21 results on '"Shetti, R."'
Search Results
2. Global plant trait relationships extend to the climatic extremes of the tundra biome.
- Author
-
Thomas, H, Bjorkman, A, Myers-Smith, I, Elmendorf, S, Kattge, J, Diaz, S, Vellend, M, Blok, D, Cornelissen, J, Forbes, B, Henry, G, Hollister, R, Normand, S, Prevéy, J, Rixen, C, Schaepman-Strub, G, Wilmking, M, Wipf, S, Cornwell, W, Beck, P, Georges, D, Goetz, S, Guay, K, Rüger, N, Soudzilovskaia, N, Spasojevic, Marko, Alatalo, J, Alexander, H, Anadon-Rosell, A, Angers-Blondin, S, Te Beest, M, Berner, L, Björk, R, Buchwal, A, Buras, A, Carbognani, M, Christie, K, Collier, L, Cooper, E, Elberling, B, Eskelinen, A, Frei, E, Grau, O, Grogan, P, Hallinger, M, Heijmans, M, Hermanutz, L, Hudson, J, Johnstone, J, Hülber, K, Iturrate-Garcia, M, Iversen, C, Jaroszynska, F, Kaarlejarvi, E, Kulonen, A, Lamarque, L, Lantz, T, Lévesque, E, Little, C, Michelsen, A, Milbau, A, Nabe-Nielsen, J, Nielsen, S, Ninot, J, Oberbauer, S, Olofsson, J, Onipchenko, V, Petraglia, A, Rumpf, S, Shetti, R, Speed, J, Suding, K, Tape, K, Tomaselli, M, Trant, A, Treier, U, Tremblay, M, Venn, S, Vowles, T, Weijers, S, Wookey, P, Zamin, T, Bahn, M, Blonder, Benjamin, van Bodegom, P, Bond-Lamberty, B, Campetella, G, Cerabolini, B, Chapin, F, Craine, J, Dainese, M, Green, W, Jansen, S, Kleyer, M, Manning, P, Niinemets, Ü, Onoda, Y, Ozinga, W, Peñuelas, J, and Poschlod, P
- Subjects
Climate ,Ecosystem ,Plant Development ,Plants ,Tundra - Abstract
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
- Published
- 2020
3. Global plant trait relationships extend to the climatic extremes of the tundra biome
- Author
-
Thomas, HJD, Bjorkman, AD, Myers-Smith, IH, Elmendorf, SC, Kattge, J, Diaz, S, Vellend, M, Blok, D, Cornelissen, JHC, Forbes, BC, Henry, GHR, Hollister, RD, Normand, S, Prevéy, JS, Rixen, C, Schaepman-Strub, G, Wilmking, M, Wipf, S, Cornwell, WK, Beck, PSA, Georges, D, Goetz, SJ, Guay, KC, Rüger, N, Soudzilovskaia, NA, Spasojevic, MJ, Alatalo, JM, Alexander, HD, Anadon-Rosell, A, Angers-Blondin, S, Te Beest, M, Berner, LT, Björk, RG, Buchwal, A, Buras, A, Carbognani, M, Christie, KS, Collier, LS, Cooper, EJ, Elberling, B, Eskelinen, A, Frei, ER, Grau, O, Grogan, P, Hallinger, M, Heijmans, MMPD, Hermanutz, L, Hudson, JMG, Johnstone, JF, Hülber, K, Iturrate-Garcia, M, Iversen, CM, Jaroszynska, F, Kaarlejarvi, E, Kulonen, A, Lamarque, LJ, Lantz, TC, Lévesque, E, Little, CJ, Michelsen, A, Milbau, A, Nabe-Nielsen, J, Nielsen, SS, Ninot, JM, Oberbauer, SF, Olofsson, J, Onipchenko, VG, Petraglia, A, Rumpf, SB, Shetti, R, Speed, JDM, Suding, KN, Tape, KD, Tomaselli, M, Trant, AJ, Treier, UA, Tremblay, M, Venn, SE, Vowles, T, Weijers, S, Wookey, PA, Zamin, TJ, Bahn, M, Blonder, B, van Bodegom, PM, Bond-Lamberty, B, Campetella, G, Cerabolini, BEL, Chapin, FS, Craine, JM, Dainese, M, Green, WA, Jansen, S, Kleyer, M, Manning, P, Niinemets, Ü, Onoda, Y, Ozinga, WA, Peñuelas, J, and Poschlod, P
- Subjects
Climate ,food and beverages ,Plant Development ,Plants ,Tundra ,Ecosystem - Abstract
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
- Published
- 2020
4. Global plant trait relationships extend to the climatic extremes of the tundra biome
- Author
-
Thomas, H. J. D., Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Kattge, J., Diaz, S., Vellend, M., Blok, D., Cornelissen, J. H. C., Forbes, B. C., Henry, G. H. R., Hollister, R. D., Normand, S., Prevéy, J. S., Rixen, C., Schaepman-Strub, G., Wilmking, M., Wipf, S., Cornwell, W. K., Beck, P. S. A., Georges, D., Goetz, S. J., Guay, K. C., Rüger, N., Soudzilovskaia, N. A., Spasojevic, M. J., Alatalo, J. M., Alexander, H. D., Anadon-Rosell, A., Angers-Blondin, S., te Beest, M., Berner, L. T., Björk, R. G., Buchwal, A., Buras, A., Carbognani, M., Christie, K. S., Collier, L. S., Cooper, E. J., Elberling, B., Eskelinen, A., Frei, E. R., Grau, O., Grogan, P., Hallinger, M., Heijmans, M. M. P. D., Hermanutz, L., Hudson, J. M. G., Johnstone, J. F., Hülber, K., Iturrate-Garcia, M., Iversen, C. M., Jaroszynska, F., Kaarlejarvi, E., Kulonen, A., Lamarque, L. J., Lantz, T. C., Lévesque, E., Little, C. J., Michelsen, A., Milbau, A., Nabe-Nielsen, J., Nielsen, S. S., Ninot, J. M., Oberbauer, S. F., Olofsson, J., Onipchenko, V. G., Petraglia, A., Rumpf, S. B., Shetti, R., Speed, J. D. M., Suding, K. N., Tape, K. D., Tomaselli, M., Trant, A. J., Treier, U. A., Tremblay, M., Venn, S. E., Vowles, T., Weijers, S., Wookey, P. A., Zamin, T. J., Bahn, M., Blonder, B., van