808 results on '"Sendra, Alberto"'
Search Results
2. New evidence for an Anatolian bridge: Colonization of Euromediterranean lands by cave-adapted Plusiocampinae (Diplura, Campodeidae), with establishment of a new genus
- Author
-
Sendra, Alberto, Palero, Ferran, Sánchez-García, Alba, Selfa, Jesús, Tusun, Sadreddin, and Satar, Ali
- Published
- 2022
- Full Text
- View/download PDF
3. Poduromorpha (Collembola) from a sampling in the mesovoid shallow substratum of the Sierra de Guadarrama National Park (Madrid and Segovia, Spain): Taxonomy and Biogeography
- Author
-
Jordana, Rafael, Baquero, Enrique, Ledesma, Enrique, Sendra, Alberto, and Ortuño, Vicente M.
- Published
- 2020
- Full Text
- View/download PDF
4. Description of Microtyphlus (Speleotyphlus) infernalis n. sp. from Valencia (eastern Iberian Peninsula), and review of the present state of knowledge of this hypogean subgenus (Coleoptera: Carabidae: Anillini)
- Author
-
Ortuño, Vicente M, Sendra, Alberto, and BioStor
- Published
- 2010
5. ‘Dawn’ hexapods in Cenozoic ambers (Diplura: Campodeoidea)
- Author
-
Sánchez-García, Alba, primary, Sendra, Alberto, additional, Davis, Steven R, additional, and Grimaldi, David A, additional
- Published
- 2023
- Full Text
- View/download PDF
6. Life in darkness: an overview of cave-adapted japygids (Hexapoda, Diplura)
- Author
-
Sendra, Alberto, primary, Sánchez-García, Alba, additional, Hoch, Hannelore, additional, Jiménez-Valverde, Alberto, additional, Selfa, Jesús, additional, Moutaouakil, Soumia, additional, Du Preez, Gerhard, additional, Millar, Ian, additional, and Ferreira, Rodrigo Lopes, additional
- Published
- 2023
- Full Text
- View/download PDF
7. 'Dawn' hexapods in Cenozoic ambers (Diplura: Campodeoidea).
- Author
-
Sánchez-García, Alba, Sendra, Alberto, Davis, Steven R, and Grimaldi, David A
- Subjects
- *
CENOZOIC Era , *AMBER , *FOSSILS , *DATA recorders & recording , *EOCENE Epoch , *DEVONIAN Period - Abstract
Diplura are an ancient group of basal (apterygote) hexapods that thrive in various cryptic terrestrial habitats. Despite an ancient origin that extends at least to the Devonian period, the dipluran fossil record is exceedingly sparse. Here, we document five very rare fossil specimens of the family Campodeidae in amber from the Miocene of the Dominican Republic and the Eocene of the Baltic region. Microscopic preservation in amber provides unique detail for taxonomic placement of small, delicate, soil- and leaf litter-dwelling organisms like these. New taxa include the following: in Lepidocampinae, Lepidocampa glaesi sp. nov. (in Dominican amber); and in Campodeinae, Litocampa eobaltica sp. nov. (in Baltic amber) and Rostricampa engeli gen. et sp. nov. (in Dominican amber). Rostricampa has an extraordinary rostrum formed by sclerotized extensions of the clypeus and, probably, the labium, unique among diplurans. These new taxa provide rare additional data on the fossil record of the earliest diverging lineages of the hexapods and shed light on their evolution and ecology. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
8. The Iberian genus Paraphaenops Jeannel, 1916 (Coleoptera: Carabidae: Trechini): Morphology, phylogeny and geographical distribution
- Author
-
Ortuño, Vicente M., Sendra, Alberto, Reboleira, Ana Sofia P.S., Fadrique, Floren, and Faille, Arnaud
- Published
- 2017
- Full Text
- View/download PDF
9. A new and remarkable troglobitic Lepidocampa Oudemans, 1890 species from La Réunion Island, with a discussion on troglobiomorphic adaptations in campodeids (Diplura)
- Author
-
Sendra, Alberto, Jiménez-Valverde, Alberto, Rochat, Jacques, Legros, Vincent, Gasnier, Sophie, and Cazanove, Grégory
- Published
- 2017
- Full Text
- View/download PDF
10. Historia, un relato sobre hallazgos y descubrimientos
- Author
-
Consorci del Museu de Ciències Naturals de Barcelona, Sendra, Alberto, Caballero-López, Berta, Masó, Glòria, Prieto-Manzanares, Miguel, Ginés Gracia, Ángel, Consorci del Museu de Ciències Naturals de Barcelona, Sendra, Alberto, Caballero-López, Berta, Masó, Glòria, Prieto-Manzanares, Miguel, and Ginés Gracia, Ángel
- Subjects
- Península Ibèrica
- Abstract
Un guía turístico esloveno y un naturalista de madre cubano-española y padre francés serán dos de los personajes que ilustren el temprano interés científico en el mundo por la fauna cavernícola, surgido a mediados del siglo XIX y que se extenderá lenta y gradualmente al territorio ibero-balear. Pero antes de adentrarnos en este relato a propósito de quienes encontraron esa fauna (hallazgo) y quienes la situaron en la literatura científica (descubrimiento), hagamos un breve recorrido retrocediendo en el tiempo para recuperar la visión que de las cuevas y su interior tuvieron los humanos desde la prehistoria., Un guía turístico esloveno y un naturalista de madre cubano-española y padre francés serán dos de los personajes que ilustren el temprano interés científico en el mundo por la fauna cavernícola, surgido a mediados del siglo XIX y que se extenderá lenta y gradualmente al territorio ibero-balear. Pero antes de adentrarnos en este relato a propósito de quienes encontraron esa fauna (hallazgo) y quienes la situaron en la literatura científica (descubrimiento), hagamos un breve recorrido retrocediendo en el tiempo para recuperar la visión que de las cuevas y su interior tuvieron los humanos desde la prehistoria., Un guía turístico esloveno y un naturalista de madre cubano-española y padre francés serán dos de los personajes que ilustren el temprano interés científico en el mundo por la fauna cavernícola, surgido a mediados del siglo XIX y que se extenderá lenta y gradualmente al territorio ibero-balear. Pero antes de adentrarnos en este relato a propósito de quienes encontraron esa fauna (hallazgo) y quienes la situaron en la literatura científica (descubrimiento), hagamos un breve recorrido retrocediendo en el tiempo para recuperar la visión que de las cuevas y su interior tuvieron los humanos desde la prehistoria.
- Published
- 2023
11. Life in darkness: an overview of cave-adapted japygids (Hexapoda, Diplura)
- Author
-
Sendra, Alberto, Sánchez-García, Alba, Hoch, Hannelore, Jiménez-Valverde, Alberto, Selfa, Jesús, Moutaouakil, Soumia, Du Preez, Gerhard, Millar, Ian, Ferreira, Rodrigo Lopes, Sendra, Alberto, Sánchez-García, Alba, Hoch, Hannelore, Jiménez-Valverde, Alberto, Selfa, Jesús, Moutaouakil, Soumia, Du Preez, Gerhard, Millar, Ian, and Ferreira, Rodrigo Lopes
- Abstract
Few species of Japygidae (Diplura) have been discovered in cave ecosystems despite their importance as large predators. A small collection of rare specimens of this hexapod group has allowed to explore the taxonomy of japygids from caves in New Zealand, Morocco and South Africa, and to describe one new genus: Imazighenjapyx Sendra & Sánchez-García gen. nov., as well as four new species: Austrjapyx wynbergensis Sendra & Sánchez-García sp. nov., Imazighenjapyx marocanus Sendra & Sánchez-García gen. et sp. nov., Opisthjapyx naledi Sendra & Sánchez-García sp. nov. and Teljapyx aotearoa Sendra & Sánchez-García sp. nov. For each of the new taxa we give a comprehensive description of their habitats. These new findings resulted in a revision of the distribution and allowed to re-evaluate the morphological traits of the fifteen cave-adapted japygids species already known worldwide. The functional morphology of the remarkable abdominal pincers of Japygidae and their adaptation to predation are discussed, as well as their potential role in mating behaviour.
- Published
- 2023
12. Diversidad, distribución y origen
- Author
-
Consorci del Museu de Ciències Naturals de Barcelona, Sendra, Alberto, Vives, Eduard, Fresneda, Javier, Consorci del Museu de Ciències Naturals de Barcelona, Sendra, Alberto, Vives, Eduard, and Fresneda, Javier
- Subjects
- Península Ibèrica
- Abstract
A lo largo de la lectura de los capítulos anteriores hemos constatado cómo cuevas y aguas subterráneas del territorio ibero-balear se hallan repletas de una variada fauna. No obstante, vastas regiones kársticas continúan sin ser exploraradas y a buen seguro una amplia diversidad de especies permanece ignota. Entre los moradores subterráneos, los que ahora nos interesan son los cavernícolas. Hasta el momento, sabemos que los ecosistemas de las cuevas cuentan con un total de 1363 especies y subespecies (taxones) descritas, consideradas como troglobias o estigobias por los autores de los capítulos. Salvo alguna excepción son taxones endémicos únicos en el mundo, bien de una o de varias cuevas; o de una o unas pocas regiones kársticas del territorio ibero-balear. Junto a esta fauna especializada vive un número similar o superior de especies visitantes a las cuevas, que no vamos a considerar aquí. Los grupos taxonómicos con especies y subespecies cavernícolas no se hallan uniformemente repartidos en la Iberia o las Baleares; como tampoco lo están en el resto del mundo. ¿De qué depende esta distribución? ¿por qué las cuevas de la Cordillera Cantábrica albergan una fauna tan distinta a la que habita las cuevas de las Béticas, Pirenaicas u otras regiones kársticas? Hallamos las razones de esta distribución faunística, en la disponibilidad de hábitat (cuevas y acuíferos) y en la oportunidad de colonización de los grupos potencialmente cavernícolas, procedentes de la fauna epigea autóctona o venidos de otras regiones. Unos forman parte de una fauna ancestral, otros se están "instalando" ahora. Para conocer los escenarios en que esto sucedió, haremos un repaso desde el momento en que la Iberia apareció como tierra emergida. Por el momento, cuantifiquemos la biodiversidad. treinta y siete Diversidad, distribución y origen., A lo largo de la lectura de los capítulos anteriores hemos constatado cómo cuevas y aguas subterráneas del territorio ibero-balear se hallan repletas de una variada fauna. No obstante, vastas regiones kársticas continúan sin ser exploraradas y a buen seguro una amplia diversidad de especies permanece ignota. Entre los moradores subterráneos, los que ahora nos interesan son los cavernícolas. Hasta el momento, sabemos que los ecosistemas de las cuevas cuentan con un total de 1363 especies y subespecies (taxones) descritas, consideradas como troglobias o estigobias por los autores de los capítulos. Salvo alguna excepción son taxones endémicos únicos en el mundo, bien de una o de varias cuevas; o de una o unas pocas regiones kársticas del territorio ibero-balear. Junto a esta fauna especializada vive un número similar o superior de especies visitantes a las cuevas, que no vamos a considerar aquí. Los grupos taxonómicos con especies y subespecies cavernícolas no se hallan uniformemente repartidos en la Iberia o las Baleares; como tampoco lo están en el resto del mundo. ¿De qué depende esta distribución? ¿por qué las cuevas de la Cordillera Cantábrica albergan una fauna tan distinta a la que habita las cuevas de las Béticas, Pirenaicas u otras regiones kársticas? Hallamos las razones de esta distribución faunística, en la disponibilidad de hábitat (cuevas y acuíferos) y en la oportunidad de colonización de los grupos potencialmente cavernícolas, procedentes de la fauna epigea autóctona o venidos de otras regiones. Unos forman parte de una fauna ancestral, otros se están "instalando" ahora. Para conocer los escenarios en que esto sucedió, haremos un repaso desde el momento en que la Iberia apareció como tierra emergida. Por el momento, cuantifiquemos la biodiversidad. treinta y siete Diversidad, distribución y origen., A lo largo de la lectura de los capítulos anteriores hemos constatado cómo cuevas y aguas subterráneas del territorio ibero-balear se hallan repletas de una variada fauna. No obstante, vastas regiones kársticas continúan sin ser exploraradas y a buen seguro una amplia diversidad de especies permanece ignota. Entre los moradores subterráneos, los que ahora nos interesan son los cavernícolas. Hasta el momento, sabemos que los ecosistemas de las cuevas cuentan con un total de 1363 especies y subespecies (taxones) descritas, consideradas como troglobias o estigobias por los autores de los capítulos. Salvo alguna excepción son taxones endémicos únicos en el mundo, bien de una o de varias cuevas; o de una o unas pocas regiones kársticas del territorio ibero-balear. Junto a esta fauna especializada vive un número similar o superior de especies visitantes a las cuevas, que no vamos a considerar aquí. Los grupos taxonómicos con especies y subespecies cavernícolas no se hallan uniformemente repartidos en la Iberia o las Baleares; como tampoco lo están en el resto del mundo. ¿De qué depende esta distribución? ¿por qué las cuevas de la Cordillera Cantábrica albergan una fauna tan distinta a la que habita las cuevas de las Béticas, Pirenaicas u otras regiones kársticas? Hallamos las razones de esta distribución faunística, en la disponibilidad de hábitat (cuevas y acuíferos) y en la oportunidad de colonización de los grupos potencialmente cavernícolas, procedentes de la fauna epigea autóctona o venidos de otras regiones. Unos forman parte de una fauna ancestral, otros se están "instalando" ahora. Para conocer los escenarios en que esto sucedió, haremos un repaso desde el momento en que la Iberia apareció como tierra emergida. Por el momento, cuantifiquemos la biodiversidad. treinta y siete Diversidad, distribución y origen.
- Published
- 2023
13. Fossil diversity in ‘dawn’ hexapods (Diplura: Projapygoidea), with direct evidence for being chemically predaceous in the Cretaceous
- Author
-
Sánchez-García, Alba, primary, Sendra, Alberto, additional, Davis, Steven, additional, and Grimaldi, David A, additional
- Published
- 2023
- Full Text
- View/download PDF
14. Electroprojapyx Sánchez-García & Sendra & Davis & Grimaldi 2023, GEN. NOV
- Author
-
Sánchez-García, Alba, Sendra, Alberto, Davis, Steven, and Grimaldi, David A.
- Subjects
Arthropoda ,Animalia ,Diplura ,Biodiversity ,Projapygidae ,Electroprojapyx ,Taxonomy - Abstract
ELECTROPROJAPYX GEN.NOV. Zoobank registration: urn: lsid: zoobank. org:act: 3496E6E3-6D13-4753-8808-BF7DA8CC3B2D Etymology: The generic name is a combination of the Latin electro (meaning, ‘amber’), and Projapyx Cook, 1899, type genus of the family. The gender of the name is masculine. Type species: Electroprojapyx alchemicus sp. nov. by monotypy. Diagnosis: The new genus is readily distinguished from all other genera of Projapygidae by the following combination of characters: body elongate; antenna elongate, 0.5× length of body, slightly tapered, with 27 antennomeres, moniliform, without secondary sexual characters on antennomeres II and III, lacking pyriform sensillum on antennomere VII; legs elongate and slender, metathoracic leg distinctly longer than others; tibiae with calcars; claws subequal; cercus short and slender (not compacted), 0.1× length of body, with at least seven segments plus the infundibuliform complex, without secondary sexual characters.
- Published
- 2023
- Full Text
- View/download PDF
15. Symphylurinus Silvestri 1909
- Author
-
Sánchez-García, Alba, Sendra, Alberto, Davis, Steven, and Grimaldi, David A.
- Subjects
Arthropoda ,Symphylurinus ,Animalia ,Diplura ,Biodiversity ,Projapygidae ,Taxonomy - Abstract
GENUS SYMPHYLURINUS SILVESTRI, 1909 Type species: Symphylurinus grassi Silvestri, 1909., Published as part of Sánchez-García, Alba, Sendra, Alberto, Davis, Steven & Grimaldi, David A., 2023, Fossil diversity in ' dawn' hexapods (Diplura: Projapygoidea), with direct evidence for being chemically predaceous in the Cretaceous, pp. 847-870 in Zoological Journal of the Linnean Society 198 (3) on page 856, DOI: 10.1093/zoolinnean/zlac101, http://zenodo.org/record/8146868
- Published
- 2023
- Full Text
- View/download PDF
16. Symphylurinus undefined-2
- Author
-
Sánchez-García, Alba, Sendra, Alberto, Davis, Steven, and Grimaldi, David A.
