17 results on '"Shaban R. M. Sayed"'
Search Results
2. A Comparative DFT Investigation of the Adsorption of Temozolomide Anticancer Drug over Beryllium Oxide and Boron Nitride Nanocarriers
- Author
-
Mahmoud A. A. Ibrahim, Al-Shimaa S. M. Rady, Peter A. Sidhom, Shaban R. M. Sayed, Khalid Elfaki Ibrahim, Ahmed M. Awad, Tamer Shoeib, and Lamiaa A. Mohamed
- Subjects
Chemistry ,QD1-999 - Published
- 2024
- Full Text
- View/download PDF
3. Synthesis and Characterization of Naproxen Intercalated Zinc Oxide Stacked Nanosheets for Enhanced Hepatoprotective Potential
- Author
-
Muhammad Saleem Mughal, Bilal Akram, Bilal Ahmad Khan, Tafail Akbar Mughal, Sulaiman Sulaiman, Omar H. Abd-Elkader, Shaban R. M. Sayed, Mahmoud A. A. Ibrahim, and Ahmed M. Sidky
- Subjects
Chemistry ,QD1-999 - Published
- 2024
- Full Text
- View/download PDF
4. Hole interactions of aerogen oxides with Lewis bases: an insight into σ-hole and lone-pair-hole interactions
- Author
-
Mahmoud A. A. Ibrahim, Mohammed N. I. Shehata, Hassan A. A. Abuelliel, Nayra A. M. Moussa, Shaban R. M. Sayed, Muhammad Naeem Ahmed, Mohamed K. Abd El-Rahman, Eslam Dabbish, and Tamer Shoeib
- Subjects
σ-hole interactions ,lone-pair-hole interactions ,symmetry-adapted perturbation theory analysis ,point-of-charge analysis ,aerogen oxides ,Science - Abstract
σ-Hole and lone-pair (lp)-hole interactions of aerogen oxides with Lewis bases (LB) were comparatively inspected in terms of quantum mechanics calculations. The ZOn ⋯ LB complexes (where Z = Kr and Xe, n = 1, 2, 3 and 4, and LB = NH3 and NCH) showed favourable negative interaction energies. The complexation features were explained in light of σ-hole and lp-hole interactions within optimum distances lower than the sum of the respective van der Waals radii. The emerging findings outlined that σ-hole interaction energies generally enhanced according to the following order: KrO4 ⋯ < KrO⋯ < KrO3⋯ < KrO2⋯LB and XeO4⋯ < XeO⋯ < XeO2⋯ < XeO3⋯LB complexes with values ranging from –2.23 to –12.84 kcal mol−1. Lp-hole interactions with values up to –5.91 kcal mol−1 were shown. Symmetry-adapted perturbation theory findings revealed the significant contributions of electrostatic forces accounting for 50–65% of the total attractive forces within most of the ZOn⋯LB complexes. The obtained observations would be useful for the understanding of hole interactions, particularly for the aerogen oxides, with application in supramolecular chemistry and crystal engineering.