Bodegom, P. M., Bond-Lamberty, B., Campetella, G., Cerabolini, B. E. L., Chapin, F. S., Craine, J. M., Dainese, M., Green, W. A., Jansen, S., Kleyer, M., Manning, P., Niinemets, Ü., Onoda, Y., Ozinga, W. A., Peñuelas, J., Poschlod, P., Reich, P. B., Sandel, B., Schamp, B. S., Sheremetiev, S. N., de Vries, F. T., Thomas, H. J. D., Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Kattge, J., Diaz, S., Vellend, M., Blok, D., Cornelissen, J. H. C., Forbes, B. C., Henry, G. H. R., Hollister, R. D., Normand, S., Prevéy, J. S., Rixen, C., Schaepman-Strub, G., Wilmking, M., Wipf, S., Cornwell, W. K., Beck, P. S. A., Georges, D., Goetz, S. J., Guay, K. C., Rüger, N., Soudzilovskaia, N. A., Spasojevic, M. J., Alatalo, J. M., Alexander, H. D., Anadon-Rosell, A., Angers-Blondin, S., te Beest, M., Berner, L. T., Björk, R. G., Buchwal, A., Buras, A., Carbognani, M., Christie, K. S., Collier, L. S., Cooper, E. J., Elberling, B., Eskelinen, A., Frei, E. R., Grau, O., Grogan, P., Hallinger, M., Heijmans, M. M. P. D., Hermanutz, L., Hudson, J. M. G., Johnstone, J. F., Hülber, K., Iturrate-Garcia, M., Iversen, C. M., Jaroszynska, F., Kaarlejarvi, E., Kulonen, A., Lamarque, L. J., Lantz, T. C., Lévesque, E., Little, C. J., Michelsen, A., Milbau, A., Nabe-Nielsen, J., Nielsen, S. S., Ninot, J. M., Oberbauer, S. F., Olofsson, J., Onipchenko, V. G., Petraglia, A., Rumpf, S. B., Shetti, R., Speed, J. D. M., Suding, K. N., Tape, K. D., Tomaselli, M., Trant, A. J., Treier, U. A., Tremblay, M., Venn, S. E., Vowles, T., Weijers, S., Wookey, P. A., Zamin, T. J., Bahn, M., Blonder, B., van Bodegom, P. M., Bond-Lamberty, B., Campetella, G., Cerabolini, B. E. L., Chapin, F. S., Craine, J. M., Dainese, M., Green, W. A., Jansen, S., Kleyer, M., Manning, P., Niinemets, Ü., Onoda, Y., Ozinga, W. A., Peñuelas, J., Poschlod, P., Reich, P. B., Sandel, B., Schamp, B. S., Sheremetiev, S. N., and de Vries, F. T.
- Abstract
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
- Published
- 2020
5. Global plant trait relationships extend to the climatic extremes of the tundra biome
- Author
-
Spatial Ecology and Global Change, Environmental Sciences, Thomas, H. J. D., Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Kattge, J., Diaz, S., Vellend, M., Blok, D., Cornelissen, J. H. C., Forbes, B. C., Henry, G. H. R., Hollister, R. D., Normand, S., Prevéy, J. S., Rixen, C., Schaepman-Strub, G., Wilmking, M., Wipf, S., Cornwell, W. K., Beck, P. S. A., Georges, D., Goetz, S. J., Guay, K. C., Rüger, N., Soudzilovskaia, N. A., Spasojevic, M. J., Alatalo, J. M., Alexander, H. D., Anadon-Rosell, A., Angers-Blondin, S., te Beest, M., Berner, L. T., Björk, R. G., Buchwal, A., Buras, A., Carbognani, M., Christie, K. S., Collier, L. S., Cooper, E. J., Elberling, B., Eskelinen, A., Frei, E. R., Grau, O., Grogan, P., Hallinger, M., Heijmans, M. M. P. D., Hermanutz, L., Hudson, J. M. G., Johnstone, J. F., Hülber, K., Iturrate-Garcia, M., Iversen, C. M., Jaroszynska, F., Kaarlejarvi, E., Kulonen, A., Lamarque, L. J., Lantz, T. C., Lévesque, E., Little, C. J., Michelsen, A., Milbau, A., Nabe-Nielsen, J., Nielsen, S. S., Ninot, J. M., Oberbauer, S. F., Olofsson, J., Onipchenko, V. G., Petraglia, A., Rumpf, S. B., Shetti, R., Speed, J. D. M., Suding, K. N., Tape, K. D., Tomaselli, M., Trant, A. J., Treier, U. A., Tremblay, M., Venn, S. E., Vowles, T., Weijers, S., Wookey, P. A., Zamin, T. J., Bahn, M., Blonder, B., van Bodegom, P. M., Bond-Lamberty, B., Campetella, G., Cerabolini, B. E. L., Chapin, F. S., Craine, J. M., Dainese, M., Green, W. A., Jansen, S., Kleyer, M., Manning, P., Niinemets, Ü., Onoda, Y., Ozinga, W. A., Peñuelas, J., Poschlod, P., Reich, P. B., Sandel, B., Schamp, B. S., Sheremetiev, S. N., de Vries, F. T., Spatial Ecology and Global Change, Environmental Sciences, Thomas, H. J. D., Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Kattge, J., Diaz, S., Vellend, M., Blok, D., Cornelissen, J. H. C., Forbes, B. C., Henry, G. H. R., Hollister, R. D., Normand, S., Prevéy, J. S., Rixen, C., Schaepman-Strub, G., Wilmking, M., Wipf, S., Cornwell, W. K., Beck, P. S. A., Georges, D., Goetz, S. J., Guay, K. C., Rüger, N., Soudzilovskaia, N. A., Spasojevic, M. J., Alatalo, J. M., Alexander, H. D., Anadon-Rosell, A., Angers-Blondin, S., te