- Subjects
Arthropoda ,Symphylurinus ,Animalia ,Diplura ,Biodiversity ,Projapygidae ,Taxonomy ,Symphylurinus undefined-2 - Abstract
SYMPHYLURINUS SP. 2 (FIGS 12, 13) Material: M-2233 (Figs 12, 13), Ettore Morone collection, Turin, Italy (available through the AMNH), probably female, adult; specimen virtually complete, with the right antenna and cercus cut off at the amber surface, observable laterally (both sides); the piece is a transparent, orange colour, but with internal fractures obscuring details, triangular in shape, 21 mm × 22 mm × 18 mm; syninclusions include a myriapod, some coprolites, fungal hyphae and other undetermined organic remains., Published as part of Sánchez-García, Alba, Sendra, Alberto, Davis, Steven & Grimaldi, David A., 2023, Fossil diversity in ' dawn' hexapods (Diplura: Projapygoidea), with direct evidence for being chemically predaceous in the Cretaceous, pp. 847-870 in Zoological Journal of the Linnean Society 198 (3) on page 857, DOI: 10.1093/zoolinnean/zlac101, http://zenodo.org/record/8146868
- Published
- 2023
- Full Text
- View/download PDF
17. Symphylurinus undefined-1
- Author
-
Sánchez-García, Alba, Sendra, Alberto, Davis, Steven, and Grimaldi, David A.
- Subjects
Arthropoda ,Symphylurinus ,Animalia ,Diplura ,Biodiversity ,Projapygidae ,Symphylurinus undefined-1 ,Taxonomy - Abstract
SYMPHYLURINUS SP. 1 (FIGS 6–11) Material: AMNH JZC-DR005 (Figs 6–8), Zigras collection (in AMNH), probably female, adult; specimen entirely preserved and observable ventrolaterally (left side), with the abdominal segments II and III swollen owing to taphonomic processes; the piece is a transparent, orange in colour, with a rounded shape, 32 mm × 20 mm in largest dimensions; syninclusions include seven oniscidean isopods, one acari, one ant, an undetermined number of Collembola hidden by bubbles, coprolites mainly associated with two of the isopods, fungal hyphae and other undetermined organic remains. AMNH KL-DR2022-1 (Figs 9–11) donated by K. Luzzi, probably female, adult; specimen entirely preserved and observable dorsally, ventrally and laterally (both sides); the right cercus (Fig. 10F) expelling the glandular substance probably as a stress behaviour in response to being trapped in resin; preserved in a rectangular chip of transparent yellow amber trimmed to 4mm × 8 mm × 1mm;syninclusions include two Coleoptera larvae, at least 11 nematodes, plant trichomes and other undetermined organic remains., Published as part of Sánchez-García, Alba, Sendra, Alberto, Davis, Steven & Grimaldi, David A., 2023, Fossil diversity in ' dawn' hexapods (Diplura: Projapygoidea), with direct evidence for being chemically predaceous in the Cretaceous, pp. 847-870 in Zoological Journal of the Linnean Society 198 (3) on page 856, DOI: 10.1093/zoolinnean/zlac101, http://zenodo.org/record/8146868
- Published
- 2023
- Full Text
- View/download PDF
18. Symphylurinopsis Sánchez-García & Sendra & Davis & Grimaldi 2023, GEN. NOV
- Author
-
Sánchez-García, Alba, Sendra, Alberto, Davis, Steven, and Grimaldi, David A.
- Subjects
Myida ,Mollusca ,Pholadidae ,Animalia ,Symphylurinopsis ,Biodiversity ,Taxonomy ,Bivalvia - Abstract
SYMPHYLURINOPSIS GEN.NOV. Zoobank registration: urn: lsid: zoobank. org:act: 5DD3AC90-782C-4455-91F0-8CF232C0951F Etymology: The generic name is based on the genus Symphylurinus Silvestri, 1909, with the Greek suffix - opsis (meaning, ‘sight, appearance’; thus ‘looking like’). The gender of the name is masculine. Type species: Symphylurinopsis punctatus sp. nov. by monotypy. Diagnosis: Male. The new genus is readily distinguished from all other genera in the family Projapygidae by the following combination of characters: cuticle dorsally and ventrally with distinct setigerous punctures; antenna short, 0.3× length of body, with 23 antennomeres, dolioform; antennomere II with secondary sexual characters, lacking secondary sexual characters on antennomere III and pyriform sensillum on antennomere VII; labial and maxillary palpi uniarticulate and elongate, the maxillary palpus longer than the labial palpus; legs short, slightly increasing in length from first to third pair; tibiae without comb of spatuliform setae and with calcars; claws subequal; cercus elongate, 0.3× length of body, with 15 segments plus the infundibuliform complex, basal segments I–V fused, without secondary sexual characters.
- Published
- 2023
- Full Text
- View/download PDF
19. Electroprojapyx ALCHEMICUS 2023, SP. NOV
- Author
-
Sánchez-García, Alba, Sendra, Alberto, Davis, Steven, and Grimaldi, David A.
- Subjects
Arthropoda ,Animalia ,Diplura ,Biodiversity ,Projapygidae ,Electroprojapyx ,Taxonomy - Abstract
ELECTROPROJAPYX ALCHEMICUS SP.NOV. (FIG. 2) Zoobank registration: urn: lsid: zoobank. org:act: B2A57148-0988-4316-9B09-99264D417E6F Etymology: The name is derived from the Latin Alchemia, an early, protoscientific practice, and the Latin suffix - icus. Holotype: AMNH JZCBu-1957 (Fig.2), Zigras collection (in AMNH), sex unknown, adult; specimen entirely preserved and observable laterally; the holotype is at the surface of a corner; the piece is a dark orange colour and turbid, irregular in shape, 28 mm × 14 mm in largest dimensions, with borings of Pholadidae; syninclusions include one heteropteran nymph, one partial wasp, at least four Collembola (three Symphypleona, one Entomobryomorpha), one acari, plant trichomes and other undetermined organic remains. Note on preserved behaviour: Specimen AMNH JZCBu-1957 (Fig. 2) preserves an example of predatory behaviour fossilized in Burmese amber. The specimen of E. alchemicus has between its antennae a Collembola Symphypleona (0.5 mm in length), while it is also releasing a glandular substance from the cercal tips. The antennae of E. alchemicus are in close contact with the Collembola (Fig. 2D); the elongated abdomen of the dipluran is elevated and curved above the thorax and head with the cerci pointing to the front (Fig. 2A, C); there is a line of droplets and short streams of secretion connected by long, fine filaments (presumably, strands of silk) issuing from the tips of both cerci (Fig. 2B); several of these strands are nearly the length of the abdomen. The position of the collembolan, posture of the dipluran and presence of cercal secretions can only be explained as an attack movement (cf. San Martín, 1969: 127, fig. 14; San Martín, 1963). Fluid resin probably flowed over the pair of hexapods just as the dipluran was attacking. Occurrence: Mid-Cretaceous Burmese amber (latest Cenomanian) near Myitkyina, in Kachin Province. Diagnosis: As for genus, by monotypy. Description Sex unknown, adult. Body: Length 2.49 mm, slender. Cuticle altered by preservation, with no visible details. Clothing setae smooth; macrosetae (M) as indicated below. Head: Length 0.29 mm, 0.12× length of body; dorsum with few smooth setae. A structure that resembles a labial palpus protrudes from the inferior part of the head. Both antennae (Fig. 2D) complete (non-regenerated), elongate, reaching second abdominal segment, length 1.23 mm, 0.49× length of body, slightly tapered, with 27 antennomeres; antennomeres I and II subrectangular, distinctly longer than others, together 0.15 mm, antennomere II somewhat swollen distally probably owing to preservation; antennomere III onwards moniliform; medial antennomeres length 0.05 mm, width 0.03 mm; antennomeres II and III without secondary sexual characters, antennomere VII without pyriform sensillum; trichobothria not visible; whorls of setae poorly visible, the few visible setae smooth. Thorax: 0.29× length of body; pronotum 0.17 mm, mesonotum 0.25 mm, metanotum 0.30 mm. Macrosetae visible in anterior and posterior position in pro-, meso- and metanotum, exact pattern not discernible owing to preservation, all macrosetae long and with thin barbs along distal half or two-thirds of each macroseta. Legs slender and elongate, with metathoracic leg distinctly longer than others, reaching abdominal segment III; some segments of legs difficult to distinguish owing to preservation; femur longest segment; tibia and tarsus equal in length; tibia with two typical large, stout, simple calcar spurs near ventral apex; tarsus with few visible smooth setae on ventral side; pretarsus with subequal claws, empodium lacking. Abdomen: Length 1.48 mm, 0.59× length of body. Macrosetae anterior (A) and posterior (P) visible at least from tergites I to VI; macrosetae P visible from tergites VIII to X; all macrosetae long and with thin barbs along distal half or two-thirds of each macroseta. Sternite I with subcylindrical lateral subcoxal appendages, slightly tapered toward tip; styli present from sternites I to VII; measurements of styli and subcoxal appendage not possible owing to preservation; genital papilla not visible. Cercus (Fig. 2B) short, length 0.33 mm, 0.13× length of body, slender (segments not compacted), with greatest width in visible segment II, with at least seven segments (basal portion not clearly visible) not counting the infundibuliform complex, without tegumentary expansions or modified setae or other secondary sexual characters on inner side; visible segments I–VII with a distal whorl of smooth setae; visible segment VII terminating in a longitudinally striated excretory tube, the infundibuliform complex., Published as part of Sánchez-García, Alba, Sendra, Alberto, Davis, Steven & Grimaldi, David A., 2023, Fossil diversity in ' dawn' hexapods (Diplura: Projapygoidea), with direct evidence for being chemically predaceous in the Cretaceous, pp. 847-870 in Zoological Journal of the Linnean Society 198 (3) on pages 850-852, DOI: 10.1093/zoolinnean/zlac101, http://zenodo.org/record/8146868, {"references":["San Martin PR. 1969. Descripcion de una nueva especie de Projapygidae del Uruguay y estudio de los cercos en la familia (Diplura). ReVista Brasileira de Biologia 29: 121 - 134."]}
- Published
- 2023
- Full Text
- View/download PDF
20. Symphylurinopsis PUNCTATUS 2023, SP. NOV
- Author
-
Sánchez-García, Alba, Sendra, Alberto, Davis, Steven, and Grimaldi, David A.
- Subjects
Myida ,Mollusca ,Pholadidae ,Animalia ,Symphylurinopsis ,Biodiversity ,Taxonomy ,Bivalvia - Abstract
SYMPHYLURINOPSIS PUNCTATUS SP.NOV. (FIGS 3–5) Zoobank registration: urn: lsid: zoobank. org:act: 12E8CFF1-2EDD-4571-B332-498D626E0596 Diplura: Campodeidae; Grimaldi & Engel (2005): p. 118, fig. 3.34. Etymology: The name is derived from the Latin punctatus, dotted, in reference to the cuticular punctures. Holotype: M-2232 (Figs 3–5), Ettore Morone collection, Turin, Italy (available through the AMNH), male, adult; specimen entirely preserved and observable dorsally and ventrally; the piece is a transparent, orange in colour, 23 mm × 11 mm in largest dimensions; without syninclusions., Published as part of Sánchez-García, Alba, Sendra, Alberto, Davis, Steven & Grimaldi, David A., 2023, Fossil diversity in ' dawn' hexapods (Diplura: Projapygoidea), with direct evidence for being chemically predaceous in the Cretaceous, pp. 847-870 in Zoological Journal of the Linnean Society 198 (3) on page 852, DOI: 10.1093/zoolinnean/zlac101, http://zenodo.org/record/8146868, {"references":["Grimaldi D, Engel MS. 2005. EVolution of the insects. Cambridge: Cambridge University Press."]}
- Published
- 2023
- Full Text
- View/download PDF
21. Anatoliacampa diclensis Sendra, Tusun & Satar 2022, sp. nov
- Author
-
Sendra, Alberto, Palero, Ferran, Sánchez-García, Alba, Selfa, Jesús, Tusun, Sadreddin, and Satar, Ali
- Subjects
Arthropoda ,Japygidae ,Anatoliacampa ,Animalia ,Diplura ,Biodiversity ,Anatoliacampa diclensis ,Taxonomy - Abstract
Anatoliacampa diclensis Sendra, Tusun & Satar sp. nov. Etymology. The specific epithet refers to both the name of the cave and the name of the region of the type’ s locality. Type locality. Dicle Cave, Bozaba village, Dicle district, Diyarbakır province, Southeastern Anatolian region, Turkey. Holotype. TURKEY. ♀ (labelled as holotype- ♀ DUZM-2121). Dicle Cave, Bozaba village, Dicle district, Diyarbakır province, Southeastern Anatolian region, 38 ◦ 19 ′ 23 ′′ N, 40 ◦ 06 ′ 25 ′′ , E. Sadreddin TUSUN and Ali SATAR leg. Paratype. TURKEY. 6 (labelled as paratype-61 MZB (MCNB) 2022- 5694), same locality, date, and collectors as holotype. Other material. ♀ (coll. AS), same locality, date and collectors as types; specimen used for scanning electron microscopy (SEM) and DNA analysis. Description. Body . Body length 5.6 mm (female, holotype) and 5.8 mm (male, paratype). Epicuticle smooth under compound microscope and SEM; with thin, medium-sized clothing covered by thin distal barbs. Head. Antennae complete (Figs. 1 and 2), with 41 antennomeres. Small, subcylindrical sensillum on third antennomere located in ventral position between c and d macrosetae; flagellum of the trichobothria very long (Fig. 2b). Central antennomeres 2.3 × as long as wide, with large barbed and short setae distributed in two to three whorls, in addition to one distal whorl of about 12 thin gouge sensilla 40–50 μm long (Fig. 2a, c, d). Apical antennomere with sensorial equipment of: cupuliform organ with about 12 complex olfactory chemoreceptors (each chemoreceptor is composed of a central column with the typical apical hole surrounded by irregular folds in a cauliflower shape and its surface is entirely reticulated and perforated) (Fig. 1a and b); numerous gouge sensilla 25–50 μm long (Fig. 1c, f); a few short bacilliform sensilla; several glandular setae on the edge of the hole of the cupuliform organ (Fig. 1a, d, e); and numerous long barbed setae. Frontal process slightly protruding, plain, and with one distal and two posterior non-tubercular setae; macrosetae along the insertion line of antennomere I similar in length, x setae the longest (a/i/p/x with relative lengths of 23/25/21/ 40 in holotype), all with very thin distal barbs. Labial palpus suboval, with a bacilliform latero-external sensillum, two guard setae on internal side, up to 8 setae on anterior border, and up to 150 neuroglandular setae in holotype, and 180 neuroglandular setae in paratype. Thorax. Macrosetal distribution (Fig. 3): pronotum with 1 + 1 ma, 2 + 2 la 1,3 , 2 + 2 lp 2,3 ; mesonotum with 1 + 1 ma, 2 + 2 la 1,2 , 2 + 2 lp 2,3 ; metanotum with 1 + 1 ma, 2 + 2 la 1,2 , 2 + 2 lp 2,3 . All notal macrosetae long and with thin barbs along distal half to two thirds; marginal setae longer than clothing setae, with thin barbs along distal half. Legs elongated, pretarsus of metathoracic leg overpasses end of abdomen. Lengths of metathoracic leg segments on holotype / paratype: coxa 0.26/0.30, trochanter 0.20/0.25, femur 0.98/1.05, tibia 1.19/1.30, tarsus 0.88/ 0.90; total: 3.51/3.80. Femora I–III with two long barbed dorsal macrosetae in the distal third of femur and one shorter barbed ventral macroseta inserted near central position (Fig. 4a). Tibia I with one or two short barbed ventral macrosetae; tibiae II–III without macrosetae. Calcars on tibiae covered with thin, short barbs. Tarsi with two rows of thick ventral setae with very thin barbs except on the apical portion. Four long barbed setae on dorsal subapical end of the tarsi. Claws (Fig. 4b–f) subequal with well-developed crests and a slightly backward overhang on both claws; the dorsal side is almost smooth and the ventral side has thin longitudinal grooves. Pretarsal lateral process start in laminar shape and extend into a narrow axis overpassing the end of the claws, which is divided into multiple fringes: simple or subdivided and with a hook ending. Abdomen. Distribution of macrosetae on tergites: 1 + 1 post 1 on I–IV; 0 + 0, 0 + 1 la, 3 + 3 post 1–3 or 4 + 4 post 1–4 on V; 0 + 0, 0 + 1, 1 + 1 la, 4 + 4 post 1–4 on VI–VII; 5 + 5 or 6 + 6 post 1–6 on VIII, and 8 + 8 post 1–8 on abdominal segment IX. All post urotergal macrosetae long and covered by thin barbs along distal four-fifths; la urotergal macrosetae shorter than post macrosetae, covered by barbs along distal half. Urosternite I with 11 + 12 macrosetae on holotype and 15 + 17 macrosetae on paratype (Fig. 5a and b); urosternites II–VII with 7 + 7–8 + 8 macrosetae; urosternite VIII with 3 + 3 macrosetae; all urosternal macrosetae robust and large, covered by long barbs along distal third to four-fifths. Styli with apical, subapical, and ventromedial setae completely surrounded by thin and short barbs (Fig. 6b). Eversible vesicles large, with two distinct zones: the distal one with an almost smooth surface with a sinuous border and the proximal one with a rough surface densely covered by minute dots (Fig. 6a). Gonopore of the genital papilla surrounded by 19 short setae (in paratype male). Cerci lost in all three specimens. Secondary sex characters. Male urosternite I (Fig. 5a) with very large appendages, almost subcylindrical, with up to 200 glandular a 1 setae. Female urosternite I (Fig. 5b) with thinner subcylindrical appendages, almost coniform, with up to 11 glandular a 1 setae. 3.2. Molecular analysis The new COI sequences have been uploaded to Genbank with codes: OM680964-OM680970. The selected nucleotide substitution model after alignment was GTR + G + I (BIC = 8561.95), with the proportion of invariant sites (I = 0.45) and estimated alpha parameter for the gamma distribution (α = 0.99), indicating a significant heterogeneity in the DNA substitution among sites. The ML phylogenetic tree showed Plusiocampinae sequences form a well-supported clade, nested within Campodeidae and clearly distinct from Japygidae (Fig. 9). Anatoliacampa diclensis Sendra, Tusun & Satar sp. nov grouped with Plusiocampa (Plusiocampa) imereti Sendra & Barjadze, 2021 (Sendra et al., 2021d) from Georgia and Plusiocampa (Stygiocampa) bureschi Silvestri, 1931 from Bulgaria, whereas Plusiocampa taxa from Iberian Peninsula [e.g. Plusiocampa (Plusiocampa) gadorensis Sendra, 2001, Plusiocampa (Plusiocampa) baetica Sendra, 2004 (Sendra et al., 2004) or Cestocampa iberica Sendra & Cond´e, 2012 (Sendra et al., 2012)] clustered in separate clades. 3.3. Habitat Dicle cave is excavated in carbonate rocks of the Fırat formation, Eocene to Miocene in age. It has one artificial entrance, 2 m × 1.5 m size, protected by a metal grid. It gives access to a large room with plenty of speleothems, 80 m long and 60 m wide, which goes down to a depth of 13 m (Fig. 7). The cave has no water pools or watercourse but some deep corners have hidden places where specimens of Anatoliacampa diclensis Sendra, Tusun & Satar gen. et sp. nov. were sampled. In summer, the outside environment reaches 35 ◦ C and 27% humidity, while the general atmosphere inside the cave stays at 23 ◦ C and 60% humidity.
