1. EEG complexity measures for detecting mind wandering during video-based learning
- Author
-
Shaohua Tang and Zheng Li
- Subjects
Medicine ,Science - Abstract
Abstract This study explores the efficacy of various EEG complexity measures in detecting mind wandering during video-based learning. Employing a modified probe-caught method, we recorded EEG data from participants engaged in viewing educational videos and subsequently focused on the discrimination between mind wandering (MW) and non-MW states. We systematically investigated various EEG complexity metrics, including metrics that reflect a system’s regularity like multiscale permutation entropy (MPE), and metrics that reflect a system’s dimensionality like detrended fluctuation analysis (DFA). We also compare these features to traditional band power (BP) features. Data augmentation methods and feature selection were applied to optimize detection accuracy. Results show BP features excelled (mean area under the receiver operating characteristic curve (AUC) 0.646) in datasets without eye-movement artifacts, while MPE showed similar performance (mean AUC 0.639) without requiring removal of eye-movement artifacts. Combining all kinds of features improved decoding performance to 0.66 mean AUC. Our findings demonstrate the potential of these complexity metrics in EEG analysis for mind wandering detection, highlighting their practical implications in educational contexts.
- Published
- 2024
- Full Text
- View/download PDF