Beest, M., Berner, L. T., Björk, R. G., Buchwal, A., Buras, A., Carbognani, M., Christie, K. S., Collier, L. S., Cooper, E. J., Elberling, B., Eskelinen, A., Frei, E. R., Grau, O., Grogan, P., Hallinger, M., Heijmans, M. M. P. D., Hermanutz, L., Hudson, J. M. G., Johnstone, J. F., Hülber, K., Iturrate-Garcia, M., Iversen, C. M., Jaroszynska, F., Kaarlejarvi, E., Kulonen, A., Lamarque, L. J., Lantz, T. C., Lévesque, E., Little, C. J., Michelsen, A., Milbau, A., Nabe-Nielsen, J., Nielsen, S. S., Ninot, J. M., Oberbauer, S. F., Olofsson, J., Onipchenko, V. G., Petraglia, A., Rumpf, S. B., Shetti, R., Speed, J. D. M., Suding, K. N., Tape, K. D., Tomaselli, M., Trant, A. J., Treier, U. A., Tremblay, M., Venn, S. E., Vowles, T., Weijers, S., Wookey, P. A., Zamin, T. J., Bahn, M., Blonder, B., van Bodegom, P. M., Bond-Lamberty, B., Campetella, G., Cerabolini, B. E. L., Chapin, F. S., Craine, J. M., Dainese, M., Green, W. A., Jansen, S., Kleyer, M., Manning, P., Niinemets, Ü., Onoda, Y., Ozinga, W. A., Peñuelas, J., Poschlod, P., Reich, P. B., Sandel, B., Schamp, B. S., Sheremetiev, S. N., and de Vries, F. T.
- Published
- 2020
6. Global plant trait relationships extend to the climatic extremes of the tundra biome
- Author
-
Thomas, H. J. (H. J. D.), Bjorkman, A. D. (A. D.), Myers-Smith, I. H. (I. H.), Elmendorf, S. C. (S. C.), Kattge, J. (J.), Diaz, S. (S.), Vellend, M. (M.), Blok, D. (D.), Cornelissen, J. H. (J. H. C.), Forbes, B. C. (B. C.), Henry, G. H. (G. H. R.), Hollister, R. D. (R. D.), Normand, S. (S.), Prevey, J. S. (J. S.), Rixen, C. (C.), Schaepman-Strub, G. (G.), Wilmking, M. (M.), Wipf, S. (S.), Cornwell, W. K. (W. K.), Beck, P. S. (P. S. A.), Georges, D. (D.), Goetz, S. J. (S. J.), Guay, K. C. (K. C.), Ruger, N. (N.), Soudzilovskaia, N. A. (N. A.), Spasojevic, M. J. (M. J.), Alatalo, J. M. (J. M.), Alexander, H. D. (H. D.), Anadon-Rosell, A. (A.), Angers-Blondin, S. (S.), te Beest, M. (M.), Berner, L. T. (L. T.), Bjoerk, R. G. (R. G.), Buchwal, A. (A.), Buras, A. (A.), Carbognani, M. (M.), Christie, K. S. (K. S.), Collier, L. S. (L. S.), Cooper, E. J. (E. J.), Elberling, B. (B.), Eskelinen, A. (A.), Frei, E. R. (E. R.), Grau, O. (O.), Grogan, P. (P.), Hallinger, M. (M.), Heijmans, M. M. (M. M. P. D.), Hermanutz, L. (L.), Hudson, J. M. (J. M. G.), Johnstone, J. F. (J. F.), Huelber, K. (K.), Iturrate-Garcia, M. (M.), Iversen, C. M. (C. M.), Jaroszynska, F. (F.), Kaarlejarvi, E. (E.), Kulonen, A. (A.), Lamarque, L. J. (L. J.), Lantz, T. C. (T. C.), Levesque, E. (E.), Little, C. J. (C. J.), Michelsen, A. (A.), Milbau, A. (A.), Nabe-Nielsen, J. (J.), Nielsen, S. S. (S. S.), Ninot, J. M. (J. M.), Oberbauer, S. F. (S. F.), Olofsson, J. (J.), Onipchenko, V. G. (V. G.), Petraglia, A. (A.), Rumpf, S. B. (S. B.), Shetti, R. (R.), Speed, J. D. (J. D. M.), Suding, K. N. (K. N.), Tape, K. D. (K. D.), Tomaselli, M. (M.), Trant, A. J. (A. J.), Treier, U. A. (U. A.), Tremblay, M. (M.), Venn, S. E. (S. E.), Vowles, T. (T.), Weijers, S. (S.), Wookey, P. A. (P. A.), Zamin, T. J. (T. J.), Bahn, M. (M.), Blonder, B. (B.), van Bodegom, P. M. (P. M.), Bond-Lamberty, B. (B.), Campetella, G. (G.), Cerabolini, B. E. (B. E. L.), Chapin, F. S. (F. S., III), Craine, J. M. (J. M.), Dainese, M. (M.), Green, W. A. (W. A.), Jansen, S. (S.), Kleyer, M. (M.), Manning, P. (P.), Niinemets, U. (U.), Onoda, Y. (Y.), Ozinga, W. A. (W. A.), Penuelas, J. (J.), Poschlod, P. (P.), Reich, P. B. (P. B.), Sandel, B. (B.), Schamp, B. S. (B. S.), Sheremetiev, S. N. (S. N.), de Vries, F. T. (F. T.), Thomas, H. J. (H. J. D.), Bjorkman, A. D. (A. D.), Myers-Smith, I. H. (I. H.), Elmendorf, S. C. (S. C.), Kattge, J. (J.), Diaz, S. (S.), Vellend, M. (M.), Blok, D. (D.), Cornelissen, J. H. (J. H. C.), Forbes, B. C. (B. C.), Henry, G. H. (G. H. R.), Hollister, R. D. (R. D.), Normand, S. (S.), Prevey, J. S. (J. S.), Rixen, C. (C.), Schaepman-Strub, G. (G.), Wilmking, M. (M.), Wipf, S. (S.), Cornwell, W. K. (W. K.), Beck, P. S. (P. S. A.), Georges, D. (D.), Goetz, S. J. (S. J.), Guay, K. C. (K. C.), Ruger, N. (N.), Soudzilovskaia, N. A. (N. A.), Spasojevic, M. J. (M. J.), Alatalo, J. M. (J. M.), Alexander, H. D. (H. D.), Anadon-Rosell, A. (A.), Angers-Blondin, S. (S.), te