- Published
- 2022
- Full Text
- View/download PDF
22. Anatoliacampa Sendra, Tusun & Satar 2022, gen. nov
- Author
-
Sendra, Alberto, Palero, Ferran, Sánchez-García, Alba, Selfa, Jesús, Tusun, Sadreddin, and Satar, Ali
- Subjects
Arthropoda ,Japygidae ,Anatoliacampa ,Animalia ,Diplura ,Biodiversity ,Taxonomy - Abstract
Genus Anatoliacampa Sendra, Tusun & Satar gen. nov. Type species. Anatoliacampa diclensis Sendra, Tusun & Satar sp. nov. Etymology. The genus is named in reference to the Anatolian Peninsula and the suffix -campa, traditionally used in Campodeidae taxonomy. The gender of the name is feminine. Diagnosis. Troglomorphic body and appendages. Cupuliform organ of antennae with complex olfactory chemoreceptors; frontal process of head slightly protruding, with non-tubercular setae. Pronotum 1 + 1 ma, 2 + 2 la 1,3 , 2 + 2 lp 2,3 ; mesonotum and metanotum 1 + 1 ma, 2 + 2 la 1,2 , 2 + 2 lp 2,3 . Femora I–III with two dorsal macrosetae. Tibiae II–III without macrosetae. Claws subequal, with well-developed crests. Pretarsal process start in a laminar shape and extend to a narrow axis, divided into multiple fringes: simple or subdivided with a hook ending. Urotergites 1 + 1 post 1 on I–IV; 0 + 0 or 1 + 1 la, 3 + 3–4 + 4 post 1–4 on V–VII, 5 + 5–6 + 6 post 1–6 on VIII, and 8 + 8 post 1–8 on IX. Urosternite I with up to 32 macrosetae; urosternites II–VII with up to 16 macrosetae; urosternite VIII with 3 + 3 macrosetae. Male urosternite I appendages subcylindrical, with up to 200 glandular a 1 setae. Female urosternite I appendages coniform, with up to 11 glandular a 1 setae., Published as part of Sendra, Alberto, Palero, Ferran, Sánchez-García, Alba, Selfa, Jesús, Tusun, Sadreddin & Satar, Ali, 2022, New evidence for an Anatolian bridge: Colonization of Euromediterranean lands by cave-adapted Plusiocampinae (Diplura, Campodeidae), with establishment of a new genus, pp. 205-214 in Zoologischer Anzeiger 301 on page 207, DOI: 10.1016/j.jcz.2022.10.006, http://zenodo.org/record/8164054
- Published
- 2022
- Full Text
- View/download PDF
23. Figure 4 from: Ortega-Gómez A, Selfa J, Sendra A, Hoch H (2022) Postembryonic development of the troglobitic planthopper species Valenciolenda fadaforesta Hoch & Sendra, 2021 (Hemiptera, Fulgoromorpha, Kinnaridae), with a key to nymphal instars. Subterranean Biology 44: 51-68. https://doi.org/10.3897/subtbiol.44.85604
- Author
-
Ortega-Gómez, Alejandro, primary, Selfa, Jesús, additional, Sendra, Alberto, additional, and Hoch, Hannelore, additional
- Published
- 2022
- Full Text
- View/download PDF
24. Figure 1 from: Ortega-Gómez A, Selfa J, Sendra A, Hoch H (2022) Postembryonic development of the troglobitic planthopper species Valenciolenda fadaforesta Hoch & Sendra, 2021 (Hemiptera, Fulgoromorpha, Kinnaridae), with a key to nymphal instars. Subterranean Biology 44: 51-68. https://doi.org/10.3897/subtbiol.44.85604
- Author
-
Ortega-Gómez, Alejandro, primary, Selfa, Jesús, additional, Sendra, Alberto, additional, and Hoch, Hannelore, additional
- Published
- 2022
- Full Text
- View/download PDF
25. Figure 7 from: Ortega-Gómez A, Selfa J, Sendra A, Hoch H (2022) Postembryonic development of the troglobitic planthopper species Valenciolenda fadaforesta Hoch & Sendra, 2021 (Hemiptera, Fulgoromorpha, Kinnaridae), with a key to nymphal instars. Subterranean Biology 44: 51-68. https://doi.org/10.3897/subtbiol.44.85604
- Author
-
Ortega-Gómez, Alejandro, primary, Selfa, Jesús, additional, Sendra, Alberto, additional, and Hoch, Hannelore, additional
- Published
- 2022
- Full Text
- View/download PDF
26. Figure 3 from: Ortega-Gómez A, Selfa J, Sendra A, Hoch H (2022) Postembryonic development of the troglobitic planthopper species Valenciolenda fadaforesta Hoch & Sendra, 2021 (Hemiptera, Fulgoromorpha, Kinnaridae), with a key to nymphal instars. Subterranean Biology 44: 51-68. https://doi.org/10.3897/subtbiol.44.85604
- Author
-
Ortega-Gómez, Alejandro, primary, Selfa, Jesús, additional, Sendra, Alberto, additional, and Hoch, Hannelore, additional
- Published
- 2022
- Full Text
- View/download PDF
27. Figure 6 from: Ortega-Gómez A, Selfa J, Sendra A, Hoch H (2022) Postembryonic development of the troglobitic planthopper species Valenciolenda fadaforesta Hoch & Sendra, 2021 (Hemiptera, Fulgoromorpha, Kinnaridae), with a key to nymphal instars. Subterranean Biology 44: 51-68. https://doi.org/10.3897/subtbiol.44.85604
- Author
-
Ortega-Gómez, Alejandro, primary, Selfa, Jesús, additional, Sendra, Alberto, additional, and Hoch, Hannelore, additional
- Published
- 2022
- Full Text
- View/download PDF
28. Figure 5 from: Ortega-Gómez A, Selfa J, Sendra A, Hoch H (2022) Postembryonic development of the troglobitic planthopper species Valenciolenda fadaforesta Hoch & Sendra, 2021 (Hemiptera, Fulgoromorpha, Kinnaridae), with a key to nymphal instars. Subterranean Biology 44: 51-68. https://doi.org/10.3897/subtbiol.44.85604
- Author
-
Ortega-Gómez, Alejandro, primary, Selfa, Jesús, additional, Sendra, Alberto, additional, and Hoch, Hannelore, additional
- Published
- 2022
- Full Text
- View/download PDF
29. Figure 2 from: Ortega-Gómez A, Selfa J, Sendra A, Hoch H (2022) Postembryonic development of the troglobitic planthopper species Valenciolenda fadaforesta Hoch & Sendra, 2021 (Hemiptera, Fulgoromorpha, Kinnaridae), with a key to nymphal instars. Subterranean Biology 44: 51-68. https://doi.org/10.3897/subtbiol.44.85604
- Author
-
Ortega-Gómez, Alejandro, primary, Selfa, Jesús, additional, Sendra, Alberto, additional, and Hoch, Hannelore, additional
- Published
- 2022
- Full Text
- View/download PDF
30. Postembryonic development of the troglobitic planthopper species Valenciolenda fadaforesta Hoch & Sendra, 2021 (Hemiptera, Fulgoromorpha, Kinnaridae), with a key to nymphal instars
- Author
-
Ortega-Gómez, Alejandro, primary, Selfa, Jesús, additional, Sendra, Alberto, additional, and Hoch, Hannelore, additional
- Published
- 2022
- Full Text
- View/download PDF
31. List of cave‐dwelling (hypogeal) species and subspecies considered as troglobites and stygobias of the Iberian Peninsula and the Balearic Islands
- Author
-
Salgado, José María, Fresneda, Javier, Vila-Farré, Miquel, Rodríguez, Pilar, Prieto, Carlos E., Martínez Ortí, Alberto, Melic, Antonio, Zaragoza, Juan Antonio, Barranco, Pablo, Barrientos, José Antonio, Mesquita Joanes, Francesc, Iepure, Sanda, Palero Pastor, Ferran, Camacho, Ana Isabel, Garcia, Lluc, Jaume, Damià, Recuero, Ernesto, Stoev, Pavel, Baquero, Enrique, Arbea, Javier I., Beruete, Enrique, Jordana, Rafael, Molero-Baltanás, Rafael, Gaju, Miquel, Tierno de Figueroa, J. Manuel, López Rodríguez, Manuel J., Hoch, Hannelore, Tinaut, Alberto, Pérez, Toni, Miralles, Adrià, and Sendra, Alberto
- Subjects
Cavernícola ,Fauna ,Distribución ,Hipogea ,Hypogean ,Espècies (Biologia) ,Cave dwelling ,Biodiversity ,Fauna cavernícola ,Distribution ,Biodiversitat ,Biodiversidad - Abstract
12 p., [ES] La fauna hipogea o cavernícola ibero-balear ha sido a lo largo de muchos años puesta en evidencia por numerosos zoólogos en las distintas disciplinas. Especialistas de los distintos grupos faunísticos capaces de colonizar las cuevas y las aguas subterráneas que las recorren. Hoy sabemos que esta diversidad de troglobios y estigobios alcanza un total de 1364 taxones: 1285 especies y 79 subespecies hipogeas (cavernícolas) pertenecientes a cuatro filos: Plathyhelminthes (2), Annelida (23), Mollusca (122) y Arthropoda (1217) en todo el territorio ibero-balear. Una fauna que cuenta con numerosos ejemplos de elementos relictos de especial interés paleogeográfico. De la totalidad de taxones hipogeos o cavernícolas del territorio ibero balear, 438 taxones (430 especies y 8 subespecies) son estigobios y 926 taxones (852 especies y 74 subespecies) son troglobios. En lo referente a la distribución de los taxones troglobios es el distrito Cantábrico el que posee una mayor riqueza en especies y subespecies, un total de 208, seguido del Vasco con 163 taxones, el Pirenaico con 153 y el Bético con 142. Algo menos diversos son los distritos Levantino (124 taxones) y Catalán (104 taxones), seguidos de lejos por el Lusitánico con 46 taxones, el Balear con 41 y el Central con tan sólo 19. Entre los estigobios 156 especies y subespecies pueblan las aguas subterráneas de las regiones delimitadas por las cuecas lusitánicas. Le siguen en diversidad las cuencas pirenaicas con 154 taxones estigobios, las béticas con 114 y por último las aguas del subsuelo de las cuencas baleáricas con 47 taxones estigobios, algunos de los cuales son talaso-estigobios, propios de las aguas marinas costeras, [EN] The Iberian-Balearic hypogean or cave fauna has been highlighted for many years by numerous zoologists in different disciplines. Specialists of the different faunal groups capable of colonizing both the caves and the groundwater that runs through them. Today we know that this diversity of troglobites and stygobites reaches a total of 1,364 taxa: 1,285 species and 79 hypogean (cave-dwelling) subspecies belonging to four phyla: Plathyhelminthes (2), Annelida (23), Mollusca (122), and Arthropoda (1,217) in the entire Ibero-Balearic territory. A fauna that has numerous examples of relict elements of special paleogeographical interest. Of all the hypogean or cave taxa in the Iberian Balearic territory, 438 taxa (430 species and 8 subspecies) are stygobites and 926 taxa (852 species and 74 subspecies) are troglobites. Regarding the distribution of toglobites, the Cantabrian district is the one with the greatest richness in species and subspecies, a total of 208, followed by the Basque with 163 taxa, the Pyrenees with 153 and the Baetic with 142. Somewhat less diverse are the Levantine (124 taxa) and Catalan (104 taxa) districts, followed at a distance by the Lusitanian with 46 taxa, the Balearic with 41 and the Central with only 19. Among the stygobites, 156 species and subspecies populate the groundwater of the regions delimited by the Lusitanic basins. Following in diversity are the Pyrenean basins with 154 stygobites, the Baetic ones with 114 and finally the subsoil waters of the Balearic basins with 47 stygobites, some of which are thalaso-stygobic, typical of coastal marine waters.
- Published
- 2022
32. Exceptional invertebrate diversity in a scree slope in Eastern Spain
- Author
-
Jiménez-Valverde, Alberto, Gilgado, José D., Sendra, Alberto, Pérez-Suárez, Gonzalo, Herrero-Borgoñón, Juan J., and Ortuño, Vicente M.
- Published
- 2015
- Full Text
- View/download PDF
33. The world’s deepest subterranean community - Krubera-Voronja Cave (Western Caucasus)
- Author
-
Reboleira Ana Sofia P.S. and Sendra Alberto
- Subjects
deep subsurface biosphere ,biospeleology ,vertical distribution ,Krubera-Voronja ,Western Caucasus ,Biology (General) ,QH301-705.5 ,Geology ,QE1-996.5 - Abstract
Subsurface biota extends over a wide variety of habitats that can be spatially interconnected. The largest communities of this subsurface biota inhabit cavities and are well known mainly in caves where biologists are able to have access. Data about deep subterranean communities and arthropods living under one thousand meters was unknown. An expedition to world’s deepest cave, Krubera-Voronja in Western Caucasus, revealed an interesting subterranean community, living below 2000 meters and represented by more than 12 species of arthropods, including several new species for science. This deep cave biota is composed of troglobionts and also epigean species, that can penetrate until -2140 m. Deep subterranean ecosystems should not be seen only as an evolu- tionary dead end towards the troglomorphic syndrome, but also as a shelter for epigean species populations, especially during long periods of time when surface conditions are severe for their survival. Most of the subsurface biota depends on allochthonous sources of organic carbon coming from: water percolating from the surface, sinking streams that enter caves, and activities of animals mov- ing in and out of caves. The biocoenosis and the vertical distribution of invertebrate fauna of Krubera-Voronja are provided, from its entrance to the remarkable depth of 2140 meters, including the discovery of world’s deepest dwelling arthropod.
