1. Critical Thresholds for Maximum Cardinality Matching on General Hypergraphs
- Author
-
Sumnicht, Christopher, Weber, Jamison W., Giriyan, Dhanush R., and Sen, Arunabha
- Subjects
Computer Science - Discrete Mathematics ,Mathematics - Combinatorics - Abstract
Significant work has been done on computing the ``average'' optimal solution value for various $\mathsf{NP}$-complete problems using the Erd\"{o}s-R\'{e}nyi model to establish \emph{critical thresholds}. Critical thresholds define narrow bounds for the optimal solution of a problem instance such that the probability that the solution value lies outside these bounds vanishes as the instance size approaches infinity. In this paper, we extend the Erd\"{o}s-R\'{e}nyi model to general hypergraphs on $n$ vertices and $M$ hyperedges. We consider the problem of determining critical thresholds for the largest cardinality matching, and we show that for $M=o(1.155^n)$ the size of the maximum cardinality matching is almost surely 1. On the other hand, if $M=\Theta(2^n)$ then the size of the maximum cardinality matching is $\Omega(n^{\frac12-\gamma})$ for an arbitrary $\gamma >0$. Lastly, we address the gap where $\Omega(1.155^n)=M=o(2^n)$ empirically through computer simulations.
- Published
- 2024