Beest, M. (M.), Berner, L. T. (L. T.), Bjoerk, R. G. (R. G.), Buchwal, A. (A.), Buras, A. (A.), Carbognani, M. (M.), Christie, K. S. (K. S.), Collier, L. S. (L. S.), Cooper, E. J. (E. J.), Elberling, B. (B.), Eskelinen, A. (A.), Frei, E. R. (E. R.), Grau, O. (O.), Grogan, P. (P.), Hallinger, M. (M.), Heijmans, M. M. (M. M. P. D.), Hermanutz, L. (L.), Hudson, J. M. (J. M. G.), Johnstone, J. F. (J. F.), Huelber, K. (K.), Iturrate-Garcia, M. (M.), Iversen, C. M. (C. M.), Jaroszynska, F. (F.), Kaarlejarvi, E. (E.), Kulonen, A. (A.), Lamarque, L. J. (L. J.), Lantz, T. C. (T. C.), Levesque, E. (E.), Little, C. J. (C. J.), Michelsen, A. (A.), Milbau, A. (A.), Nabe-Nielsen, J. (J.), Nielsen, S. S. (S. S.), Ninot, J. M. (J. M.), Oberbauer, S. F. (S. F.), Olofsson, J. (J.), Onipchenko, V. G. (V. G.), Petraglia, A. (A.), Rumpf, S. B. (S. B.), Shetti, R. (R.), Speed, J. D. (J. D. M.), Suding, K. N. (K. N.), Tape, K. D. (K. D.), Tomaselli, M. (M.), Trant, A. J. (A. J.), Treier, U. A. (U. A.), Tremblay, M. (M.), Venn, S. E. (S. E.), Vowles, T. (T.), Weijers, S. (S.), Wookey, P. A. (P. A.), Zamin, T. J. (T. J.), Bahn, M. (M.), Blonder, B. (B.), van Bodegom, P. M. (P. M.), Bond-Lamberty, B. (B.), Campetella, G. (G.), Cerabolini, B. E. (B. E. L.), Chapin, F. S. (F. S., III), Craine, J. M. (J. M.), Dainese, M. (M.), Green, W. A. (W. A.), Jansen, S. (S.), Kleyer, M. (M.), Manning, P. (P.), Niinemets, U. (U.), Onoda, Y. (Y.), Ozinga, W. A. (W. A.), Penuelas, J. (J.), Poschlod, P. (P.), Reich, P. B. (P. B.), Sandel, B. (B.), Schamp, B. S. (B. S.), Sheremetiev, S. N. (S. N.), and de Vries, F. T. (F. T.)
- Abstract
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
- Published
- 2020
7. Global plant trait relationships extend to the climatic extremes of the tundra biome
- Author
-
Thomas, H.J.D., Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C., Kattge, J., Diaz, S., Vellend, M., Blok, D., Cornelissen, J.H.C., Forbes, B.C., Henry, G.H.R., Hollister, R.D., Normand, S., Prevéy, J.S., Rixen, C., Schaepman-Strub, G., Wilmking, M., Wipf, S., Cornwell, W.K., Beck, P.S.A., Georges, D., Goetz, S.J., Guay, K.C., Rüger, N., Soudzilovskaia, N.A., Spasojevic, M.J., Alatalo, J.M., Alexander, H.D., Anadon-Rosell, A., Angers-Blondin, S., te Beest, M., Berner, L.T., Björk, R.G., Buchwal, A., Buras, A., Carbognani, M., Christie, K.S., Collier, L.S., Cooper, E.J., Elberling, B., Eskelinen, Anu Maria, Frei, E.R., Grau, O., Grogan, P., Hallinger, M., Heijmans, M.M.P.D., Hermanutz, L., Hudson, J.M.G., Johnstone, J.F., Hülber, K., Iturrate-Garcia, M., Iversen, C.M., Jaroszynska, F., Kaarlejarvi, E., Kulonen, A., Lamarque, L.J., Lantz, T.C., Lévesque, E., Little, C.J., Michelsen, A., Milbau, A., Nabe-Nielsen, J., Nielsen, S.S., Ninot, J.M., Oberbauer, S.F., Olofsson, J., Onipchenko, V.G., Petraglia, A., Rumpf, S.B., Shetti, R., Speed, J.D.M., Suding, K.N., Tape, K.D., Tomaselli, M., Trant, A.J., Treier, U.A., Tremblay, M., Venn, S.E., Vowles, T., Weijers, S., Wookey, P.A., Zamin, T.J., Bahn, M., Blonder, B., van Bodegom, P.M., Bond-Lamberty, B., Campetella, G., Cerabolini, B.E.L., Chapin III, F.S., Craine, J.M., Dainese, M., Green, W.A., Jansen, S., Kleyer, M., Manning, P., Niinemets, Ü., Onoda, Y., Ozinga, W.A., Peñuelas, J., Poschlod, P., Thomas, H.J.D., Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C., Kattge, J., Diaz, S., Vellend, M., Blok, D., Cornelissen, J.H.C., Forbes, B.C., Henry, G.H.R., Hollister, R.D., Normand, S., Prevéy, J.S., Rixen, C., Schaepman-Strub, G., Wilmking, M., Wipf, S., Cornwell, W.K., Beck, P.S.A., Georges, D., Goetz, S.J., Guay, K.C., Rüger, N., Soudzilovskaia, N.A., Spasojevic, M.J., Alatalo, J.M., Alexander, H.D., Anadon-Rosell, A., Angers-Blondin, S., te Beest, M., Berner, L.T., Björk, R.G., Buchwal, A., Buras, A., Carbognani, M., Christie, K.S., Collier, L.S., Cooper, E.J., Elberling, B., Eskelinen, Anu Maria, Frei, E.R., Grau, O., Grogan, P., Hallinger, M., Heijmans, M.M.P.D., Hermanutz, L., Hudson, J.M.G., Johnstone, J.F., Hülber, K., Iturrate-Garcia, M., Iversen, C.M., Jaroszynska, F., Kaarlejarvi, E., Kulonen, A., Lamarque, L.J., Lantz, T.C., Lévesque, E., Little, C.J., Michelsen, A., Milbau, A., Nabe-Nielsen, J., Nielsen, S.S., Ninot, J.M., Oberbauer, S.F., Olofsson, J., Onipchenko, V.G., Petraglia, A., Rumpf, S.B., Shetti, R., Speed, J.D.M., Suding, K.N., Tape, K.D., Tomaselli, M., Trant, A.J., Treier, U.A., Tremblay, M., Venn, S.E., Vowles, T., Weijers, S., Wookey, P.A., Zamin, T.J., Bahn, M., Blonder, B., van Bodegom, P.M., Bond-Lamberty, B., Campetella, G., Cerabolini, B.E.L., Chapin III, F.S., Craine, J.M., Dainese, M., Green, W.A., Jansen, S., Kleyer, M., Manning, P., Niinemets, Ü., Onoda, Y., Ozinga, W.A., Peñuelas, J., and Poschlod, P.