- Published
- 2012
34. Brazilian cave heritage under siege
- Author
-
Ferreira, Rodrigo Lopes, Bernard, Enrico, da Cruz Júnior, Francisco William, Piló, Luis Beethoven, Calux, Allan, Souza-Silva, Marconi, Barlow, Jos, Pompeu, Paulo S., Cardoso, Pedro, Mammola, Stefano, García, Alejandro Martínez, Jeffery, William R., Shear, William, Medellín, Rodrigo A., Wynne, J. Judson, Borges, Paulo A. V., Kamimura, Yoshitaka, Pipan, Tanja, Hajna, Nadja Zupan, Sendra, Alberto, Peck, Stewart, Onac, Bogdan P., Culver, David C., Hoch, Hannelore, Flot, Jean-François, Stoch, Fabio, Pavlek, Martina, Niemiller, Matthew L., Manchi, Shirish, Deharveng, Louis, Fenolio, Danté, Calaforra, José-María, Yager, Jill, Griebler, Christian, Nader, Fadi Henri, Humphreys, William F., Hughes, Alice C., Fenton, Brock, Forti, Paolo, Sauro, Francesco, Veni, George, Frumkin, Amos, Gavish-Regev, Efrat, Fišer, Cene, Trontelj, Peter, Zagmajster, Maja, Delic, Teo, Galassi, Diana M. P., Vaccarelli, Ilaria, Komnenov, Marjan, Gainett, Guilherme, da Cunha Tavares, Valeria, Kováč, Ľubomír, Miller, Ana Z., Yoshizawa, Kazunori, Di Lorenzo, Tiziana, Moldovan, Oana T., Sánchez-Fernández, David, Moutaouakil, Soumia, Howarth, Francis, Bilandžija, Helena, Dražina, Tvrtko, Kuharić, Nikolina, Butorac, Valerija, Lienhard, Charles, Cooper, Steve J. B., Eme, David, Strauss, André Menezes, Saccò, Mattia, Zhao, Yahui, Williams, Paul, Tian, Mingyi, Tanalgo, Krizler, Woo, Kyung-Sik, Barjakovic, Miran, McCracken, Gary F., Simmons, Nancy B, Racey, Paul A., Ford, Derek, Labegalini, José Ayrton, Colzato, Nivaldo, Ramos Pereira, Maria João, Aguiar, Ludmilla M. S., Moratelli, Ricardo, Du Preez, Gerhard, Pérez-González, Abel, Reboleira, Ana Sofia P. S., Gunn, John, Mc Cartney, Ann, Bobrowiec, Paulo E. D., Milko, Dmitry, Kinuthia, Wanja, Fischer, Erich, Meierhofer, Melissa B., Frick, Winifred F, Ferreira, Rodrigo Lopes, Bernard, Enrico, da Cruz Júnior, Francisco William, Piló, Luis Beethoven, Calux, Allan, Souza-Silva, Marconi, Barlow, Jos, Pompeu, Paulo S., Cardoso, Pedro, Mammola, Stefano, García, Alejandro Martínez, Jeffery, William R., Shear, William, Medellín, Rodrigo A., Wynne, J. Judson, Borges, Paulo A. V., Kamimura, Yoshitaka, Pipan, Tanja, Hajna, Nadja Zupan, Sendra, Alberto, Peck, Stewart, Onac, Bogdan P., Culver, David C., Hoch, Hannelore, Flot, Jean-François, Stoch, Fabio, Pavlek, Martina, Niemiller, Matthew L., Manchi, Shirish, Deharveng, Louis, Fenolio, Danté, Calaforra, José-María, Yager, Jill, Griebler, Christian, Nader, Fadi Henri, Humphreys, William F., Hughes, Alice C., Fenton, Brock, Forti, Paolo, Sauro, Francesco, Veni, George, Frumkin, Amos, Gavish-Regev, Efrat, Fišer, Cene, Trontelj, Peter, Zagmajster, Maja, Delic, Teo, Galassi, Diana M. P., Vaccarelli, Ilaria, Komnenov, Marjan, Gainett, Guilherme, da Cunha Tavares, Valeria, Kováč, Ľubomír, Miller, Ana Z., Yoshizawa, Kazunori, Di Lorenzo, Tiziana, Moldovan, Oana T., Sánchez-Fernández, David, Moutaouakil, Soumia, Howarth, Francis, Bilandžija, Helena, Dražina, Tvrtko, Kuharić, Nikolina, Butorac, Valerija, Lienhard, Charles, Cooper, Steve J. B., Eme, David, Strauss, André Menezes, Saccò, Mattia, Zhao, Yahui, Williams, Paul, Tian, Mingyi, Tanalgo, Krizler, Woo, Kyung-Sik, Barjakovic, Miran, McCracken, Gary F., Simmons, Nancy B, Racey, Paul A., Ford, Derek, Labegalini, José Ayrton, Colzato, Nivaldo, Ramos Pereira, Maria João, Aguiar, Ludmilla M. S., Moratelli, Ricardo, Du Preez, Gerhard, Pérez-González, Abel, Reboleira, Ana Sofia P. S., Gunn, John, Mc Cartney, Ann, Bobrowiec, Paulo E. D., Milko, Dmitry, Kinuthia, Wanja, Fischer, Erich, Meierhofer, Melissa B., and Frick, Winifred F
- Published
- 2022
35. Tolerància de la fauna cavernícola terrestre de la Cova de sa Font (Sa Dragonera, Illes Balears) envers altes concentracions de diòxid de carboni
- Author
-
Ginés, Angel, Sendra, Alberto, Ginés, Joaquín, Fornós, Joan J., Calaforra, José M., Dumitru, Oana A., Fernández-Cortés, Ángel, Ginés, Angel, Sendra, Alberto, Ginés, Joaquín, Fornós, Joan J., Calaforra, José M., Dumitru, Oana A., and Fernández-Cortés, Ángel
- Abstract
[eng] Terrestrial cave-fauna is likely affected by the high concentrations of CO2 found in many cave habitats, typically over 10,000 ppm. Cova de sa Font is a rather simple descending anchihaline cave (25 m deep), that stands out for its extreme CO2 fluctuations throughout the year: from less than 800 ppm in the winter to values exceeding 60,000 ppm in the summer. This small cavern is actively ventilated during the cold season, but when ventilation ceases in the spring it starts to be invaded by CO2-enriched “ground air” coming from the surrounding vadose crevices. On the other hand, air composition (radon, CO2, water vapor) characterizing the whole vadose zone and the seasonal changes observed in cave-atmospheres are obvious ecological constraints for troglofauna. In order to assess the effects of rising carbon dioxide content on the terrestrial fauna of Cova de sa Font, a threefold sampling of troglobitic and troglophilic fauna was carried out, using baited pit-fall traps, from December 2018 to October 2019. We describe the most noteworthy changes in the spatial distribution of several species and we indicate a strong correlation with confined-air descriptors. Our results suggest that these arthropods have adaptive abilities to live in such CO2-rich environment., [spa] La fauna cavernícola terrestre se ve afectada previsiblemente por las elevadas concentraciones de CO2 que caracterizan a muchos hábitats subterráneos, donde es frecuente superar los 10.000 ppm. La Cova de sa Font es una cueva anquihalina descendente, de 25 m de profundidad, especialmente destacable debido a las enormes fluctuaciones de CO2 que experimenta a lo largo del año: desde menos de 800 ppm en invierno hasta valores por encima de los 60.000 ppm en verano. Esta cueva, de pequeño recorrido y desarrollo casi vertical, muestra una renovación del aire muy activa durante la estación fría, que se interrumpe cuando al iniciarse el verano cesa la ventilación y el “ground air” de la zona vadosa –procedente de las grietas circundantes y cargado de CO2– comienza a invadir la cavidad. Por otra parte, la composición del aire subterráneo en el conjunto de la zona vadosa, junto con sus cambios estacionales más drásticos, constituyen un significativo condicionante ecológico para la troglofauna que puebla estos biotopos. Con la intención de evaluar los efectos del extremado incremento de las concentraciones de CO2 sobre la fauna terrestre de la Cova de sa Font, se llevaron a cabo (entre diciembre de 2018 y octubre de 2019) tres muestreos de fauna troglobia y troglófila utilizando trampas de caída con cebo, sustituidas cada tres meses. Los resultados obtenidos muestran importantes cambios en la distribución espacial de varias especies, así como su correlación con los descriptores que denotan confinamiento del aire de la cueva y la tolerancia de estos artrópodos cavernícolas a niveles muy altos de CO2.
- Published
- 2022
36. Listado de especies y subespecies cavernícolas (hipogeas) consideradas como troglobias y estigobias de la península ibérica e islas Baleares
- Author
-
Salgado, Jose María, Fresneda, Javier, Vila-Farré, Miquel, Rodríguez, Pilar, Prieto, Carlos E., Martínez-Ortí, Alberto, Melic, Antonio, Zaragoza, Juan Antonio, Barranco, Pablo, Barrientos, José Antonio, Mesquita-Joanes, Francesc, Iepure, Sanda, Palero, Ferran, Camacho Pérez, Ana I., García, Lluc, Jaume, Damià, Recuero, Ernesto, Stoev, Pavel, Baquero, Enrique, Arbea, Javier I., Beruete, Enrique, Jordana, Rafael, Molero-Baltanás, Rafael, Gaju, Miquel, Tierno de Figueroa, J. Manuel, López-Rodríguez, Manuel J., Hoch, Hannelore, Tinaut, Alberto, Pérez, Toni, Miralles, Adrià, Sendra, Alberto, Salgado, Jose María, Fresneda, Javier, Vila-Farré, Miquel, Rodríguez, Pilar, Prieto, Carlos E., Martínez-Ortí, Alberto, Melic, Antonio, Zaragoza, Juan Antonio, Barranco, Pablo, Barrientos, José Antonio, Mesquita-Joanes, Francesc, Iepure, Sanda, Palero, Ferran, Camacho Pérez, Ana I., García, Lluc, Jaume, Damià, Recuero, Ernesto, Stoev, Pavel, Baquero, Enrique, Arbea, Javier I., Beruete, Enrique, Jordana, Rafael, Molero-Baltanás, Rafael, Gaju, Miquel, Tierno de Figueroa, J. Manuel, López-Rodríguez, Manuel J., Hoch, Hannelore, Tinaut, Alberto, Pérez, Toni, Miralles, Adrià, and Sendra, Alberto
- Abstract
[ES] La fauna hipogea o cavernícola ibero-balear ha sido a lo largo de muchos años puesta en evidencia por numerosos zoólogos en las distintas disciplinas. Especialistas de los distintos grupos faunísticos capaces de colonizar las cuevas y las aguas subterráneas que las recorren. Hoy sabemos que esta diversidad de troglobios y estigobios alcanza un total de 1364 taxones: 1285 especies y 79 subespecies hipogeas (cavernícolas) pertenecientes a cuatro filos: Plathyhelminthes (2), Annelida (23), Mollusca (122) y Arthropoda (1217) en todo el territorio ibero-balear. Una fauna que cuenta con numerosos ejemplos de elementos relictos de especial interés paleogeográfico. De la totalidad de taxones hipogeos o cavernícolas del territorio ibero balear, 438 taxones (430 especies y 8 subespecies) son estigobios y 926 taxones (852 especies y 74 subespecies) son troglobios. En lo referente a la distribución de los taxones troglobios es el distrito Cantábrico el que posee una mayor riqueza en especies y subespecies, un total de 208, seguido del Vasco con 163 taxones, el Pirenaico con 153 y el Bético con 142. Algo menos diversos son los distritos Levantino (124 taxones) y Catalán (104 taxones), seguidos de lejos por el Lusitánico con 46 taxones, el Balear con 41 y el Central con tan sólo 19. Entre los estigobios 156 especies y subespecies pueblan las aguas subterráneas de las regiones delimitadas por las cuecas lusitánicas. Le siguen en diversidad las cuencas pirenaicas con 154 taxones estigobios, las béticas con 114 y por último las aguas del subsuelo de las cuencas baleáricas con 47 taxones estigobios, algunos de los cuales son talaso-estigobios, propios de las aguas marinas costeras, [EN] The Iberian-Balearic hypogean or cave fauna has been highlighted for many years by numerous zoologists in different disciplines. Specialists of the different faunal groups capable of colonizing both the caves and the groundwater that runs through them. Today we know that this diversity of troglobites and stygobites reaches a total of 1,364 taxa: 1,285 species and 79 hypogean (cave-dwelling) subspecies belonging to four phyla: Plathyhelminthes (2), Annelida (23), Mollusca (122), and Arthropoda (1,217) in the entire Ibero-Balearic territory. A fauna that has numerous examples of relict elements of special paleogeographical interest. Of all the hypogean or cave taxa in the Iberian Balearic territory, 438 taxa (430 species and 8 subspecies) are stygobites and 926 taxa (852 species and 74 subspecies) are troglobites. Regarding the distribution of toglobites, the Cantabrian district is the one with the greatest richness in species and subspecies, a total of 208, followed by the Basque with 163 taxa, the Pyrenees with 153 and the Baetic with 142. Somewhat less diverse are the Levantine (124 taxa) and Catalan (104 taxa) districts, followed at a distance by the Lusitanian with 46 taxa, the Balearic with 41 and the Central with only 19. Among the stygobites, 156 species and subspecies populate the groundwater of the regions delimited by the Lusitanic basins. Following in diversity are the Pyrenean basins with 154 stygobites, the Baetic ones with 114 and finally the subsoil waters of the Balearic basins with 47 stygobites, some of which are thalaso-stygobic, typical of coastal marine waters.