- Published
- 2023
- Full Text
- View/download PDF
5. Potentiality of raloxifene loaded melittin functionalized lipidic nanovesicles against pancreatic cancer cells
- Author
-
Usama A. Fahmy, Shaimaa M. Badr-Eldin, Hibah M. Aldawsari, Nabil A. Alhakamy, Osama A. A. Ahmed, Mohamed F. Radwan, Basma G. Eid, Shaban R. M. Sayed, Gamal A. El Sherbiny, and Walaa Abualsunun
- Subjects
Liposomes ,ultrasonication ,PANC1 ,apoptosis ,membrane potential ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Pancreatic cancer (PC) frequency and incidence have grown rapidly in recent years. One of the most serious problems with PC is the existence of asymptotic manifestations, which frequently delays early detection, and until the diagnosis is established, tumor cells progress to the metastatic stage. Another significant concern with PC is the scarcity of well-defined pharmacotherapeutic drugs. The aim of this study was to develop an efficient nanocarrier system to augment the efficacy of raloxifene (RLX) against PC cells. As a result, the current investigation was carried out in order to give an effective treatment method, in which an optimum RLX loaded phospholipid-based vesicles with melittin (PL-MEL) was chosen using experimental design software, with particle size, zeta potential and entrapment efficiency % as dependent variables. Furthermore, anticancer activity against PANC1 cells was assessed. The optimized nanovesicle parameters were 172.5 nm for the measured size, zeta potential of –0.69 mV, and entrapment efficiency of 76.91% that were in good agreement with the expected ones. RLX-raw, plain formula, and optimized RLX-PL-MEL showed IC50 concentrations of 26.07 ± 0.98, 9.166 ± 0.34, and 1.24 ± 0.05 µg/mL, respectively. Furthermore, cell cycle analysis revealed that the nanovesicle was most effective in the G2-M phase, whereas Bax, and Bcl-2 estimates revealed that optimized RLX formula had the highest apoptotic activity among treatments investigated. However, as compared to RLX alone or plain formula alone, the optimized formula demonstrated higher expression of TNFα and Bax while a significant reduction of Bcl-2 and NF-κB expression was observed. mitochondrial membrane potential (MMP) analysis confirmed the apoptosis as well as the anticancer effect of the optimized formula. Thus, the present study results showed an improvement in the anti-PC effects of the RLX with phospholipid conjugated melittin, making it a novel treatment approach against PC.
- Published
- 2022
- Full Text
- View/download PDF
6. Timing of oomycete-specific fungicide application impacts the efficacy against fruit rot disease in arecanut
- Author
-
Patil Balanagouda, Sandip Shil, Shankarappa Sridhara, R. Thava Prakasa Pandian, Shivaji Hausrao Thube, Vinayaka Hegde, Shaban R. M. Sayed, Rayan Casini, and Hanumappa Narayanaswamy
- Subjects
fruit rot disease ,fungicide efficacy ,application timing ,GLMM ,oomycete-specific fungicides ,Plant culture ,SB1-1110 - Abstract
Fungicidal application has been the common and prime option to combat fruit rot disease (FRD) of arecanut (Areca catechu L.) under field conditions. However, the existence of virulent pathotypes, rapid spreading ability, and improper time of fungicide application has become a serious challenge. In the present investigation, we assessed the efficacy of oomycete-specific fungicides under two approaches: (i) three fixed timings of fungicidal applications, i.e., pre-, mid-, and post-monsoon periods (EXPT1), and (ii) predefined different fruit stages, i.e., button, marble, and premature stages (EXPT2). Fungicidal efficacy in managing FRD was determined from evaluations of FRD severity, FRD incidence, and cumulative fallen nut rate (CFNR) by employing generalized linear mixed models (GLMMs). In EXPT1, all the tested fungicides reduced FRD disease levels by >65% when applied at pre- or mid-monsoon compared with untreated control, with statistical differences among fungicides and timings of application relative to infection. In EXPT2, the efficacy of fungicides was comparatively reduced when applied at predefined fruit/nut stages, with statistically non-significant differences among tested fungicides and fruit stages. A comprehensive analysis of both experiments recommends that the fungicidal application can be performed before the onset of monsoon for effective management of arecanut FRD. In conclusion, the timing of fungicidal application based on the monsoon period provides better control of FRD of arecanut than an application based on the developmental stages of fruit under field conditions.