- Abstract
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
- Published
- 2020
8. Tundra Trait Team:a database of plant traits spanning the tundra biome
- Author
-
Bjorkman, A. D. (Anne D.), Myers-Smith, I. H. (Isla H.), Elmendorf, S. C. (Sarah C.), Normand, S. (Signe), Thomas, H. J. (Haydn J. D.), Alatalo, J. M. (Juha M.), Alexander, H. (Heather), Anadon-Rosell, A. (Alba), Angers-Blondin, S. (Sandra), Bai, Y. (Yang), Baruah, G. (Gaurav), te Beest, M. (Mariska), Berner, L. (Logan), Bjork, R. G. (Robert G.), Blok, D. (Daan), Bruelheide, H. (Helge), Buchwal, A. (Agata), Buras, A. (Allan), Carbognani, M. (Michele), Christie, K. (Katherine), Collier, L. S. (Laura S.), Cooper, E. J. (Elisabeth J.), Cornelissen, J. H. (J. Hans C.), Dickinson, K. J. (Katharine J. M.), Dullinger, S. (Stefan), Elberling, B. (Bo), Eskelinen, A. (Anu), Forbes, B. C. (Bruce C.), Frei, E. R. (Esther R.), Iturrate-Garcia, M. (Maitane), Good, M. K. (Megan K.), Grau, O. (Oriol), Green, P. (Peter), Greve, M. (Michelle), Grogan, P. (Paul), Haider, S. (Sylvia), Hajek, T. (Tomas), Hallinger, M. (Martin), Happonen, K. (Konsta), Harper, K. A. (Karen A.), Heijmans, M. M. (Monique M. P. D.), Henry, G. H. (Gregory H. R.), Hermanutz, L. (Luise), Hewitt, R. E. (Rebecca E.), Hollister, R. D. (Robert D.), Hudson, J. (James), Huelber, K. (Karl), Iversen, C. M. (Colleen M.), Jaroszynska, F. (Francesca), Jimenez-Alfaro, B. (Borja), Johnstone, J. (Jill), Jorgensen, R. H. (Rasmus Halfdan), Kaarlejarvi, E. (Elina), Klady, R. (Rebecca), Klimesova, J. (Jitka), Korsten, A. (Annika), Kuleza, S. (Sara), Kulonen, A. (Aino), Lamarque, L. J. (Laurent J.), Lantz, T. (Trevor), Lavalle, A. (Amanda), Lembrechts, J. J. (Jonas J.), Levesque, E. (Esther), Little, C. J. (Chelsea J.), Luoto, M. (Miska), Macek, P. (Petr), Mack, M. C. (Michelle C.), Mathakutha, R. (Rabia), Michelsen, A. (Anders), Milbau, A. (Ann), Molau, U. (Ulf), Morgan, J. W. (John W.), Morsdorf, M. A. (Martin Alfons), Nabe-Nielsen, J. (Jacob), Nielsen, S. S. (Sigrid Scholer), Ninot, J. M. (Josep M.), Oberbauer, S. F. (Steven F.), Olofsson, J. (Johan), Onipchenko, V. G. (Vladimir G.), Petraglia, A. (Alessandro), Pickering, C. (Catherine), Prevey, J. S. (Janet S.), Rixen, C. (Christian), Rumpf, S. B. (Sabine B.), Schaepman-Strub, G. (Gabriela), Semenchuk, P. (Philipp), Shetti, R. (Rohan), Soudzilovskaia, N. A. (Nadejda A.), Spasojevic, M. J. (Marko J.), Speed, J. D. (James David Mervyn), Street, L. E. (Lorna E.), Suding, K. (Katharine), Tape, K. D. (Ken D.), Tomaselli, M. (Marcello), Trant, A. (Andrew), Treier, U. A. (Urs A.), Tremblay, J.-P. (Jean-Pierre), Tremblay, M. (Maxime), Venn, S. (Susanna), Virkkala, A.-M. (Anna-Maria), Vowles, T. (Tage), Weijers, S. (Stef), Wilmking, M. (Martin), Wipf, S. (Sonja), Zamin, T. (Tara), Bjorkman, A. D. (Anne D.), Myers-Smith, I. H. (Isla H.), Elmendorf, S. C. (Sarah C.), Normand, S. (Signe), Thomas, H. J. (Haydn J. D.), Alatalo, J. M. (Juha M.), Alexander, H. (Heather), Anadon-Rosell, A. (Alba), Angers-Blondin, S. (Sandra), Bai, Y. (Yang), Baruah, G. (Gaurav), te Beest, M. (Mariska), Berner, L. (Logan), Bjork, R. G. (Robert G.), Blok, D. (Daan), Bruelheide, H. (Helge), Buchwal, A. (Agata), Buras, A. (Allan), Carbognani, M. (Michele), Christie, K. (Katherine), Collier, L. S. (Laura S.), Cooper, E. J. (Elisabeth J.), Cornelissen, J. H. (J. Hans C.), Dickinson, K. J. (Katharine J. M.), Dullinger, S. (Stefan), Elberling, B. (Bo), Eskelinen, A. (Anu), Forbes, B. C. (Bruce C.), Frei, E. R. (Esther R.), Iturrate-Garcia, M. (Maitane), Good, M. K. (Megan K.), Grau, O. (Oriol), Green, P. (Peter), Greve, M. (Michelle), Grogan, P. (Paul), Haider, S. (Sylvia), Hajek, T. (Tomas), Hallinger, M. (Martin), Happonen, K. (Konsta), Harper, K. A. (Karen A.), Heijmans, M. M. (Monique M. P. D.), Henry, G. H. (Gregory H. R.), Hermanutz, L. (Luise), Hewitt, R. E. (Rebecca E.), Hollister, R. D. (Robert D.), Hudson, J. (James), Huelber, K. (Karl), Iversen, C. M. (Colleen