- Published
- 2022
37. Feeding habits and multifunctional classification of soil‐associated consumers from protists to vertebrates
- Author
-
Potapov, Anton M., Beaulieu, Frédéric, Birkhofer, Klaus, Bluhm, Sarah L., Degtyarev, Maxim I., Devetter, Miloslav, Goncharov, Anton A., Gongalsky, Konstantin B., Klarner, Bernhard, Korobushkin, Daniil I., Liebke, Dana F., Maraun, Mark, Mc Donnell, Rory J., Pollierer, Melanie M., Schaefer, Ina, Shrubovych, Julia, Semenyuk, Irina I., Sendra, Alberto, Tuma, Jiri, Tůmová, Michala, Vassilieva, Anna B., Chen, Ting-Wen, Geisen, Stefan, Schmidt, Olaf, Tiunov, Alexei V., Scheu, Stefan, Potapov, Anton M., Beaulieu, Frédéric, Birkhofer, Klaus, Bluhm, Sarah L., Degtyarev, Maxim I., Devetter, Miloslav, Goncharov, Anton A., Gongalsky, Konstantin B., Klarner, Bernhard, Korobushkin, Daniil I., Liebke, Dana F., Maraun, Mark, Mc Donnell, Rory J., Pollierer, Melanie M., Schaefer, Ina, Shrubovych, Julia, Semenyuk, Irina I., Sendra, Alberto, Tuma, Jiri, Tůmová, Michala, Vassilieva, Anna B., Chen, Ting-Wen, Geisen, Stefan, Schmidt, Olaf, Tiunov, Alexei V., and Scheu, Stefan
- Abstract
Soil organisms drive major ecosystem functions by mineralising carbon and releasing nutrients during decomposition processes, which supports plant growth, aboveground biodiversity and, ultimately, human nutrition. Soil ecologists often operate with functional groups to infer the effects of individual taxa on ecosystem functions and services. Simultaneous assessment of the functional roles of multiple taxa is possible using food-web reconstructions, but our knowledge of the feeding habits of many taxa is insufficient and often based on limited evidence. Over the last two decades, molecular, biochemical and isotopic tools have improved our understanding of the feeding habits of various soil organisms, yet this knowledge is still to be synthesised into a common functional framework. Here, we provide a comprehensive review of the feeding habits of consumers in soil, including protists, micro-, meso- and macrofauna (invertebrates), and soil-associated vertebrates. We have integrated existing functional group classifications with findings gained with novel methods and compiled an overarching classification across taxa focusing on key universal traits such as food resource preferences, body masses, microhabitat specialisation, protection and hunting mechanisms. Our summary highlights various strands of evidence that many functional groups commonly used in soil ecology and food-web models are feeding on multiple types of food resources. In many cases, omnivory is observed down to the species level of taxonomic resolution, challenging realism of traditional soil food-web models based on distinct resource-based energy channels. Novel methods, such as stable isotope, fatty acid and DNA gut content analyses, have revealed previously hidden facets of trophic relationships of soil consumers, such as food assimilation, multichannel feeding across trophic levels, hidden trophic niche differentiation and the importance of alternative food/prey, as well as energy transfers across eco
- Published
- 2022
38. Historical and global scale catalogue of diplurologists (1842-2019) and proturologists (1907-2020)
- Author
-
Thibaud, Jean-Marc, primary, Sendra, Alberto, additional, and Shrubovych, Julia, additional
- Published
- 2022
- Full Text
- View/download PDF
39. Brazilian cave heritage under siege
- Author
-
Ferreira, Rodrigo Lopes, primary, Bernard, Enrico, additional, da Cruz Júnior, Francisco William, additional, Piló, Luis Beethoven, additional, Calux, Allan, additional, Souza-Silva, Marconi, additional, Barlow, Jos, additional, Pompeu, Paulo S., additional, Cardoso, Pedro, additional, Mammola, Stefano, additional, García, Alejandro Martínez, additional, Jeffery, William R., additional, Shear, William, additional, Medellín, Rodrigo A., additional, Wynne, J. Judson, additional, Borges, Paulo A. V., additional, Kamimura, Yoshitaka, additional, Pipan, Tanja, additional, Hajna, Nadja Zupan, additional, Sendra, Alberto, additional, Peck, Stewart, additional, Onac, Bogdan P., additional, Culver, David C., additional, Hoch, Hannelore, additional, Flot, Jean-François, additional, Stoch, Fabio, additional, Pavlek, Martina, additional, Niemiller, Matthew L., additional, Manchi, Shirish, additional, Deharveng, Louis, additional, Fenolio, Danté, additional, Calaforra, José-María, additional, Yager, Jill, additional, Griebler, Christian, additional, Nader, Fadi Henri, additional, Humphreys, William F., additional, Hughes, Alice C., additional, Fenton, Brock, additional, Forti, Paolo, additional, Sauro, Francesco, additional, Veni, George, additional, Frumkin, Amos, additional, Gavish-Regev, Efrat, additional, Fišer, Cene, additional, Trontelj, Peter, additional, Zagmajster, Maja, additional, Delic, Teo, additional, Galassi, Diana M. P., additional, Vaccarelli, Ilaria, additional, Komnenov, Marjan, additional, Gainett, Guilherme, additional, da Cunha Tavares, Valeria, additional, Kováč, Ľubomír, additional, Miller, Ana Z., additional, Yoshizawa, Kazunori, additional, Di Lorenzo, Tiziana, additional, Moldovan, Oana T., additional, Sánchez-Fernández, David, additional, Moutaouakil, Soumia, additional, Howarth, Francis, additional, Bilandžija, Helena, additional, Dražina, Tvrtko, additional, Kuharić, Nikolina, additional, Butorac, Valerija, additional, Lienhard, Charles, additional, Cooper, Steve J. B., additional, Eme, David, additional, Strauss, André Menezes, additional, Saccò, Mattia, additional, Zhao, Yahui, additional, Williams, Paul, additional, Tian, Mingyi, additional, Tanalgo, Krizler, additional, Woo, Kyung-Sik, additional, Barjakovic, Miran, additional, McCracken, Gary F., additional, Simmons, Nancy B, additional, Racey, Paul A., additional, Ford, Derek, additional, Labegalini, José Ayrton, additional, Colzato, Nivaldo, additional, Ramos Pereira, Maria João, additional, Aguiar, Ludmilla M. S., additional, Moratelli, Ricardo, additional, Du Preez, Gerhard, additional, Pérez-González, Abel, additional, Reboleira, Ana Sofia P. S., additional, Gunn, John, additional, Mc Cartney, Ann, additional, Bobrowiec, Paulo E. D., additional, Milko, Dmitry, additional, Kinuthia, Wanja, additional, Fischer, Erich, additional, Meierhofer, Melissa B., additional, and Frick, Winifred F, additional
- Published
- 2022
- Full Text
- View/download PDF
40. Feeding habits and multifunctional classification of soil‐associated consumers from protists to vertebrates
- Author
-
Potapov, Anton M., primary, Beaulieu, Frédéric, additional, Birkhofer, Klaus, additional, Bluhm, Sarah L., additional, Degtyarev, Maxim I., additional, Devetter, Miloslav, additional, Goncharov, Anton A., additional, Gongalsky, Konstantin B., additional, Klarner, Bernhard, additional, Korobushkin, Daniil I., additional, Liebke, Dana F., additional, Maraun, Mark, additional, Mc Donnell, Rory J., additional, Pollierer, Melanie M., additional, Schaefer, Ina, additional, Shrubovych, Julia, additional, Semenyuk, Irina I., additional, Sendra, Alberto, additional, Tuma, Jiri, additional, Tůmová, Michala, additional, Vassilieva, Anna B., additional, Chen, Ting‐Wen, additional, Geisen, Stefan, additional, Schmidt, Olaf, additional, Tiunov, Alexei V., additional, and Scheu, Stefan, additional
- Published
- 2022
- Full Text
- View/download PDF
41. Kyrgyzstancampa Sendra & Ferreira 2021, gen. nov
- Author
-
Sendra, Alberto, S��nchez-Garc��a, Alba, Selfa, Jes��s, Milko, Dmitry A., and Ferreira, Rodrigo Lopes
- Subjects
Campodeidae ,Arthropoda ,Kyrgyzstancampa ,Animalia ,Entognatha ,Diplura ,Biodiversity ,Taxonomy - Abstract
Genus Kyrgyzstancampa Sendra & Ferreira gen. nov. urn:lsid:zoobank.org:act: 8647AF6F-06B9-4D69-A01B-89BF113788C5 Type species Kyrgyzstancampa sanare Sendra & Ferreira gen. et sp. nov. Diagnosis Sensilla of cupuliform organ paddle-shaped. Notal macrosetae pattern with 3+3 ma, la, and lp on pronotum and mesonotum. Femora with one dorsal macroseta and tibiae with one ventral macroseta. Claws subequal and regularly curved with ventral and lateral microspines. Laminar lateral processes striate on dorsal side with ridges surpassing apex and with short barbs on ventral side. Urotergites I��� VII with up to 1+1 la and 2+2 lp macrosetae. First urosternite with 5+5 macrosetae, second to seventh urosternites with 3+3, and eighth urosternite with 1+1 macrosetae. First urosternite in males with glandular g 1, a 2 and a 1 setae; first urosternite in females with glandular a 1 setae. Etymology The genus name is a combination of ���Kyrgyzstan���, the country where the material was found, and ���campa���, a commonly applied suffix to dipluran generic names., Published as part of Sendra, Alberto, S��nchez-Garc��a, Alba, Selfa, Jes��s, Milko, Dmitry A. & Ferreira, Rodrigo Lopes, 2021, Campodeidae (Hexapoda: Diplura) from Kyrgyzstan, Central Asia, with the description of a remarkable new genus and species, pp. 1-20 in European Journal of Taxonomy 782 on page 4, DOI: 10.5852/ejt.2021.782.1585, http://zenodo.org/record/5761387
- Published
- 2021
- Full Text
- View/download PDF
42. Campodea (Dicampa) catalana Denis 1930
- Author
-
Sendra, Alberto, Sánchez-García, Alba, Selfa, Jesús, Milko, Dmitry A., and Ferreira, Rodrigo Lopes
- Subjects
Campodeidae ,Campodea ,Arthropoda ,Campodea catalana ,Animalia ,Entognatha ,Diplura ,Biodiversity ,Taxonomy - Abstract
Campodea (Dicampa) catalana Denis, 1930 Campodea (Dicampa) catalana Denis, 1930: 28, figs 7���13. Material examined KYRGYZSTAN ��� 6 ♂♂, 11 ♀♀; Osh Province, Nookat District, Abshir Say River; 40��08���50��� N, 72��21���52��� E; alt. 1851 m; 21 Jul. 2019; Alberto Sendra leg.; endogean habitat near Cupressus tree; Coll. AS. Remarks Campodea (Dicampa) catalana is an abundant species in Western Mediterranean soil habitats. This finding seems to show a disjunct distribution on both sides of the Mediterranean region., Published as part of Sendra, Alberto, S��nchez-Garc��a, Alba, Selfa, Jes��s, Milko, Dmitry A. & Ferreira, Rodrigo Lopes, 2021, Campodeidae (Hexapoda: Diplura) from Kyrgyzstan, Central Asia, with the description of a remarkable new genus and species, pp. 1-20 in European Journal of Taxonomy 782 on page 4, DOI: 10.5852/ejt.2021.782.1585, http://zenodo.org/record/5761387, {"references":["Denis J. R. 1930. Sur la faune francaise des Apterygotes, XIe note: Diploures avec tableau de determination des especes francaises. Bulletin de la Societe zoologique de France 55: 19 - 41."]}
- Published
- 2021
- Full Text
- View/download PDF
43. Turkmenocampa edaphica Sendra & Sanchez-Garcia 2021, sp. nov
- Author
-
Sendra, Alberto, Sánchez-García, Alba, Selfa, Jesús, Milko, Dmitry A., and Ferreira, Rodrigo Lopes
- Subjects
Campodeidae ,Arthropoda ,Turkmenocampa edaphica ,Animalia ,Entognatha ,Diplura ,Biodiversity ,Turkmenocampa ,Taxonomy - Abstract
Turkmenocampa edaphica Sendra & S��nchez-Garc��a sp. nov. urn:lsid:zoobank.org:act: 6B28F41D-4B21-4E3C-A9B6-23FA7F8B0E17 Figs 27���31 Etymology The specific epithet refers to the habitat of the new species. Type material Holotype KYRGYZSTAN ��� ♀; ���holotype-♀07 MZB (MCNB) 2021-2340 ���; Jalal-Abad Region, Suzak Province, Kara Alma; 41��15���59��� N, 73��22���43��� E; alt. 1661 m; 16 Jul. 2019; A. Sendra leg.; endogean habitat near tree roots; MZB (MCNB) 2021-2340. Paratypes KYRGYZSTAN ��� 1 ♂, mounted in Marc Andr�� II solution; ���paratype-♂01 MZB (MCNB) 2021-2341���; same collection data as for holotype; MZB (MCNB) 2021-2341 ��� 1 ♂, mounted in Marc Andr�� II solution; ���paratype-♂02 Coll. AS���; same collection data as for preceding; Coll. AS ��� 1 ♀, mounted in Marc Andr�� II solution; ���paratype-♀05 Coll. AS���; same collection data as for preceding; Coll. AS ��� 1 ♀, mounted in Marc Andr�� II solution; ���paratype-♀08���; same collection data as for preceding; Coll. AS ��� 1 ♀, mounted in Marc Andr�� II solution; ���paratype-♀09 Coll. AS ���; same collection data as for preceding; Coll.AS ��� 1 ♀, mounted in Marc Andr�� II solution; ���paratype-♀10 MZB (MCNB) 2021-2342 paratype ���; same collection data as for preceding; MZB (MCNB) 2021-2342 ��� 1 ♀; ���♀01- paratype MCB (MCNB) 2021-2343 ���; Osh Province, Nookat District, Abshir Say River; 40��08���50��� N, 72��21���52��� E; alt. 1851 m; 21 Jul. 2019; A. Sendra leg.; endogean habitat near Cupressus tree; MCB (MCNB) 2021- 2343 ��� 1 ♀; ���paratype-♀02 MZB (MCNB) 2021-2344 ���; same collection data as for preceding; MZB (MCNB) 2021-2344 ��� 1 ♀; ���paratype-♀03 Coll AS ���; same collection data as for preceding; Coll AS ��� 1 ♀; ���paratype-♀04���; same collection data as for preceding; Coll. AS ��� 1 juv.; ���paratype-J01 Coll AS���; same collection data as for preceding; Coll AS ��� 1 juv.; ���paratype-J02 Coll AS���; same collection data as for preceding; Coll AS. Other material KYRGYZSTAN ��� 2 specs, mounted on an aluminium stage and coated with palladium-gold; same collection data as for holotype; Coll. AS. Description BODY. Length 3.0 and 3.1 mm in two males, 3.5���4.8 mm in nine females, 2.2 and 2.3 mm in two juveniles (Table 1). Epicuticle smooth under optical microscope but slightly reticulated at high magnifications with irregular polygonal structures of variable size. Body with short to middle-sized smooth clothing setae. HEAD. Antennae with 25���30 antennomeres in 10 complete intact antennae; antennae 0.6���0.8 �� length of body in adults and 0.9�� in juveniles (Table 1). Medial antennomeres 1.4�� as long as wide, apical antennomere 2.3�� as long as wide. Cupuliform organ with about ten oviform sensilla of types I and II and an unknown number of tree-shaped sensilla (type III) in this olfactory complex (Fig. 27). Distal and central antennomeres with five whorls of barbed macrosetae and scattered smooth setae, plus single distal whorl of about ten short, thin gouge sensilla 15���18 ��m long (Fig. 28). Proximal antennomeres with typical trichobothria, plus small and slightly shallow, 7 ��m long sensillum on 3 rd antennomere in ventral position. Plain frontal process with one frontal and two posterior macrosetae with length ratios a/p 45/30; three macrosetae along each side of insertion line of antennomere and setae x with thin distal barbs; length ratios a/i/p/x 28/38/27/ 30 in paratype ♀ 05 IBB-92102. Occiput of the head dorsally with 6+6 macrosetae, including 3+3 la, lp and mp macrosetae, longer than clothing setae and with few distal barbs. Large suboval labial palps each with microsensillae on the surface, small shallow latero-external sensillum, two guard setae, and up to ten clothing setae in anterior position, with up to 120 neuroglandular setae in medial and posterior positions, in holotype. THORAX. Thoracic macroseta distribution: pronotum and mesonotum with 1+1 ma, 1+1 la, 2+2 lp macrosetae; metanotum with 1+1 ma, 2+2 lp macrosetae. All macrosetae long and slightly thickened, with barbs along distal five-fourths of each seta; marginal setae up to twice as long as and thicker than clothing setae, well barbed near base (Fig. 29). Metathoracic legs reaching abdominal segment VI, about 0.3���0.4 �� as long as body length (Table 1). Femora II���III each with one long, thick dorsal macroseta with barbs along distal half and with two long ventral macrosetae. Calcars with long barbs along one side. Tibiae I���III with two short, thick ventral macrosetae with barbs along distal two-thirds. Two rows of ventral barbed setae. Three smooth, dorsal distal tarsal setae longer than rest. Subequal claws with large basal half with tiny dorsal spines and distal half curved and thinner. Laminar processes of pretarsus smooth on dorsal side and with long, thin, ending curved and with enlarged on ventral side. ABDOMEN. Distribution of abdominal macrosetae on tergites: 1+1 post 1 on I���II; 2+2 post 1���2 on III; 4+4 post 1���4 on IV���VII; 5+5 post 1���5 on VIII; and 7+7 post 1���7 on abdominal segment IX. All tergal abdominal macrosetae long, thick and short, with thin barbs along the distal fourth-fifths. Urosternite I with 8+8 macrosetae (Figs 30���31); urosternites II���VII with 4+4 macrosetae; urosternite VIII with 1+1 macrosetae; urosternal macrosetae of medium length or longer, with long barbs in single row along distal one-fourth to three-fourths. Stylus with apical seta, subapical seta and ventromedial seta with few long barbs arranged in one row along distal half to four-fifths. Cerci 0.6���0.85 �� length of body, with 5 and 7 primary articles, not counting multi-divided basal article (Table 1). Each primary article covered with unarranged whorls of barbed macrosetae and typical whorl of short setae with tiny distal barbs. SECONDARY SEX CHARACTERS. Female first urosternite with slightly thickened cylindrical appendages, each bearing microsensillae and 32���64 glandular a1 setae in a distal field (Table 1; Fig. 31). Male first urosternite with short subcylindrical appendages, each bearing microsensillae and 19���22 glandular a 1 setae in distal field (Table 1; Fig. 30). Type locality Kyrgyzstan, Kara Alma Village, Suzak Province, Jalal-Abad Region, 41��15���59��� N, 73��22���43��� E, 1661 m a.s.l. Habitat The morphological features and locations where Turkmenocampa edaphica Sendra & S��nchez-Garc��a sp. nov. has been found are congruent with those of a soil-dwelling species. In all cases, the species has been found in endogean habitats: under stones or among tree roots, always in humid places at 1661 m a.s.l. and 1851 m a.s.l., which is an average elevation for this mountainous country. Phyletic affinities Turkmenocampa edaphica Sendra & S��nchez-Garc��a sp. nov. is the second known species of a genus known previously from a troglobitic species inhabiting Kaptarhana Cave in Eastern Turkmenistan, Turkmenocampa mirabilis Sendra & Pavel, 2017, which is characterized by a Plusiocampinae pattern of macrosetae on the thorax and abdomen. Turkmenocampa also has a unique pretarsus consisting of subequal claws comprised of a large basal half with tiny dorsal spines, a thin, curved distal half and lateral laminar processes with long ventral barbs. Turkmenocampa mirabilis shows slight troglobiomorphic features: 30���32 antennomeres; up to twenty oviform sensilla on the cupuliform organ; gouge sensilla 18���26 ��m long; middle antennomeres 2���2.5�� as long as wide; legs slightly elongated; metathoracic legs reaching abdominal segment VIII; and much longer than wide appendages of the first urosternite, both in males and females (Sendra et al. 2017). However, T. edaphica Sendra & S��nchez-Garc��a sp. nov. shows body characters of a soil dweller: 25���30 antennomeres; up to ten oviform sensilla on the cupuliform organ; middle antennomeres 1.4�� as long as wide; gouge sensilla 15���18 ��m long; metathoracic legs reaching abdominal segment VI; and much longer than wide appendages of the first urosternite in both females and males. Turkmenocampa edaphica Sendra & S��nchez-Garc��a sp. nov. differs from T. mirabilis by the greater thickness of barbed marginal setae and by the greater number of glandular a 1 setae on the first urosternite appendages in females: with 32���64 in T. edaphica Sendra & S��nchez-Garc��a sp. nov., 12���21 in T. mirabilis., Published as part of Sendra, Alberto, S��nchez-Garc��a, Alba, Selfa, Jes��s, Milko, Dmitry A. & Ferreira, Rodrigo Lopes, 2021, Campodeidae (Hexapoda: Diplura) from Kyrgyzstan, Central Asia, with the description of a remarkable new genus and species, pp. 1-20 in European Journal of Taxonomy 782 on pages 13-17, DOI: 10.5852/ejt.2021.782.1585, http://zenodo.org/record/5761387, {"references":["Sendra A., Sket B. & Stoev P. 2017. A striking new genus and species of troglobitic Campodeidae (Diplura) from Central Asia. Subterranean Biology 23: 47 - 68. https: // doi. org / 10.3897 / subtbiol. 23.14631"]}