- Published
- 2023
- Full Text
- View/download PDF
7. Pyronaridine as a Bromodomain-Containing Protein 4-N-Terminal Bromodomain (BRD4-BD1) Inhibitor: In Silico Database Mining, Molecular Docking, and Molecular Dynamics Simulation
- Author
-
Mahmoud A. A. Ibrahim, Mahmoud M. H. Abdelhamid, Khlood A. A. Abdeljawaad, Alaa H. M. Abdelrahman, Gamal A. H. Mekhemer, Peter A. Sidhom, Shaban R. M. Sayed, Paul W. Paré, Mohamed-Elamir F. Hegazy, and Tamer Shoeib
- Subjects
cancer disease ,bromodomain-containing protein 4 ,SuperDRUG2 database ,molecular docking ,molecular dynamics simulations ,Organic chemistry ,QD241-441 - Abstract
BRD4 (bromodomain-containing protein 4) is an epigenetic reader that realizes histone proteins and promotes the transcription of genes linked to cancer progression and non-cancer diseases such as acute heart failure and severe inflammation. The highly conserved N-terminal bromodomain (BD1) recognizes acylated lysine residues to organize the expression of genes. As such, BD1 is essential for disrupting BRD4 interactions and is a promising target for cancer treatment. To identify new BD1 inhibitors, a SuperDRUG2 database that contains more than 4600 pharmaceutical compounds was screened using in silico techniques. The efficiency of the AutoDock Vina1.1.2 software to anticipate inhibitor-BRD4-BD1 binding poses was first evaluated based on the co-crystallized R6S ligand in complex with BRD4-BD1. From database screening, the most promising BRD4-BD1 inhibitors were subsequently submitted to molecular dynamics (MD) simulations integrated with an MM-GBSA approach. MM-GBSA computations indicated promising BD1 binding with a benzonaphthyridine derivative, pyronaridine (SD003509), with an energy prediction (ΔGbinding) of −42.7 kcal/mol in comparison with −41.5 kcal/mol for a positive control inhibitor (R6S). Pharmacokinetic properties predicted oral bioavailability for both ligands, while post-dynamic analyses of the BRD4-BD1 binding pocket demonstrated greater stability for pyronaridine. These results confirm that in silico studies can provide insight into novel protein–ligand regulators, specifically that pyronaridine is a potential cancer drug candidate.
- Published
- 2023
- Full Text
- View/download PDF
8. Adsorption Features of Tetrahalomethanes (CX4; X = F, Cl, and Br) on β12 Borophene and Pristine Graphene Nanosheets: A Comparative DFT Study
- Author
-
Mahmoud A. A. Ibrahim, Amna H. M. Mahmoud, Nayra A. M. Moussa, Gamal A. H. Mekhemer, Shaban R. M. Sayed, Muhammad Naeem Ahmed, Mohamed K. Abd El-Rahman, Eslam Dabbish, and Tamer Shoeib
- Subjects
tetrahalomethanes ,graphene nanosheet ,borophene nanosheet ,DFT ,Organic chemistry ,QD241-441 - Abstract
The potentiality of the β12 borophene (β12) and pristine graphene (GN) nanosheets to adsorb tetrahalomethanes (CX4; X = F, Cl, and Br) were investigated using density functional theory (DFT) methods. To provide a thorough understanding of the adsorption process, tetrel (XC-X3∙∙∙β12/GN)- and halogen (X3C-X∙∙∙β12/GN)-oriented configurations were characterized at various adsorption sites. According to the energetic manifestations, the adsorption process of the CX4∙∙∙β12/GN complexes within the tetrel-oriented configuration led to more desirable negative adsorption energy (Eads) values than that within the halogen-oriented analogs. Numerically, Eads values of the CBr4∙∙∙Br1@β12 and T@GN complexes within tetrel-/halogen-oriented configurations were −12.33/−8.91 and −10.03/−6.00 kcal/mol, respectively. Frontier molecular orbital (FMO) results exhibited changes in the EHOMO, ELUMO, and Egap values of the pure β12 and GN nanosheets following the adsorption of CX4 molecules. Bader charge transfer findings outlined the electron-donating property for the CX4 molecules after adsorbing on the β12 and GN nanosheets within the two modeled configurations, except the adsorbed CBr4 molecule on the GN sheet within the tetrel-oriented configuration. Following the adsorption process, new bands and peaks were observed in the band structure and density of state (DOS) plots, respectively, with a larger number in the case of the tetrel-oriented configuration than in the halogen-oriented one. According to the solvent effect affirmations, adsorption energies of the CX4∙∙∙β12/GN complexes increased in the presence of a water medium. The results of this study will serve as a focal point for experimentalists to better comprehend the adsorption behavior of β12 and GN nanosheets toward small toxic molecules.