M.), Jaroszynska, F. (Francesca), Jimenez-Alfaro, B. (Borja), Johnstone, J. (Jill), Jorgensen, R. H. (Rasmus Halfdan), Kaarlejarvi, E. (Elina), Klady, R. (Rebecca), Klimesova, J. (Jitka), Korsten, A. (Annika), Kuleza, S. (Sara), Kulonen, A. (Aino), Lamarque, L. J. (Laurent J.), Lantz, T. (Trevor), Lavalle, A. (Amanda), Lembrechts, J. J. (Jonas J.), Levesque, E. (Esther), Little, C. J. (Chelsea J.), Luoto, M. (Miska), Macek, P. (Petr), Mack, M. C. (Michelle C.), Mathakutha, R. (Rabia), Michelsen, A. (Anders), Milbau, A. (Ann), Molau, U. (Ulf), Morgan, J. W. (John W.), Morsdorf, M. A. (Martin Alfons), Nabe-Nielsen, J. (Jacob), Nielsen, S. S. (Sigrid Scholer), Ninot, J. M. (Josep M.), Oberbauer, S. F. (Steven F.), Olofsson, J. (Johan), Onipchenko, V. G. (Vladimir G.), Petraglia, A. (Alessandro), Pickering, C. (Catherine), Prevey, J. S. (Janet S.), Rixen, C. (Christian), Rumpf, S. B. (Sabine B.), Schaepman-Strub, G. (Gabriela), Semenchuk, P. (Philipp), Shetti, R. (Rohan), Soudzilovskaia, N. A. (Nadejda A.), Spasojevic, M. J. (Marko J.), Speed, J. D. (James David Mervyn), Street, L. E. (Lorna E.), Suding, K. (Katharine), Tape, K. D. (Ken D.), Tomaselli, M. (Marcello), Trant, A. (Andrew), Treier, U. A. (Urs A.), Tremblay, J.-P. (Jean-Pierre), Tremblay, M. (Maxime), Venn, S. (Susanna), Virkkala, A.-M. (Anna-Maria), Vowles, T. (Tage), Weijers, S. (Stef), Wilmking, M. (Martin), Wipf, S. (Sonja), and Zamin, T. (Tara)
- Abstract
Motivation: The Tundra Trait Team (TTT) database includes field‐based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade‐offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (> 1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub‐Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
- Published
- 2018
9. Tundra Trait Team: A database of plant traits spanning the tundra biome
- Author
-
Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C., Normand, S., Thomas, H.J.D., Alatalo, J.M., Alexander, H., Anadon‐Rosell, A., Angers‐Blondin, S., Bai, Y., Baruah, G., te Beest, M., Berner, L., Björk, R.G., Blok, D., Bruelheide, H., Buchwal, A., Buras, A., Carbognani, M., Christie, K., Collier, L.S., Cooper, E.J., Cornelissen, J.H.C., Dickinson, K.J.M., Dullinger, S., Elberling, B., Eskelinen, Anu Maria, Forbes, B.C., Frei, E.R., Iturrate‐Garcia, M., Good, M.K., Grau, O., Green, P., Greve, M., Grogan, P., Haider, S., Hájek, T., Hallinger, M., Happonen, K., Harper, K.A., Heijmans, M.M.P.D., Henry, G.H.R., Hermanutz, L., Hewitt, R.E., Hollister, R.D., Hudson, J., Hülber, K., Iversen, C.M., Jaroszynska, F., Jiménez‐Alfaro, B., Johnstone, J., Jorgensen, R.H., Kaarlejärvi, E., Klady, R., Klimešová, J., Korsten, A., Kuleza, S., Kulonen, A., Lamarque, L.J., Lantz, T., Lavalle, A., Lembrechts, J.J., Lévesque, E., Little, C.J., Luoto, M., Macek, P., Mack, M.C., Mathakutha, R., Michelsen, A., Milbau, A., Molau, U., Morgan, J.W., Mörsdorf, M.A., Nabe-Nielsen, J., Schøler Nielsen, S., Ninot, J.M., Oberbauer, S.F., Olofsson, J., Onipchenko, V.G., Petraglia, A., Pickering, C., Prevéy, J.S., Rixen, C., Rumpf, S.B., Schaepman-Strub, G., Semenchuk, P., Shetti, R., Soudzilovskaia, N.A., Spasojevic, M.J., Speed, J.D.M., Street, L.E., Suding, K., Tape, K.D., Tomaselli, M., Trant, A., Treier, U.A., Tremblay, J.-P., Tremblay, M., Venn, S., Virkkala, A.-M., Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C., Normand, S., Thomas, H.J.D., Alatalo, J.M., Alexander, H., Anadon‐Rosell, A., Angers‐Blondin, S., Bai, Y., Baruah, G., te Beest, M., Berner, L., Björk, R.G., Blok, D., Bruelheide, H., Buchwal, A., Buras, A., Carbognani, M., Christie, K., Collier, L.S., Cooper, E.J., Cornelissen, J.H.C., Dickinson, K.J.M., Dullinger, S., Elberling, B., Eskelinen, Anu Maria, Forbes, B.C., Frei, E.R., Iturrate‐Garcia, M., Good, M.K., Grau, O., Green, P., Greve, M., Grogan, P., Haider, S., Hájek, T., Hallinger, M., Happonen, K., Harper, K.A., Heijmans, M.M.P.D., Henry, G.H.R., Hermanutz, L., Hewitt, R.E., Hollister, R.D., Hudson, J., Hülber, K., Iversen, C.M., Jaroszynska, F., Jiménez‐Alfaro, B., Johnstone, J., Jorgensen, R.H., Kaarlejärvi, E., Klady, R., Klimešová, J., Korsten, A., Kuleza, S., Kulonen, A., Lamarque, L.J., Lantz, T., Lavalle, A., Lembrechts, J.J., Lévesque, E., Little, C.J., Luoto, M., Macek, P., Mack, M.C., Mathakutha, R., Michelsen, A., Milbau, A., Molau, U., Morgan, J.W., Mörsdorf, M.A., Nabe-Nielsen, J., Schøler Nielsen, S., Ninot, J.M., Oberbauer, S.F., Olofsson, J., Onipchenko, V.G., Petraglia, A., Pickering, C., Prevéy, J.S., Rixen, C., Rumpf, S.B., Schaepman-Strub, G., Semenchuk, P., Shetti, R., Soudzilovskaia, N.A., Spasojevic, M.J., Speed, J.D.M., Street, L.E., Suding, K., Tape, K.D., Tomaselli, M., Trant, A., Treier, U.A., Tremblay, J.-P., Tremblay, M., Venn, S., and Virkkala, A.-M.
