundity and viability selection exhibit different probabilities and times to fixation of advantageous alleles under intermediate and weak sweepstakes reproduction. Finally, alleles under both strong fecundity and viability selection display a synergistic efficiency of selection. We conclude that measuring and modelling accurately fecundity and/or viability selection are crucial to predict the adaptive potential of species with sweepstakes reproduction., (© 2023 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
4. Joint inference of evolutionary transitions to self-fertilization and demographic history using whole-genome sequences.
- Author
-
Strütt S, Sellinger T, Glémin S, Tellier A, and Laurent S
- Subjects
- Animals, Phylogeny, Population Density, Polymorphism, Genetic, Plants, Biological Evolution, Self-Fertilization, Arabidopsis genetics
- Abstract
The evolution from outcrossing to selfing occurred recently across the eukaryote tree of life in plants, animals, fungi, and algae. Despite short-term advantages, selfing is hypothetically an evolutionary dead-end reproductive strategy. The tippy distribution on phylogenies suggests that most selfing species are of recent origin. However, dating such transitions is challenging yet central for testing this hypothesis. We build on previous theories to disentangle the differential effect of past changes in selfing rate or from that of population size on recombination probability along the genome. This allowed us to develop two methods using full-genome polymorphisms to (1) test if a transition from outcrossing to selfing occurred and (2) infer its age. The teSMC and tsABC methods use a transition matrix summarizing the distribution of times to the most recent common ancestor along the genome to estimate changes in the ratio of population recombination and mutation rates overtime. First, we demonstrate that our methods distinguish between past changes in selfing rate and demographic history. Second, we assess the accuracy of our methods to infer transitions to selfing approximately up to 2.5 N
e generations ago. Third, we demonstrate that our estimates are robust to the presence of purifying selection. Finally, as a proof of principle, we apply both methods to three Arabidopsis thaliana populations, revealing a transition to selfing approximately 600,000 years ago. Our methods pave the way for studying recent transitions to self-fertilization and better accounting for variation in mating systems in demographic inferences., Competing Interests: SS, TS, SG, AT, SL No competing interests declared, (© 2023, Strütt, Sellinger et al.)- Published
- 2023
- Full Text
- View/download PDF
5. Efficient ancestry and mutation simulation with msprime 1.0.
- Author
-
Baumdicker F, Bisschop G, Goldstein D, Gower G, Ragsdale AP, Tsambos G, Zhu S, Eldon B, Ellerman EC, Galloway JG, Gladstein AL, Gorjanc G, Guo B, Jeffery B, Kretzschumar WW, Lohse K, Matschiner M, Nelson D, Pope NS, Quinto-Cortés CD, Rodrigues MF, Saunack K, Sellinger T, Thornton K, van Kemenade H, Wohns AW, Wong Y, Gravel S, Kern AD, Koskela J, Ralph PL, and Kelleher J
- Subjects
- Computer Simulation, Genetics, Population, Mutation, Software, Algorithms, Models, Genetic
- Abstract
Stochastic simulation is a key tool in population genetics, since the models involved are often analytically intractable and simulation is usually the only way of obtaining ground-truth data to evaluate inferences. Because of this, a large number of specialized simulation programs have been developed, each filling a particular niche, but with largely overlapping functionality and a substantial duplication of effort. Here, we introduce msprime version 1.0, which efficiently implements ancestry and mutation simulations based on the succinct tree sequence data structure and the tskit library. We summarize msprime's many features, and show that its performance is excellent, often many times faster and more memory efficient than specialized alternatives. These high-performance features have been thoroughly tested and validated, and built using a collaborative, open source development model, which reduces duplication of effort and promotes software quality via community engagement., (© The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America.)
- Published
- 2022
- Full Text
- View/download PDF
6. Are the better cooperators dormant or quiescent?
- Author
-
Sellinger T, Müller J, Hösel V, and Tellier A
- Subjects
- Animals, Bacteria, Fungi, Plants, Biological Evolution, Cooperative Behavior, Ecosystem, Models, Biological
- Abstract
Despite the wealth of empirical and theoretical studies, the origin and maintenance of cooperation is still an evolutionary riddle. In this context, ecological life-history traits which affect the efficiency of selection may play a role despite being often ignored. We consider here species such as bacteria, fungi, invertebrates and plants which exhibit resting stages in the form of a quiescent state or a seed bank. When quiescent, individuals are inactive and reproduce upon activation, while under seed bank parents produce offspring remaining dormant for different amount of time. We assume weak frequency-dependent selection modeled using game-theory and the prisoner's dilemma (cooperation/defect) as payoff matrix. The cooperators and defectors are allowed to evolve different quiescence or dormancy times. By means of singular perturbation theory we reduce the model to a one-dimensional equation resembling the well known replicator equation, in which the gain functions are scaled with lumped parameters reflecting the time scale of the resting state of the cooperators and defectors. If both time scales are identical cooperation cannot persist in a homogeneous population. If, however, the time scale of the cooperator is distinctively different from that of the defector, cooperation may become a locally asymptotically stable strategy. Interestingly enough, in the seed bank case the cooperator needs to become active faster than the defector, while in the quiescent case the cooperator has to be slower. We use adaptive dynamics to identify situations where cooperation may evolve and form a convergent stable ESS. We conclude by highlighting the relevance of these results for many non-model species and the maintenance of cooperation in microbial, invertebrate or plant populations., (Copyright © 2019 Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.