- Published
- 2023
- Full Text
- View/download PDF
9. Drought-Induced Morpho-Physiological, Biochemical, Metabolite Responses and Protein Profiling of Chickpea (Cicer arietinum L.)
- Author
-
Yama Keerthi Sree, Nita Lakra, Kesineni Manorama, Yogesh Ahlawat, Abbu Zaid, Hosam O. Elansary, Shaban R. M. Sayed, Mohamed A. Rashwan, and Eman A. Mahmoud
- Subjects
chickpea ,drought stress ,metabolite analysis ,protein profiling ,Agriculture - Abstract
The chickpea (Cicer arieitnum L.) is an important food legume crop of the family Fabaceae with high protein levels that is widely grown in rainfed areas prone to drought stress. It is a self-pollinated cool season crop with a true diploid (2n = 16) nature. It is relatively cheap and a high source of protein. About 90% of the chickpea crop is grown by the use of residual moisture in the soil without depending on irrigation. In the present study, two varieties of chickpea, namely ICC 4958 and HC-6, were grown under three field capacities (FC) (100% FC, 50% FC and 25% FC). Samples were taken three times, i.e., 15, 30 and 45 days after sowing (DAS). Parameters such as morphological, physiological, biochemical, metabolite and protein profiling of the two varieties were completed. Morphological parameters such as shoot length (14.2%), number of branches (20.7%), number of leaves (17.5%) and yield (56%) declined as the drought level increased and other characteristics such as root length (9.7%), number of flowers (24.5%) and number of pods (34.4%) increased as drought stress progressed. Physiological parameters such as relative water content (RWC) (13.5%), cell membrane stability (CMS) (29.6%) and chlorophyll content decreased, whereas electrolyte conductivity (EC) (38%) increased in both the varieties as field capacity decreased. Biochemical parameters such as proline (54.75%), sugar (15.2%), glycine betaine (32.25%), superoxide dismutase (SOD) (49.5%), catalase (CAT) (50.5%), ascorbate peroxidase (APX) (44.9%) and glutathione reductase (GR) (49%) increased as drought stress increased. Metabolite analyses of, for example, MDA (malondialdehyde) content (30.5%), total anthocyanin (36.3%), flavonoid content (26%) and phenolic content (29.5%) increased as drought progressed. We also performed protein profiling of the two varieties using SDS-PAGE (sodium dodecyl-sulfate polyacrylamide gel electrophoresis) to differentiate the expression analysis of the two varieties.
- Published
- 2023
- Full Text
- View/download PDF
10. On the Use of Graphene Nanosheets for Drug Delivery: A Case Study of Cisplatin and Some of Its Analogs
- Author
-
Mahmoud A. A. Ibrahim, Manar H. A. Hamad, Amna H. M. Mahmoud, Gamal A. H. Mekhemer, Shaban R. M. Sayed, Mohamed K. Abd El-Rahman, Peter A. Sidhom, Eslam Dabbish, and Tamer Shoeib
- Subjects
graphene ,anti-cancer drug ,adsorption process ,DFT ,Pharmacy and materia medica ,RS1-441 - Abstract
Graphene (GN) nanosheets have been widely exploited in biomedical applications as potential nanocarriers for various drugs due to their distinct physical and chemical properties. In this regard, the adsorption behavior of cisplatin (cisPtCl2) and some of its analogs on a GN nanosheet was investigated in perpendicular and parallel configurations by using density functional theory (DFT). According to the findings, the most significant negative adsorption energies (Eads) within the cisPtX2⋯GN complexes (where X = Cl, Br, and I) were observed for the parallel configuration, with values up to –25.67 kcal/mol at the H@GN site. Within the perpendicular configuration of the cisPtX2⋯GN complexes, three orientations were investigated for the adsorption process, namely, X/X, X/NH3, and NH3/NH3. The negative Eads values of the cisPtX2⋯GN complexes increased with the increasing atomic weight of the halogen atom. The Br@GN site showed the largest negative Eads values for the cisPtX2⋯GN complexes in the perpendicular configuration. The Bader charge transfer outcomes highlighted the electron-accepting properties of cisPtI2 within the cisPtI2⋯GN complexes in both configurations. The electron-donating character of the GN nanosheet increased as the electronegativity of the halogen atom increased. The band structure and density of state plots revealed the occurrence of the physical adsorption of the cisPtX2 on the GN nanosheet, which was indicated by the appearance of new bands and peaks. Based on the solvent effect outlines, the negative Eads values generally decreased after the adsorption process in a water medium. The recovery time results were in line with the Eads findings, where the cisPtI2 in the parallel configuration took the longest time to be desorbed from the GN nanosheet with values of 61.6 × 108 ms at 298.15 K. The findings of this study provide better insights into the utilization of GN nanosheets in drug delivery applications.