- Published
- 2021
- Full Text
- View/download PDF
44. Kyrgyzstancampa sanare Sendra & Ferreira 2021, gen. et sp. nov
- Author
-
Sendra, Alberto, Sánchez-García, Alba, Selfa, Jesús, Milko, Dmitry A., and Ferreira, Rodrigo Lopes
- Subjects
Campodeidae ,Arthropoda ,Kyrgyzstancampa ,Animalia ,Entognatha ,Diplura ,Biodiversity ,Taxonomy ,Kyrgyzstancampa sanare - Abstract
Kyrgyzstancampa sanare Sendra & Ferreira gen. et sp. nov. urn:lsid:zoobank.org:act: 012CDB29-579C-432F-B6C0-2DEE0F408BE5 Figs 8–26 Etymology The specific epithet is taken from the Latin ‘sanare’, meaning ‘cure’ and is related to the cave where the species was found, which is used for therapeutic purposes. This should be treated as a noun in apposition. Type material Holotype KYRGYZSTAN • ♀; “holotype- ♀ IBB 92101 ”; Ak-Turpak Cave; 40º10′35.18″ N, 71º03′45.36″ E; alt. 900 m; 12 Aug. 2019; R.L. Ferreira leg.; IBB 92101. Paratypes KYRGYZSTAN • 1 ♀, mounted in Marc André II solution; “paratype- ♀ 01 MZB (MCNB) 2021-2338”; same collection data as for holotype; MZB (MCNB) 2021-2338 • 1 ♀, mounted in Marc André II solution; “paratype- ♀ 02 Coll. AS”; same collection data as for preceding; Coll. AS • 1 ♂, mounted in Marc André II solution; “paratype-♂1 MZB (MCNB) 2021-2339”; same collection data as for preceding; MZB (MCNB) 2021-2339 • 1 ♂, mounted in Marc André II solution; “paratype-♂02 Coll. AS”; same collection data as for preceding; Coll. AS. Other material Two specimens with the same data as the holotype were mounted on an aluminium stage and coated with palladium-gold. Description BODY. Length 3–3.9 mm (3–3.9 mm in females; 3.1 and 3.4 mm in males; 3.9 mm in holotype) (Figs 8–9). Epicuticle smooth under optical microscope on dorsal side of nota and legs, but, at high magnification, slightly reticulate with irregular polygonal structures of variable size (Figs 16–17). Body sparsely covered with short clothing setae bearing 0–3 tiny distal barbs. HEAD. Two apparently intact antennae with 27–28 antennomeres; antennae 0.28–0.29 × length of body, with medial antennomeres 1.1× as long as wide; apical antennomere 1.9 × as long as wide. Cupuliform organ with about eight plain paddle-shaped olfactory chemoreceptor sensilla, 7 µm long (Fig. 10). Distal and medial antennomeres with two whorls of barbed macrosetae and scattered smooth setae, plus 2–4 short thin gouge sensilla 8–9 µm long (Figs 11–12). Proximal antennomeres with typical trichobothria, plus small bacilliform sensillum 6–7 µm long on 3 rd antennomere in ventral position (Figs 13–14). Plain frontal process with one anterior and three posterior smooth setae; length ratios of a / p 53/ 23 in holotype. Four short, smooth macrosetae along each side of antennomere insertion line with length ratios of a / i1 and i2 / p 11/15/14/ 11 in holotype; no x setae observed (Fig. 15). Small subtrapezoidal labial palp with small subcylindrical latero-external sensillum; two guard setae, up to three simple setae on anterior border, and up to 35 neuroglandular setae, as well as short and coniform palpiform sensillum, in holotype. THORAX. Thoracic macrosetae distribution (Figs 16–18): pronotum and mesonotum with 1+1 ma, 1+1 la, 1+1 lp macrosetae; metanotum with 1+1 ma macrosetae. All macrosetae rather slender with short barbs along middle third; marginal setae similar to clothing setae (Fig. 17). Legs short, metathoracic legs reaching abdominal segment V, about 0.3 × length of body (Fig. 19). Large, deep joint between femur and tibia with longitudinal protrusion on inner side (Fig. 20). Femora I–III each with one middle-sized dorsal macroseta with few distal barbs, slightly longer than ventral macroseta. Calcars slightly thickened with long barbs on one side. Tibiae I‒III with one ventral macroseta with three or four distal barbs. Two rows of ventral barbed setae longer and thicker than clothing setae, with long thin barbs. Three smooth, distal dorsal tarsal setae longer than rest. Claws subequal, regularly curved, with tiny ventral and lateral microspines. Laminar lateral processes of pretarsus striated on dorsal side with ridges surpassing end of the apex, giving appearance of distal fringe, and with short barbs on ventral side (Figs 21–24). ABDOMEN. Distribution of abdominal macrosetae on tergites: 1+1 lp on urotergite III; 1+1 la, 2+2 lp on urotergites IV–VIII; 3+3 lp on abdominal segment IX; 5+5 macrosetae on abdominal segment X; all macrosetae long, with thin barbs along distal half. Urosternite I apparently with 5+5 macrosetae (Figs 25–26); urosternites II–VII with 3+3 macrosetae; urosternite VIII with 1+1 macrosetae; longsized urosternal macrosetae with few distal barbs. Stylus with apical seta with two long basal teeth, subapical seta and ventromedial seta, each bearing a row of barbs along distal half, more abundant on ventromedial setae. CERCI. 0.71 × length of body (on a cercus apparently intact in the holotype), with basal article divided into four secondary articles plus 11 primary articles; each primary article with central constriction bearing whorl of long macrosetae with thin barbs on distal part and one or two whorls of thin smooth setae; each primary article ending in whorl of thin setae, including apical article. SECONDARY SEX CHARACTERS. Female urosternite I with short subcylindrical appendages, each bearing up to 11–13 glandular a 1 setae in distal field (Fig. 27). Male urosternite I with elongated subtrapezoidal appendages, each bearing up to 8 glandular a 1 setae in distal field and larger posterior field with up to 70 glandular a2 setae; posterior edge of first urosternite with field of up to 44 glandular g1 setae arranged in two rows (Fig. 25). Type locality Kyrgyzstan, Kadamjay District, Batken Region, Ak-Turpak Cave, gypsum cave located south of Ak-Turpak village; 40º10′35.18″ N, 71º03′45.36″ E. Habitat The specimens were observed only in the deep zone of Ak-Turpak Cave, located near the western margin of the Kadamjay District, Batken Province, Kyrgyzstan, which is located about 2.5 km south of the village of Ak-Turpak (northwestern part of Alai Mts.). The name of the locality means ʻwhite landʼ in the local Turkish dialect and reflects the prevalence of the whitish, pinkish, or reddish clayey ground surface. Its entrance is located about 400 m from the right bank of the river Sokh (Kozheshken) (Fig. 2), approximately 40–50 m a.s.l. The Sokh River divides the northern macroslopes of the Turkestan Mt Range and Alai (or Alay) Mt System. This area can also be considered as the southern edge of the Fergana Depression. The cave entrance is surrounded by a hilly relief, without any tops above 1000 m a.s.l. in a one-kilometre-neighbourhood. The landscape surrounding the Kyzyl-Unkuyr Cave is quite dry (Figs 2−3), with only sparse shrubby vegetation typical of rocky outcrops, where the soil is extremely shallow when present. On the other hand, the Sokh River floodplain, located quite close to the cave, is moist although it is currently very altered due to the presence of crops and small villages. However, suitable habitats for soil invertebrates certainly occur along this floodplain. It is worth mentioning that although Kyrgyzstancampa sanare Sendra & Ferreira gen. et sp. nov. was found in a cave, it does not show any troglomorphic morphological characters. Thus, it is likely that the species is not troglobitic, although further sampling in the external area surrounding the cave (especially along the floodplain of the Sokh River) is needed to confirm this hypothesis. The Ak-Turpak cave has a single entrance, where a metallic structure was installed to safeguard and protect the cave’s entrance (Figs 3−4). From the entrance inwards, stairs were built to facilitate access for visitors. The cave gallery is comparatively simple and oriented east-northeast, with 137 m of linear extension and about 40 m deep (Gvozdetskij 1981; Dudashvili & Mikhailyov 1990). The area of the cave was estimated to be 2400 m 2 and the volume is 8393 m 3 (Mamatkulov 1978). The cave is situated in a gypsum stratum (Gvozdetskij 1981) in the trough zone, where karstified rocks are represented by gypsum, marls, marlstones, limestones, and dolomites of Cretaceous and Paleogene ages (Beloglazova & Smirnova 1987; Sultanov 1972). The origin of all karst forms in Southern Fergana is related to tectonic faults and sedimentary breccias, and they often developed as a result of repeated and sometimes overlapping karst processes (Sultanov 1972). In the upper part of the cave conduit, there is a noticeable proportion of soft marl that is somewhat dilapidated (during the last 5–10 years, this part of the gallery was equipped with a cement staircase and the walls were partly reinforced with rubble masonry panels to reduce dust and for balneological and recreational use). In the deeper parts of the gallery, the cave vaults are formed by fine-crystalline selenite (calcium sulphate dihydrate CaSO4•2H2O) of several, sometimes contrasting, colour shades. The north side of the cave is preferentially formed by argillite. The atmosphere of the Ak-Turpak cave is rather dry and there are no traces of thermokarst processes (Dudashvili & Mikhailyov 1990); however, the cave vaults are somewhat crumbled after recent earthquakes. Over the last decades, local residents (≈ 100–330 per year) have used the cave for therapeutic purposes (respiratory treatments: asthma, bronchitis, etc.) as word of mouth on the cave’s ʻhealing propertiesʼ has spread among them. Hence, one can see, especially in the entrance, small platforms and mattresses (Fig. 5). Visitors mostly use the entrance area, but stairs have also been installed deep inside the cave (Fig. 6), in which some mattresses were observed, indicating that the entire cave has been used for therapeutic purposes. Specimens of Kyrgyzstancampa sanare Sendra & Ferreira gen. et sp. nov. were only found in the last chamber of the cave, and always associated with old bat guano (Fig. 7). Several individuals were observed amidst the guano (Figs 8−9), rapidly escaping when disturbed. In these cases, they tended to enter the small spaces between the chitin fragments observed in the pile, so it was difficult to capture specimens without injuring them. The only organic resource observed inside the cave was bat guano from species of Rhinolophus Lacépède, 1799 (horseshoe bats) and a few organic materials left by visitors (such as cardboard pieces and wood). The cave is not well preserved as many accesses were built, thus deeply altering the pristine substrates. However, considering the lack of troglomorphic traits in the species (indicating that the cave is not its unique habitat) and given that apparently few visitors access the deeper parts of the cave, the species does not appear to be threatened. Phyletic affinities Kyrgyzstancampa Sendra & Ferreira gen. nov. has similarities with several species of the paraphyletic genus Eutrichocampa Silvestri, 1902. In his diagnosis of Eutrichocampa, the tarsus ends abruptly instead of being acuminate towards the apex, which he considered to be a feature differentiating Eutrichocampa and Campodea (Silvestri 1902). For more than a century, several authors have been adding species to this genus, such as Wygodzinsky (1941, 1943), Condé (1947, 1994), Ionsecu (1955), Loksa (1960), García-Gómez (2016) and also Silvestri (1931a, 1932a, 1932b, 1933a), resulting in the current fifteen species of Eutrichocampa (Sendra et al. 2021). These species were described from localities scattered in the Americas, Africa, Asia, and Europe. In all of these contributions, the entire pretarsus shape is referred to as the differential character for Eutrichocampa: regularly curved claws with laminar or subcylindrical lateral processes with abundant barbs. Since Wygodzinsky (1941), Eutrichocampa has been considered a heterogeneous genus showing a wide variation in macrosetal patterns on the thorax and abdomen, including the presence or absence of dorsal macrosetae on the femora. In spite of the effort made by Condé (1956) to keep Eutrichocampa as a homogeneous taxon, several authors (including Condé himself) have tried to arrange it into several genera and subgenera (Paclt 1957), proposing other genera with the same pretarsus trait and thoracic macrosetae of the Campodea pattern; for instance, Parallocampa Silvestri, 1933b with eleven species from North America, and Remycampa Condé, 1952, with two species from northwest Africa and the Canary Islands, and four monotypic genera: Allocampa Silvestri, 1931b from Cuba; Edriocampa Silvestri, 1933a from the South Aegean islands and Anatolian Peninsula; Libanocampa Condé, 1955 from Lebanon and Anatolia; and Pseudolibanocampa Xie & Yang, 1991 from Guangdong and Yunnan in China. In 1957, Paclt proposed an artificial arrangement of Eutrichocampa by dividing it into four subgenera and the genus Leniwytsmania Paclt, 1957 for two species, both from China: L. orientalis (Silvestri, 1931a) and L. helvetica (Wygodzinsky, 1941). Our proposal of Kyrgyzstancampa Sendra & Ferreira gen. nov. is another effort to unravel the diversity within the subfamily Campodeinae, in which this new genus can be included. Several characters define Kyrgyzstancampa Sendra & Ferreira gen. nov., such as the pretarsus with a regularly curved claw with tiny ventral and lateral microspines; the laminar lateral processes, striated on the dorsal side with short barbs on the ventral side (Figs 21–24); a unique femur-tibia joint; the macroseta pattern on the nota: 3+3 ma, la, lp macrosetae on the pronotum and metanotum, 2+2 ma, lp on the metanotum plus one dorsal femoral macroseta; and 1+1 la and 2+2 lp on urotergites IV–VIII. Other notable features are the sparse clothing setae on the body, the plain paddle-shaped sensilla on the cupuliform organ, and the secondary sexual characters on the first urosternite. This combination of characters delineates Kyrgyzstancampa Sendra & Ferreira gen. nov. from other genera of Campodeinae and all species of Eutrichocampa. The closest species to K. sanare Sendra & Ferreira gen. et sp. nov. seems to be Eutrichocampa birabei Wygodzinsky, 1943, described from San Antonio de Arredondo, Córdoba in Argentina. Both share the shape of the pretarsus, the distribution of macrosetae on the nota and urotergites, and a dorsal macroseta on the femora. However, K. sanare Sendra & Ferreira gen. et sp. nov. and E. birabei differ in the number of urotergal macrosetae and in the secondary sexual characters of the first urosternite. Furthermore, reuniting both species in Kyrgyzstancampa Sendra & Ferreira gen. nov. would be a far-fetched approach, and new material on the South American species will be necessary to provide a more accurate description.
