1. State Feedback and Synergetic controllers for tuberculosis in infected population
- Author
-
Muhammad Bilal, Iftikhar Ahmad, Sheraz Ahmad Babar, and Khurram Shahzad
- Subjects
asymptotic stability ,control system synthesis ,diseases ,Lyapunov methods ,mathematical analysis ,nonlinear control systems ,Biology (General) ,QH301-705.5 - Abstract
Abstract Tuberculosis (TB) is a contagious disease which can easily be disseminated in a society. A five state Susceptible, exposed, infected, recovered and resistant (SEIRs) epidemiological mathematical model of TB has been considered along with two non‐linear controllers: State Feedback (SFB) and Synergetic controllers have been designed for the control and prevention of the TB in a population. Using the proposed controllers, the infected individuals have been reduced/controlled via treatment, and susceptible individuals have been prevented from the disease via vaccination. A mathematical analysis has been carried out to prove the asymptotic stability of proposed controllers by invoking the Lyapunov control theory. Simulation results using MATLAB/Simulink manifest that the non‐linear controllers show fast convergence of the system states to their respective desired levels. Comparison shows that proposed SFB controller performs better than Synergetic controller in terms of convergence time, steady state error and oscillations.
- Published
- 2021
- Full Text
- View/download PDF