- Published
- 2023
- Full Text
- View/download PDF
11. Synthesis, Characterization and Application of Novel Cationic Surfactants as Antibacterial Agents
- Author
-
Shaban R. M. Sayed, Abdelrahman O. Ezzat, Mohamed Taha Yassin, and Ashraf M. M. Abdelbacki
- Subjects
surfactant ,antibacterial ,amphiphilic ,nosocomial bacteria ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
It is of great necessity to develop new antimicrobial agents to overcome the accelerated increment in drug-resistant bacteria. The main aim of this work is to manufacture two cationic surfactants, QHETA-9 and QHETA-14, based on quaternary hexamethylenetetramine with long alkyl chains (C-9 and C-14) by simple one-step alkylation reaction. These surfactants were characterized by analytical and statistical data, including FTIR, 1H NMR, 13C NMR and DLS. The antibacterial activities of QHETA-9 and QHETA-14 against some pathogenic bacterial strains were tested using agar disk diffusion method. The results exhibited that QHETA-14 has higher antibacterial activity than that of QHETA-9. It displayed inhibitory zone values for Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis, as Gram-positive bacteria, of 22.7, 21.5 and 25.9 mm, respectively, at 200 μg/disk. Meanwhile, it recorded inhibition zone values of 17.5, 25.2 and 23.8 mm for Escherichia coli, Agrobacterium tumefaciens and Erwinia carotovora, respectively, at 200 μg/disk. As a result, the current investigation verified that the antibacterial properties of QHETA-14 were greater than those of QHETA-9 due to the increase in the length of the alkyl chain. It is clear that QHETA-14 has the potential to be used as an antibacterial agent against bacteria that cause nosocomial infections and food poisoning diseases.
- Published
- 2023
- Full Text
- View/download PDF
12. Myco-Suppression Analysis of Soybean (Glycine max) Damping-Off Caused by Pythium aphanidermatum
- Author
-
Shaban R. M. Sayed, Shaimaa A. M. Abdelmohsen, Hani M. A. Abdelzaher, Mohammed A. Elnaghy, Ashraf A. Mostafa, Fatemah F. Al-Harbi, and Ashraf M. M. Abdelbacki
- Subjects
biological control ,biomaterials ,damping-off ,Glycine max ,P. oligandrum ,P. aphanidermatum ,Botany ,QK1-989 - Abstract
The role of Pythium oligandrum as a biocontrol agent against Pythium aphanidermatum was investigated to avoid the harmful impacts of fungicides. Three isolates of P. oligandrum (MS15, MS19, and MS31) were assessed facing the plant pathogenic P. aphanidermatum the causal agent of Glycine max damping-off. The tested Pythium species were recognized according to their cultural and microscopic characterizations. The identification was confirmed through sequencing of rDNA-ITS regions including the 5.8 S rDNA. The biocontrol agent, P. oligandrum, isolates decreased the mycelial growth of the pathogenic P. aphanidermatum with 71.3%, 67.1%, and 68.7% through mycoparasitism on CMA plates. While the half-strength millipore sterilized filtrates of P. oligandrum isolates degrade the pathogenic mycelial linear growth by 34.1%, 32.5%, and 31.7%, and reduce the mycelial dry weight of the pathogenic P. aphanidermatum by 40.1%, 37.4%, and 36.8%, respectively. Scanning electron microscopy (SEM) of the most effective antagonistic P. oligandrum isolate (MS15) interaction showed coiling, haustorial parts of P. oligandrum to P. aphanidermatum hyphae. Furthermore, P. oligandrum isolates were proven to enhance the germination of Glycine max seedling to 93.3% in damping-off infection using agar pots and promote germination of up to 80% during soil pot assay. On the other hand, P. oligandrum isolates increase the shoot, root lengths, and the number of lateral roots.