- Abstract
MotivationThe Tundra Trait Team (TTT) database includes field‐based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade‐offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable containedThe database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (> 1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grainMeasurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub‐Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grainAll data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurementTrait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software formatcsv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
- Published
- 2018
10. Tundra Trait Team: A database of plant traits spanning the tundra biome
- Author
-
Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Normand, S., Thomas, H. J. D., Alatalo, J. M., Alexander, H., Anadon-Rosell, A., Angers-Blondin, S., Bai, Y., Baruah, G., te Beest, M., Berner, L., Björk, R. G., Blok, D., Bruelheide, H., Buchwal, A., Buras, A., Carbognani, M., Christie, K., Collier, L. S., Cooper, E. J., Cornelissen, J. H. C., Dickinson, K. J. M., Dullinger, S., Elberling, B., Eskelinen, A., Forbes, B. C., Frei, E. R., Iturrate-Garcia, M., Good, M. K., Grau, O., Green, P., Greve, M., Grogan, P., Haider, S., Hájek, T., Hallinger, M., Happonen, K., Harper, K. A., Heijmans, M. M. P. D., Henry, G. H. R., Hermanutz, L., Hewitt, R. E., Hollister, R. D., Hudson, J., Hülber, K., Iversen, C. M., Jaroszynska, F., Jiménez-Alfaro, B., Johnstone, J., Jorgensen, R. H., Kaarlejärvi, E., Klady, R., Klimešová, J., Korsten, A., Kuleza, S., Kulonen, A., Lamarque, L. J., Lantz, T., Lavalle, A., Lembrechts, J. J., Lévesque, E., Little, C. J., Luoto, M., Macek, P., Mack, M. C., Mathakutha, R., Michelsen, A., Milbau, A., Molau, U., Morgan, J. W., Mörsdorf, M. A., Nabe-Nielsen, J., Nielsen, S. S., Ninot, J. M., Oberbauer, S. F., Olofsson, J., Onipchenko, V. G., Petraglia, A., Pickering, C., Prevéy, J. S., Rixen, C., Rumpf, S. B., Schaepman-Strub, G., Semenchuk, P., Shetti, R., Soudzilovskaia, N. A., Spasojevic, M. J., Speed, J. D. M., Street, L. E., Suding, K., Tape, K. D., Tomaselli, M., Trant, A., Treier, U. A., Tremblay, J. P., Tremblay, M., Venn, S., Virkkala, A. M., Vowles, T., Weijers, S., Wilmking, M., Wipf, S., Zamin, T., Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Normand, S., Thomas, H. J. D., Alatalo, J. M., Alexander, H., Anadon-Rosell, A., Angers-Blondin, S., Bai, Y., Baruah, G., te Beest, M., Berner, L., Björk, R. G., Blok, D., Bruelheide, H., Buchwal, A., Buras, A., Carbognani, M., Christie, K., Collier, L. S., Cooper, E. J., Cornelissen, J. H. C., Dickinson, K. J. M., Dullinger, S., Elberling, B., Eskelinen, A., Forbes, B. C., Frei, E. R., Iturrate-Garcia, M., Good, M. K., Grau, O., Green, P., Greve, M., Grogan, P., Haider, S., Hájek, T., Hallinger, M., Happonen, K., Harper, K. A., Heijmans, M. M. P. D., Henry, G. H. R., Hermanutz, L., Hewitt, R. E., Hollister, R. D., Hudson, J., Hülber, K., Iversen, C. M., Jaroszynska, F., Jiménez-Alfaro, B., Johnstone, J., Jorgensen, R. H., Kaarlejärvi, E., Klady, R., Klimešová, J., Korsten, A., Kuleza, S., Kulonen, A., Lamarque, L. J., Lantz, T., Lavalle, A., Lembrechts, J. J., Lévesque, E., Little, C. J., Luoto, M., Macek, P., Mack, M. C., Mathakutha, R., Michelsen, A., Milbau, A., Molau, U., Morgan, J. W., Mörsdorf, M. A., Nabe-Nielsen, J., Nielsen, S. S., Ninot, J. M., Oberbauer, S. F., Olofsson, J., Onipchenko, V. G., Petraglia, A., Pickering, C., Prevéy, J. S., Rixen, C., Rumpf, S. B., Schaepman-Strub, G., Semenchuk, P., Shetti, R., Soudzilovskaia, N. A., Spasojevic, M. J., Speed, J. D. M., Street, L. E., Suding, K., Tape, K. D., Tomaselli, M., Trant, A., Treier, U. A., Tremblay, J. P., Tremblay, M., Venn, S., Virkkala, A. M., Vowles, T., Weijers, S., Wilmking, M., Wipf, S., and Zamin, T.