- Published
- 2021
- Full Text
- View/download PDF
45. Plusiocampa (Plusiocampa) imereti Sendra & Barjadze 2021, sp. nov
- Author
-
Sendra, Alberto, Palero, Ferran, Sánchez-García, Alba, Jiménez-Valverde, Alberto, Selfa, Jesús, Maghradze, Eter, and Barjadze, Shalva
- Subjects
Campodeidae ,Arthropoda ,Plusiocampa ,Animalia ,Entognatha ,Diplura ,Biodiversity ,Taxonomy ,Plusiocampa imereti - Abstract
Plusiocampa (Plusiocampa) imereti Sendra & Barjadze sp. nov. urn:lsid:zoobank.org:act: 40C3DB96-19CD-4354-ACA9-434F0ADA34BB Figs 2���12 Diagnosis Troglomorphic species. Antennae with 39���45 antennomeres; 12 complex olfactory chemoreceptors within cupuliform organ; non-protruding frontal process slightly protruding, plain, with non-tubercular setae or just slightly tubercular. Pronotum 1+1 ma, 2+2 la 1,2 , 2+2 lp 2,3 ; mesonotum with 1+1 ma, 3+3 la 1���3 , 2+2 lp 2,3 , 1+1 mp; metanotum with 1+1 ma, 2+2 la 1,2 or sla 1,2 , 1+1 lp 2 , 1+1 mp; thin; all notal macrosetae long and covered by thin barbs on half to distal portions; thin, middle-sized clothing setae covered by 0���4 thin distal barbs. Legs elongated, pretarsus of metathoracic legs slightly overpasses end of abdomen. Femora I���III with one long, barbed dorsal macroseta and one shorter, barbed ventral macroseta. Tibiae I���III with two short barbed ventral macrosetae. Claws unequal (posterior claw 1.3 �� as long as anterior one); large, backward overhang on posterior claw; lateral crests well-developed. Pretarsal process long and setiform. Urotergites 1+1 post 1 on I���II; 0+0, 0+1 or 1+1 la, 1+1 or 2+2 post 1,2 on III; 1+1 la 3 , 2+2 to 4+4 post 1���4 on IV; 2+2 la 2,3 , 4+4 post 1���4 on V���VII; 6+6 post 1���6 on VIII and 8+8 or 8+7 post 1���8 on abdominal IX. Urosternite I with 8+8���7+7 macrosetae (Figs 8���9); urosternites II���VII with 6+6 macrosetae; urosternite VIII with 2+2 macrosetae. Male urosternite I (Fig. 8) with slightly enlarged subcylindrical appendages, each bearing up to 21 glandular a 1 setae. Female appendages slightly thinner, with up to 11 glandular a 1 setae. Etymology The specific epithet refers to the Imereti region, the location of the Shvilobisa Cave, treated as a noun in apposition. Type material Holotype GEORGIA ��� ♀, ���holotype-♀ IZISU-TD-T-00001���; Shvilobisa Cave, Bunikauri village, Chiatura Municipality, Imereti region, Zemo Imereti Plateau; 42��19���31.44��� N, 43��16���4.33��� E; 24 Feb. 2018; Shalva Barjadze and Eter Maghradze leg.; IZISU-TD-T-00001. Paratypes GEORGIA ��� 1 ♂, ���paratype-♂1 IZISU-TD-T-00002���; same collection data as for holotype; IZISU- TD-T-00002 ��� 1 ♀, ���paratype-♀1 MZB (MCNB) 2021-2336���; same locality as for holotype; 20 Jul. 2020; Eter Maghradze leg.; MZB (MCNB) 2021-2336 ��� 1 ♀, ���paratype-♀2 MZB (MCNB) 2021-2337���; same collection data as for preceding; MZB (MCNB) 2021-2337 ��� 1 ♂, ���paratype-♂2 Coll AS���; same collection data as for preceding; Coll AS. Other material GEORGIA ��� 2 specs, unknown sex [for SEM photography and one specimen for DNA analysis]; Shvilobisa Cave; 24 Feb. 2018; Shalva Barjadze and Eter Maghradze leg. ��� 2 specs [for SEM photography and one for DNA analysis]; same collection data as for preceding; 20 Jul. 2020; Eter Maghradze leg. Other material from two other caves (all Coll AS) GEORGIA ��� 1 ♀; Kumistavi village Tskaltubo Municipality, Imereti Region, Sataplia-Tskaltubo karst massif, Datvis (Bear) Cave; 42��22���28������ N, 42��35���45��� E; 5 Jul. 2018; Eter Maghradze leg. ��� 1 ♀; same collection data as for preceding; 1 Sept. 2019 ��� 1 ♂; near Melouri village, Tskaltubo Municipality, Imereti Region, Sataplia-Tskaltubo karst massif, Melouri Cave; 42��23���15.1��� N, 42��37���41.5��� E; 1 Nov. 2018; Eter Maghradze leg. Description BODY. Body length 4.3���7.2 mm (females) and 4.9���5.2 mm (males) (Table 1). Epicuticle smooth under optical microscope and SEM; body with thin, middle-sized clothing setae covered by 0���4 thin distal barbs. HEAD. Three intact antennae, all slightly longer than body length, with 39���45 antennomeres (Table 1). Small, thin, subcylindrical sensillum on third antennomere located in ventral position between c and d macrosetae. Central antennomeres 2.1 �� as long as wide, apical antennomere 3.0 �� as long as wide. Cupuliform organ occupying ⅓ of total length of apical antennomere, with about 12 complex olfactory chemoreceptors. Each olfactory chemoreceptor is composed of a complete fold surrounding a central cylinder with two lateral expansions, entirely reticulated and perforated (Fig. 5). Gouge sensilla 30��� 40 ��m long, in a single distal whorl of 13���16 sensilla on each medial and distal antennomere. Frontal process slightly protruding, plain, with non-tubercular setae or just slightly tubercular on distal portion (Fig. 3); macrosetae along the insertion line of antennomere and i macrosetae and x setae longer than other macrosetae (a / i / p/ x with relative lengths of 25 / 36 / 19 / 37 in holotype). Suboval labial palps with a bacilliform latero-external sensillum, two guard setae, up to 7 setae on anterior border, and up to 130 neuroglandular setae in holotype. THORAX. Thoracic macrosetal distribution (Figs 2, 4, 6): pronotum with 1+1 ma, 2+2 la 1���2 , 2+2 lp 2,3 ; mesonotum with 1+1 ma, 3+3 la 1���3 , 2+2 lp 2,3 , 1+1 mp; metanotum with 1+1 ma, 2+2 la 1,2 or sla 1,2 , 1+1 lp 2 , 1+1 mp. All notal macrosetae are long and covered by thin barbs on half to distal portions (Figs 4, 6); submacrosetae sla are thinner and shorter than notal macrosetae; marginal setae are similar to clothing setae, and covered by 1���8 thin distal barbs. Legs elongated, pretarsus of metathoracic legs slightly overpasses end of abdomen (Table 1). Femora I���III with one long, barbed dorsal macroseta and one shorter, barbed ventral macroseta. Tibiae I���III with two short barbed ventral macrosetae. Calcars with 4���5 long barbs. Tarsi with two rows of thicker ventral setae with 2���3 very thin barbs on middle portion. Two dorsal and one ventral, smooth, subapical tarsal setae. Claws are unequal (posterior claw 1.3 �� as long as anterior one); large, backward overhang on posterior claw; lateral crests well-developed. Pretarsal process long and setiform, overpassing end of claws. ABDOMEN. Distribution of abdominal macrosetae on tergites (Fig. 7): 1+1 post 1 on I���II; 0+0, 0+1 or 1+1 la, 1+1 or 2+2 post 1,2 on III; 1+1 la 3 , 2+2 to 4+4 post 1���4 on IV; 2+2 la 2,3 , 4+4 post 1���4 on V���VII; 6+6 post 1���6 on VIII and 8+8 or 8+7 post 1���8 on abdominal segment IX. All post urotergal macrosetae long and covered by thin barbs along distal four-fifths (Fig. 10); la urotergal macrosetae shorter than post macrosetae, covered by barbs along distal half. Urosternite I with 8+8���7+7 macrosetae (Figs 8���9); urosternites II���VII with 6+6 macrosetae; urosternite VIII with 2+2 macrosetae (Fig. 12); all urosternal macrosetae robust and large, covered by long barbs along distal third to four-fifths. Apical, subapical and ventromedial setae with a few (two to four) thin, short and long barbs (Fig. 11). SECONDARY SEX CHARACTERS. Male urosternite I (Fig. 8) with slightly enlarged subcylindrical appendages, each bearing up to 21 glandular a1 setae. Female appendages slightly thinner, with up to 11 glandular a 1 setae. Spermatozoid fascicles 40 ��m in diameter without apparently spiral filament. Molecular analysis The nucleotide substitution model selected was GTR+G+I (BIC = 6998.6), with the proportion of invariant sites (I = 0.46) and estimated alpha parameter for the gamma distribution (�� = 1.39), indicating a significant heterogeneity in the DNA substitution among sites. The Campodeidae sequences formed a well-supported clade, clearly distinct from that of Japygidae (Fig. 13). Although bootstrap values were low, the ML phylogenetic tree grouped Plusiocampa (P.) imereti Sendra & Barjadze sp. nov. with Eastern Europe taxa such as Plusiocampa (Plusiocampa) aff. elongata Ionescu, 1955 and Plusiocampa (Plusiocampa) humicola Ionescu, 1955, whereas Iberian Peninsula taxa (Plusiocampa (Plusiocampa) gadorensis Sendra, 2001, Plusiocampa (Plusiocampa) baetica Sendra, 2004 and Cestocampa iberica Sendra & Cond��, 2012) clustered in a distinct clade. K2P genetic distances also showed P. (P.) aff. elongata (0.206�� 0.027) and P. (P.) humicola (0.205 �� 0.028) to be the closest species to the new Plusiocampa (P.) imereti Sendra & Barjadze sp. nov. from Georgia. Habitat Plusiocampa (Plusiocampa) imereti Sendra & Barjadze sp. nov. inhabits the deep zone (over 50 m from the entrance) of three caves. The Shvilobisa Cave, the type locality, is a 1000 m long, tunnellike, easily accessible sub-horizontal cave with a small subterranean water stream (Tatashidze et al. 2009b). The others two nearby caves are about 55 km away from the Shvilobisa Cave; the Melouri Cave is 5300 meters long and has the status of natural monument (Tatashidze et al. 2009b), whereas the Datvis Cave is a poorly known cavern (K. Tsikarishvili, pers. comm.). The distance between the Datvis and Melouri caves is ca 3.5 km. The Melouri Cave ��� easily accessible ��� has dried halls and a permanent subterranean water stream near its end. This cave has gigantic stalagmites and fallen stones. The Datvis Cave is a horizontal, dry, and easily accessible cave with several halls, which are rich in different speleothems like the Shvilobisa Cave (Tatashidze et al. 2009b). Invertebrate cavernicolous species of the studied caves The three caves (Shvilobisa, Datvis, and Melouri) which Plusiocampa (Plusiocampa) imereti Sendra & Barjadze sp. nov. inhabits are also the dwellings of other troglobitic arthropod species. Datvis and Melouri caves share three troglobitic species: the Diplopoda Leucogeorgia prometheus Antić & Reip, 2020, the Isopoda Colchidoniscus kutaissianus Borutzky, 1974, and the Pseudoscorpionida Chthonius satapliaensis Schawaller & Dashdamirov, 1988. In addition, the Insecta (Carabidae Coleoptera) Troglocimmerites imereti Dolzhanski & Ljovuschkin, 1985 dwells in the Datvis cave; and the Melouri Cave has five more species: the Opiliones Nemaspela melouri Martens, Maghradze & Barjadze, 2021, the Araneae Centromerus bulgarianus Drensky, 1931, the Hexapoda Collembola Pseudacherontides zenkevitchi Djanashvili, 1971; the Insecta (Carabidae Coleoptera) Inotrechus kurnakovi Dolzhanski & Ljovuschkin, 1989; and Troglocimmerites sp. 1. In the Shvilobisa Cave, eight troglobitic species dwell: the Diplopoda Leucogeorgia gioi Antić & Reip, 2020, the Isopoda Caucasonethes cf. borutzkyi Verhoeff, 1932 and Colchidoniscus sp., the Pseudoscorpionida Chthonius satapliaensis Schawaller & Dashdamirov, 1988, the Opiliones Nemaspela sp., the Hexapoda Collembola Oncopodura sp. and Pseudosinella sp., and the Insecta (Carabidae Coleoptera) Troglocimmerites sp. 2. (Barjadze et al. 2019; Maghradze et al. 2019; Antić & Reip 2020; Martens et al. 2021; Maghradze & Barjadze, unpublished data)., Published as part of Sendra, Alberto, Palero, Ferran, S��nchez-Garc��a, Alba, Jim��nez-Valverde, Alberto, Selfa, Jes��s, Maghradze, Eter & Barjadze, Shalva, 2021, A new Diplura species from Georgia caves, Plusiocampa (Plusiocampa) imereti (Diplura, Campodeidae), with morphological and molecular data, pp. 71-85 in European Journal of Taxonomy 778 on pages 74-79, DOI: 10.5852/ejt.2021.778.1567, http://zenodo.org/record/5675209, {"references":["Ionescu M. A. 1955. Diplura. In: Academia Republicii Socialiste Romania (ed.) Fauna Republicii Populare Romane, Insecta 7 (2): 1 - 48.","Sendra A., Lara M. D., Ruiz Aviles F. & Tinaut A. 2004. Une nouvelle espece du genre Plusiocampa Silvestri, 1912 (Diplura, Campodeidae) et donnees pour sa reconstruction paleobiogeographique dans les Betiques. Subterranean Biology 2: 113 - 122.","Tatashidze Z. K., Tsikarishvili K. D. & Jishkariani J. M. 2009 b. The Cadastre of the Karst Caves of Georgia. Petiti Publishing House, Tbilisi [in Georgian].","Antic D. Z & Reip H. R. 2020. The millipede genus Leucogeorgia Verhoeff, 1930 in the Caucasus, with descriptions of eleven new species, erection of a new monotypic genus and notes on the tribe Leucogeorgiini (Diplopoda: Julida: Julidae). European Journal of Taxonomy 713: 1 - 106. https: // doi. org / 10.5852 / ejt. 2020.713","Martens J., Maghradze E. & Barjadze Sh. 2021. Two new species of the genus Nemaspela Silhavy from caves in Georgia (Opiliones: Nemastomatidae). Zootaxa 4951 (3): 541 - 558. https: // doi. org / 10.11646 / zootaxa. 4951.3.7","Barjadze Sh., Arabuli T., Mumladze L., Maghradze E., Asanidze Z. & Shavadze R. 2019. Cave Biodiversity of Georgia, Open Access Database. Institute of Zoology at Ilia State University. Available from https: // cbg. iliauni. edu. ge / en / [accessed: 20 Apr. 2021].","Maghradze E., Faille A., Barjadze Sh. & Hlavac P. 2019. A new cavernicolous species of the genus Bergrothia Reitter, 1884 (Coleoptera, Staphylinidae, Pselaphinae) from Georgia. Zootaxa 4608 (2): 371 - 379. https: // doi. org / 10.11646 / zootaxa. 4608.2.11"]}
- Published
- 2021
- Full Text
- View/download PDF
46. Campodeidae (Hexapoda: Diplura) from Kyrgyzstan, Central Asia, with the description of a remarkable new genus and species
- Author
-
Sendra, Alberto, primary, Sánchez-García, Alba, additional, Selfa, Jesús, additional, Milko, Dmitry A., additional, and Ferreira, Rodrigo Lopes, additional
- Published
- 2021
- Full Text
- View/download PDF
47. A new Diplura species from Georgia caves, Plusiocampa (Plusiocampa) imereti (Diplura, Campodeidae), with morphological and molecular data
- Author
-
Sendra, Alberto, primary, Palero, Ferran, additional, Sánchez-García, Alba, additional, Jiménez-Valverde, Alberto, additional, Selfa, Jesús, additional, Maghradze, Eter, additional, and Barjadze, Shalva, additional
- Published
- 2021
- Full Text
- View/download PDF
48. Pacificampa Chevrizov 1978
- Author
-
Sendra, Alberto, Komerički, Ana, Lips, Josiane, Luan, Yunxia, Selfa, Jesús, and Jiménez-Valverde, Alberto
- Subjects
Pacificampa ,Campodeidae ,Arthropoda ,Animalia ,Entognatha ,Diplura ,Biodiversity ,Taxonomy - Abstract
Genus Pacificampa Chevrizov, 1978 Diagnosis (based on Chevrizov 1978) Thoracic macrosetae with no more than 3+3 macrosetae on pronotum, 4+4 on mesonotum (2+2 lateral posterior included), and 2+2 on metanotum (1+1 lateral posterior included). One dorsal macroseta on metathoracic femora and one or two on tibia. Subequal elbowed claws with ridges on dorsal side that look like very small lateral crests under optical microscope; without lateral processes. Urotergites V– VII with no more than 1+1 medial posterior, 1+1 lateral anterior and 2+2 lateral posterior macrosetae and on urotergite VIII with no more than 1+1 medial posterior and 3+3 lateral macrosetae. Up to 7+7 macrosetae on first urosternite, 5+5 macrosetae on second to seventh urosternites, and 1+1 macrosetae on eighth urosternite. First urosternite in males with thick appendages with large field of glandular a1 setae., Published as part of Sendra, Alberto, Komerički, Ana, Lips, Josiane, Luan, Yunxia, Selfa, Jesús & Jiménez-Valverde, Alberto, 2021, Asian cave-adapted diplurans, with the description of two new genera and four new species (Arthropoda, Hexapoda, Entognatha), pp. 1-46 in European Journal of Taxonomy 731 on page 22, DOI: 10.5852/ejt.2021.731.1199, http://zenodo.org/record/4422557, {"references":["Chevrizov B. P. 1978. Two new genera of the Family Campodeidae from the Far East Caves. Zoologichesky Zhurnal 57 (2): 197 ‾ 205."]}
- Published
- 2021
- Full Text
- View/download PDF
49. Pacificampa wudonghuii Sendra & Komerički & Lips & Luan & Selfa & Jiménez-Valverde 2021, sp. nov
- Author
-