- Published
- 2021
- Full Text
- View/download PDF
13. A DFT investigation on the potential of beryllium oxide (Be12O12) as a nanocarrier for nucleobases.
- Author
-
Mahmoud A A Ibrahim, Maggie N S Hanna, Al-Shimaa S M Rady, Peter A Sidhom, Shaban R M Sayed, Mohamed A El-Tayeb, Ahmed M Awad, Hatem Tallima, and Tamer Shoeib
- Subjects
Medicine ,Science - Abstract
The study of the interactions between biomolecules and nanostructures is quite fascinating. Herein, the adsorption propensity of beryllium oxide (Be12O12) nanocarrier toward nucleobases (NBs) was investigated. In terms of DFT calculations, the adsorption tendency of Be12O12 toward NBs, including cytosine (NB-C), guanine (NB-G), adenine (NB-A), thymine (NB-T), and uracil (NB-U), was unveiled through various configurations. Geometrical, electronic, and energetic features for Be12O12, NBs, and their associated complexes were thoroughly evaluated at M06-2X/6-311+G** level of theory. The potent adsorption process within NBs∙∙∙Be12O12 complexes was noticed through favorable interaction (Eint) and adsorption (Eads) energies with values up to -53.04 and -38.30 kcal/mol, respectively. Generally, a significant adsorption process was observed for all studied complexes, and the favorability followed the order: NB-C∙∙∙ > NB-G∙∙∙ > NB-A∙∙∙ > NB-T∙∙∙ > NB-U∙∙∙Be12O12 complexes. Out of all studied complexes, the most potent adsorption was found for NB-C∙∙∙Be12O12 complex within configuration A (Eint = -53.04 kcal/mol). In terms of energy decomposition, SAPT analysis revealed electrostatic (Eelst) forces to be dominant within the studied adsorption process with values up to -99.88 kcal/mol. Analyzing QTAIM and NCI, attractive intermolecular interactions within the studied complexes were affirmed. From negative values of thermodynamic parameters, the nature of the considered adsorption process was revealed to be spontaneous and exothermic. Regarding density of state, IR, and Raman analyses, the occurrence of the adsorption process within NBs∙∙∙Be12O12 complexes was confirmed. Noticeable short recovery time values were observed for all studied complexes, confirming the occurrence of the desorption process. The findings provided fundamental insights into the potential application of Be12O12 nanocarrier in drug and gene delivery processes.
- Published
- 2024
- Full Text
- View/download PDF
14. Drought-Induced Morpho-Physiological, Biochemical, Metabolite Responses and Protein Profiling of Chickpea (Cicer arietinum L.)
- Author
-
Mahmoud, Yama Keerthi Sree, Nita Lakra, Kesineni Manorama, Yogesh Ahlawat, Abbu Zaid, Hosam O. Elansary, Shaban R. M. Sayed, Mohamed A. Rashwan, and Eman A.
- Subjects
chickpea ,drought stress ,metabolite analysis ,protein profiling - Abstract
The chickpea (Cicer arieitnum L.) is an important food legume crop of the family Fabaceae with high protein levels that is widely grown in rainfed areas prone to drought stress. It is a self-pollinated cool season crop with a true diploid (2n = 16) nature. It is relatively cheap and a high source of protein. About 90% of the chickpea crop is grown by the use of residual moisture in the soil without depending on irrigation. In the present study, two varieties of chickpea, namely ICC 4958 and HC-6, were grown under three field capacities (FC) (100% FC, 50% FC and 25% FC). Samples were taken three times, i.e., 15, 30 and 45 days after sowing (DAS). Parameters such as morphological, physiological, biochemical, metabolite and protein profiling of the two varieties were completed. Morphological parameters such as shoot length (14.2%), number of branches (20.7%), number of leaves (17.5%) and yield (56%) declined as the drought level increased and other characteristics such as root length (9.7%), number of flowers (24.5%) and number of pods (34.4%) increased as drought stress progressed. Physiological parameters such as relative water content (RWC) (13.5%), cell membrane stability (CMS) (29.6%) and chlorophyll content decreased, whereas electrolyte conductivity (EC) (38%) increased in both the varieties as field capacity decreased. Biochemical parameters such as proline (54.75%), sugar (15.2%), glycine betaine (32.25%), superoxide dismutase (SOD) (49.5%), catalase (CAT) (50.5%), ascorbate peroxidase (APX) (44.9%) and glutathione reductase (GR) (49%) increased as drought stress increased. Metabolite analyses of, for example, MDA (malondialdehyde) content (30.5%), total anthocyanin (36.3%), flavonoid content (26%) and phenolic content (29.5%) increased as drought progressed. We also performed protein profiling of the two varieties using SDS-PAGE (sodium dodecyl-sulfate polyacrylamide gel electrophoresis) to differentiate the expression analysis of the two varieties.
- Published
- 2023
- Full Text
- View/download PDF
15. Complete green synthesis of silver-nanoparticles applying seed-borne
- Author
-
Khalid S, Almaary, Shaban R M, Sayed, Omar H, Abd-Elkader, Turki M, Dawoud, Naglaa F, El Orabi, and Abdallah M, Elgorban
- Subjects
Corn ,technology, industry, and agriculture ,food and beverages ,Bipolaris sorghicola ,Antimicrobial agents ,Article ,Nanomaterials - Abstract
Seed-borne fungus Penicillium duclauxii was examined in this study to investigate its capability of synthesizing silver nanoparticles (Ag-NPs). In vitro experiments were conducted using corn-grain contaminating fungal isolate. Ag-NPs detection and characterization were assayed by the aid of spectroscopic techniques. Spectroscopy (energy dispersive), X-ray diffraction, transmission electron-microscope and optical absorption dimensions were employed. Ag-NPs with biosynthesized were used to test invitro against Bipolaris sorghicola; the cause of target leaf spot disease on sorghum plants. The myco-synthesis of Ag NPs using Penicillium duclauxii was proved in this study. Moreover, Bipolaris sorghicola was successfully inhibited by such Ag NPs in vitro.
- Published
- 2019
16. Synthesis of novel benzopyran-connected pyrimidine and pyrazole derivatives
- Author
-
Ashraf, Abdel-Fattah Mostafa, Chidambaram, SathishKumar, Abdulaziz Abdulrahman, Al-Askar, Shaban R M, Sayed, Radhakrishnan, SurendraKumar, and Akbar, Idhayadhulla
- Abstract
A series of benzopyran-connected pyrimidine (1a-g) and benzopyran-connected pyrazole (2a-i) derivatives were synthesized
- Published
- 2019
17. Non liquid nitrogen-based-method for isolation of DNA from filamentous fungi
- Author
-
Osama, E Amer, primary, Mohamed, A Mahmoud, additional, AbdEl Rahim, M A El Samawaty, additional, and Shaban, R M Sayed, additional
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.