Sendra, Alberto, Komerički, Ana, Lips, Josiane, Luan, Yunxia, Selfa, Jesús, and Jiménez-Valverde, Alberto
- Subjects
Pacificampa ,Pacificampa wudonghuii ,Campodeidae ,Arthropoda ,Animalia ,Entognatha ,Diplura ,Biodiversity ,Taxonomy - Abstract
Pacificampa wudonghuii Sendra sp. nov. urn:lsid:zoobank.org:act: 447EE93A-F466-4C66-827A-0751A259070F Figs 51–64 Etymology This species is dedicated to Professor Wu Donghui, from the Northeast Institute of Geography and Agroecology (NEIGAE), Chinese Academy of Sciences, Changchun (China), for his enthusiastic contribution and support to the knowledge of Northern China soil and cave biodiversity. Type material Holotype CHINA • ♀; Liaoning Province, Benxi, Huanren, Xianren Dong; 17 May 2019, L. Deharveng, A. Bedos and Wu Donghui leg.; labelled “CHILN19-005-holotype”; NEIGA-diplura-01. Paratypes CHINA • 1 ♀, 1 juvenile, same collection data as for holotype; labelled “CHILN19-005-female paratype”; MZB (MCNB) 2020-1160 • 1 juvenile; same collection data as for preceding; labelled “CHILN19- 005-juvenile paratype”; MZB (MCNB) 2020-1161 • 1 ♀; Liaoning Province, Benxi, Huanren, Pylon cave; 17 May 2019; L. Deharveng, A. Bedos and Wu Donghui leg.; labelled “CHILN19-007-female paratype”; MZB (MCNB) 2020-1164. Other material examined CHINA • 1 ♂, same collection data as for holotype; mounted on an aluminium stage and coated with palladium-gold; Coll. AS. Description BODY. Length 6.5–6.9 mm in females; 3.9 mm in one juvenile. Epicuticle smooth under optical microscope but well reticulated under high magnifications as one can see irregular polygonal structures of variable sizes with scattered external glands either visible or covered with secretion (Figs 51, 53); body with smooth clothing setae. HEAD. Antennae broken in all specimens; central antennomeres with two whorls of distal barbed macrosetae and uneven short setae; in addition, with single distal whorl of up to 8–12 gouge sensilla of 22–29 µm long (Fig. 51) and among them one or two small coniform sensilla (5 µm long). Proximal antennomeres with typical trichobothria disposition with bacilliform sensillum (9–10 µm long) on third antennomere in ventral position, between c–d macrosetae (Fig. 52). Plain frontal process with one anterior macrosetae, longer than clothing setae. Three macrosetae along each side of insertion line of antennomere and x setae with length ratios of a / i / p / x, 42/55/42/45, respectively, in holotype (Fig. 54). Large suboval labial palps, each with enlarged coniform latero-external sensillum near two gard setae and eight normal setae on anterior portion, up to 150 neuroglandular setae in medial and posterior positions. THORAX. Thoracic macrosetae distribution: pronotum has 1+1 ma, 1+1 la, 1+1 lp macrosetae; mesonotum has 1+1 ma, 1+1 la and 2+2 lp macrosetae; and metanotum has 1+1 ma and 1+1 lp macrosetae. Long macrosetae with long barbs in distal three-fourths; marginal setae longer than clothing setae, which are barbed from distal half to three-fourths. Legs elongated, metathoracic legs reach posterior border of seventh abdominal segment. Mesothoracic and metathoracic femora have one dorsal macroseta each, barbed along distal three-fourths (Fig. 55), absent in prothoracic femora. Calcars with two or three long barbs in middle (Fig. 56). Prothoracic and mesothoracic tibia with one short ventral macrosetae with one apical barb and two in metathoracic tibia (Fig. 57). Each tarsus with two separated ventral rows of thicker and longer setae among clothing setae, and a few setiform sensilla (Fig. 58). Three long smooth dorsal tarsal and one ventral setae. Subequal elbowed claws with smooth ventral surface ridged on dorsal side that can be mistaken for lateral crests under optical microscopes, between a blunt unguiculus and without lateral processes (Figs 59–60). ABDOMEN. Distribution of abdominal macrosetae on tergites (Fig. 61 shows 1+1 ma on III in the paratype from Grotte du Pylone, but absent in Xianren Dong Cave types; 1+1 ma, 1+1 la and 2+2 lp on IV–VII; 1+1 mp and 3+3 lp on VIII and 1+1 mp and 5+5 lp on IX abdominal; ma and la macrosetae with barbs in distal half to one third and shorter than mp and lp macrosetae, which bear long barbs along distal four-fifths. Urosternite I with 7+7 macrosetae (Fig. 62); urosternites II to VII with 4+4 macrosetae (Fig. 63); urosternite VIII with 1+1 macrosetae (Fig. 64); urosternal macrosetae of varying lengths, with one apical to twenty distal long barbs. Stylus setae smooth, apical and subapical setae shorter than ventromedial seta (Fig. 63). SECONDARY SEX CHARACTERS. Female urosternite I with subcylindrical appendages, each bearing up to 40 glandular a 1 setae in apical field. Male urosternite I with thick short, and subcylindrical appendages, each with large apical field of about 220 glandular a 1 setae (Fig. 62). Taxonomic affinities Pacificampa wudonghuii sp. nov. shares with P. birsteini Chevrizov, 1978, P. caesa Chevrizov, 1978 and P. nipponica Sendra, 2018 the same distribution of notal macrosetae (1+1 medial anterior, 1+1 lateral anterior, and 1+1 lateral posterior macrosetae on pronotum; 1+1 medial anterior, 1+1 lateral anterior, and 2+2 lateral posterior macrosetae on mesonotum; and 1+1 medial anterior and 1+1 lateral anterior macrosetae on metanotum). An undescribed species mentioned by Ferguson (1997) from northeastern China also has this setal distribution. However, P. wudonghuii sp. nov. differs from other species of Pacificampa in having 1+1 medial anterior, 1+1 lateral anterior, and 2+2 lateral posterior macrosetae on the fourth urotergite (Fig. 61), a pattern distribution that begins on the fifth urotergite for the other species. In addition, the larger male appendages have more abundant glandular a 1 setae in P. wudonghuii sp. nov. (Fig. 62) than in the other species of Pacificampa.
- Published
- 2021
- Full Text
- View/download PDF
50. Anisuracampa ywangana Sendra & Komericki 2021, sp. nov
- Author
-
Sendra, Alberto, Komerički, Ana, Lips, Josiane, Luan, Yunxia, Selfa, Jesús, and Jiménez-Valverde, Alberto
- Subjects
Campodeidae ,Arthropoda ,Animalia ,Entognatha ,Diplura ,Biodiversity ,Anisuracampa ,Anisuracampa ywangana ,Taxonomy - Abstract
Anisuracampa ywangana Sendra & Komerički sp. nov. urn:lsid:zoobank.org:act: 511F81B5-6CB2-4A98-AB3E-11AF72205A26 Figs 1, 3–19; Tables 1–2; Supp. file 2 Etymology This species is named after the important karst region Ywangan in Myanmar, the location of Win Twin Cave (Figs 1, 3–4). Type material Holotype MYANMAR • ♀; Shan State, Ywangan, Win Twin Cave; 21º11′51.47″ N, 96º32′40.34″ E; 16 Nov. 2018; Aung Lin leg.; labelled “holotype”; MZB (MCNB) 2020-1152. Paratypes MYANMAR • 1 ♀; same collection data as for holotype; labelled “paratype-H1”; MZB (MCNB) 2020- 0620 • 1 ♀, 1 ♂, 1 juvenile; same collection data as for holotype; 8 May 2018; labelled “paratype-H2”, “paratype-M”, “paratype-J”; MZB (MCNB) 2020-1153, MZB (MCNB) 2020-1155, MZB (MCNB) 2020-1154. Other material examined MYANMAR • 2 specs; same collection data as for the holotype; 8 May 2018; mounted on two separate aluminium stages and coated with palladium-gold; Coll. AS. Description BODY. Length is 4.3–6.0 mm (n = 4) in adults and 2.6 mm in one juvenile (Table 1). The epicuticle is smooth under optical microscope but reticulated at higher magnification, showing irregular polygonal structures of variable sizes (Fig. 11). Body with long smooth clothing setae. HEAD. Two complete and intact antennae in holotype and paratype-M with 35 antennomeres each, whereas paratype-J (juvenile) has 38 antennomeres. The antennae are similar to length of body (Table 1), with medial antennomeres 2× as long as wide but apical antennomeres 1½ × as long as wide. Cupuliform organ with up to 17 spheroidal olfactory chemoreceptors arranged in two uneven concentric circles; each chemoreceptor forms a complex structure of multi–perforated folds with one distinguishing crown of fringes a surrounding central column. Each of these structures is inside a polygonal cell (Figs 5–6). Distal and central antennomeres with three whorls of distal barbed macrosetae and 5–6 scattered whorls of smooth setae in addition to single distal whorl of up to 14 gouge sensilla of 24–28 µm length (Figs 7–8) that are more abundant on dorsal side of antennomere. Proximal antennomeres with typical trichobothria, plus small bacilliform sensillum on third antennomere in ventral position. Round protrusion of frontal process covered with one anterior macroseta and two or three posterior macrosetae (Fig. 10). Three macrosetae along each side of insertion line of antennomere and x setae with thin distal barbs; length ratios of a / i / p / x, 45/57/56/65, respectively, in paratype-H2. Labial palps large and suboval, each with bacilliform latero-external sensillum, two guard setae, up to 18 normal setae and up to 140 neuroglandular setae. THORAX. Thoracic macrosetae distribution (Figs 9, 11) have pronotum with 1+1 ma, 1+1 la, 2+2 lp 2,3 macrosetae; mesonotum with 1+1 ma, 2+2 la and 4+4 lp 1–4 macrosetae; and metanotum with 1+1 ma, 2+2 la and 3+3 lp 1–3 macrosetae. All macrosetae long and with thin barbs along basal half to twothirds of each seta; marginal setae barbed and longer than clothing setae. Legs elongated, metathoracic legs reach end of abdomen in adults or overpass it in juvenile. Tibia always longer than femur or tarsus (Table 1). Each femur III with three or, less frequently, two long dorsal macrosetae with distal barbs (0.25 mm in 0.62 mm femur of paratype-H1) (femora I–II with one to three long dorsal macrosetae). Calcars covered with thin abundant barbs all over. Tibiae I–III usually with two short, completely barbed ventral macrosetae, occasionally just one. Each tibia with two rows of ventral barbed setae almost from base and scattered throughout with thin, long setiform sensilla. Three well-barbed dorsal distal tarsal setae longer than rest of tarsal setae. Subequal claws with lateral expansion in crest; basal and ventral portion of claws covered with short to long spiniform formations. Laminar pretarsus of lateral processes sharply curved with what apparently looks like thin fringes under optical microscope, but under SEM seen as narrow laminar expansions (Figs 12–15). ABDOMEN. Distribution of macrosetae on tergites with 1+1 post 1 on I–III; 1+1 post 1 to 3+3 post 1–3 on IV, 4+4 post 1–4 and 1+1 la on V, 5+5 post 1–5 or 6+6 post 1–6 and 1+1 la on VI–VII; 7+7 post on VIII; and 8+8 or 9+9 post macrosetae on IX abdominal segment. All tergal abdominal macrosetae long and barbed along distal half to four-fifths. Urosternite I has 7+7 macrosetae (Figs 16–17); while urosternites II to VII with 5+5 macrosetae; and urosternite VIII with 1+1 macrosetae; urosternal macrosetae of medium size and barbed along distal half. Stylus with short apical seta with small barbs, and each subapical seta completely covered with barbs and with short, barbed ventromedial seta (Figs 18–19). One intact cercus 2.4 × body length and with 14 primary articles (Table 2). Article length increases from proximal to distal articles; covered with long thin macrosetae, with distal barbs, and less abundant long, thin setae. Each primary article with whorl of shorter thin plumose setae at distal position. SECONDARY SEX CHARACTERS. Female urosternite I with enlarged subcylindrical appendages, each bearing up to 60 ventral glandular a 2 setae proximally and apical field of up to 28 glandular a 1 setae (Figs 16–17). Male with similar appendages with two fields of glandular setae (19 a 2 and 27 a 1) in one appendage of male paratype. Spermatozoid fascicles small, 0.04 mm in diameter, and formed by undistinguishable filament of spermatozoids in spiral. Taxonomic affinities Anisuracampa was proposed for a soil-dwelling species, Anisuracampa suoxiensis Xie & Yang, 1990 from Hunan Province in southeastern China. As a plusiocampine genus, Anisuracampa is characterized by the laminar pretarsus but with the lateral processes with long barbs and weakly developed lateral crests (Figs 12–15) (see Xie & Yang 1991: fig. 34). In addition to this trait, Anisuracampa has two or three dorsal femoral macrosetae and 1+1 macrosetae on the eighth urosternite. All of these characters are present in A. ywangana sp. nov., a cave-adapted species from the Win Twin Cave in eastern Myanmar. Therefore, these morphological similarities together with the congruent geographical distribution in Southeast Asia are considered sufficient reason to place this new species in Anisuracampa. However, A. ywangana sp. nov. differs from A. suoxiensis in several characters besides the traits related to adaptations to cave ecosystems. Anisuracampa ywangana sp. nov. has 4+4 lateral posterior macrosetae on the mesonotum (Fig. 9) (2+ 2 in A. suoxiensis), 3+3 lateral posterior and 2+2 lateral anterior macrosetae on the metanotum (2+2 lateral posterior and no lateral anterior macrosetae in A. suoxiensis) and 5+5 posterior and 1+1 lateral anterior macrosetae on urotergites V–VII (4+4 posterior and no lateral anterior macrosetae in A. suoxiensis). Regarding the new species’ cave-adapted features, it has a larger body and longer appendages at least double the size of those of A. suoxiensis, with 30–35 antennomeres in A. ywangana sp. nov. (24 in A. suoxiensis). It is impossible to compare other useful taxonomical characteristics mentioned in the description of A. ywangana sp. nov. with A. suoxiensis as the former was described using SEM, whereas the latter was described under optical observations with a brief diagnosis and the type material of A. suoxiensis is not available for study. Remarks Anisuracampa ywangana sp. nov. was observed and collected walking on the Win Twin cave floor and boulders, approximately 300 m from the entrance, and on the wet flowstone in a vast chamber (Figs 1–3; Supp. file 2). The Win Twin cave is located within a large karst area referred to as Ywangan karst, which is situated in the western part of the Shan plateau, approximately 10 km northeast of Ywangan Township and 15 km east of the Panlaung Pyadalin Wildlife Sanctuary. The cave has only been discovered recently and is currently under tourist development by the local community. It has not been fully surveyed and approximately only the first 400 m were explored during the collection of the type material. The cave itself is large, with numerous chambers, and its entrance was enlarged by mining (Fig. 4); after approximately 300 m into the main passage, it opens into a vast chamber filled with speleothems (Fig. 3), from which it again continues further by smaller, narrow passages opening into new chambers. At the bottom of the vast chamber, the oxygen level becomes too low for further exploration during the dry season (May), while by the end of the rainy season (November) it was possible to reach two further lower chambers before the oxygen level became too low. No active water flow was observed, but sparse remains of particular organic matter are present and the air temperature recorded in May 2018 was 20.0°C, while the sediment temperature was 19.6°C (unpublished data)., Published as part of Sendra, Alberto, Komerički, Ana, Lips, Josiane, Luan, Yunxia, Selfa, Jesús & Jiménez-Valverde, Alberto, 2021, Asian cave-adapted diplurans, with the description of two new genera and four new species (Arthropoda, Hexapoda, Entognatha), pp. 1-46 in European Journal of Taxonomy 731 on pages 4-9, DOI: 10.5852/ejt.2021.731.1199, http://zenodo.org/record/4422557, {"references":["Xie R. & Yang Y. 1991. Description of two new genera and three new species of Campodeidae in China (Diplura). Contribution Shanghai Institute of Entomology 10: 95 ‾ 102."]}
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.