- Abstract
Motivation: The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (> 1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
- Published
- 2018
11. ROLE OF DIAZEPAM IN THE MANAGEMENT OF ECLAMPSIA
- Author
-
L, KASTURILA, primary and SHETTI, R. N., additional
- Published
- 1976
- Full Text
- View/download PDF
12. USE OF NEOSTIGMINE AFTER SNAKE BITE
- Author
-
NAPHADE, R. W. and SHETTI, R. N.
- Abstract
Cobra venom consists of a neurotoxin which is responsible for respiratory paralysis simulating that associated with a non-depolarizing muscle relaxant. A combination of artificial respiration and neostigmine has been useful in resuscitating a child bitten by a snake.
- Published
- 1977
- Full Text
- View/download PDF
13. Prenatal maternal mental health and resilience in the United Kingdom during the SARS-CoV-2 pandemic: a cross- national comparison.
- Author
-
Datye S, Smiljanic M, Shetti R, MacRae-Miller A, van Teijlingen E, Vinayakarao L, Peters EMJ, Lebel C, Tomfohr-Madsen L, Giesbrecht G, Khashu M, and Conrad ML
- Abstract
Introduction: Prenatal mental health problems are associated with morbidity for the pregnant person, and their infants are at long-term risk for poor health outcomes. We aim to explore how the SARS-CoV-2 pandemic affected the mental health of pregnant people in the United Kingdom (UK), and to further identify resilience factors which may have contributed to varying mental health outcomes. We also aim to examine the quality of antenatal care provided during the pandemic in the UK and to identify potential inadequacies to enhance preparedness for future events., Methods: During June-November 2020, we recruited 3666 individuals in the UK for the EPPOCH pregnancy cohort (Maternal mental health during the COVID-19 pandemic: Effect of the Pandemic on Pregnancy Outcomes and Childhood Health). Participants were assessed for depression, anxiety, anger and pregnancy-related anxiety using validated scales. Additionally, physical activity, social support, individualized support and personal coping ability of the respondents were assessed as potential resilience factors., Results: Participants reported high levels of depression (57.05%), anxiety (58.04%) and anger (58.05%). Higher levels of social and individualized support and personal coping ability were associated with lower mental health challenges. Additionally, pregnant individuals in the UK experienced higher depression during the pandemic than that reported in Canada. Finally, qualitative analysis revealed that restrictions for partners and support persons during medical appointments as well as poor public health communication led to increased mental health adversities and hindered ability to make medical decisions., Discussion: This study revealed increased mental health challenges among pregnant individuals in the UK during the SARS-CoV-2 pandemic. These results highlight the need for reassessing the mental health support measures available to pregnant people in the UK, both during times of crisis and in general., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision., (Copyright © 2024 Datye, Smiljanic, Shetti, MacRae-Miller, van Teijlingen, Vinayakarao, Peters, Lebel, Tomfohr-Madsen, Giesbrecht, Khashu and Conrad.)
- Published
- 2024
- Full Text
- View/download PDF
14. Incorporating high-resolution climate, remote sensing and topographic data to map annual forest growth in central and eastern Europe.
- Author
-
Jevšenak J, Klisz M, Mašek J, Čada V, Janda P, Svoboda M, Vostarek O, Treml V, van der Maaten E, Popa A, Popa I, van der Maaten-Theunissen M, Zlatanov T, Scharnweber T, Ahlgrimm S, Stolz J, Sochová I, Roibu CC, Pretzsch H, Schmied G, Uhl E, Kaczka R, Wrzesiński P, Šenfeldr M, Jakubowski M, Tumajer J, Wilmking M, Obojes N, Rybníček M, Lévesque M, Potapov A, Basu S, Stojanović M, Stjepanović S, Vitas A, Arnič D, Metslaid S, Neycken A, Prislan P, Hartl C, Ziche D, Horáček P, Krejza J, Mikhailov S, Světlík J, Kalisty A, Kolář T, Lavnyy V, Hordo M, Oberhuber W, Levanič T, Mészáros I, Schneider L, Lehejček J, Shetti R, Bošeľa M, Copini P, Koprowski M, Sass-Klaassen U, Izmir ŞC, Bakys R, Entner H, Esper J, Janecka K, Martinez Del Castillo E, Verbylaite R, Árvai M, de Sauvage JC, Čufar K, Finner M, Hilmers T, Kern Z, Novak K, Ponjarac R, Puchałka R, Schuldt B, Škrk Dolar N, Tanovski V, Zang C, Žmegač A, Kuithan C, Metslaid M, Thurm E, Hafner P, Krajnc L, Bernabei M, Bojić S, Brus R, Burger A, D'Andrea E, Đorem T, Gławęda M, Gričar J, Gutalj M, Horváth E, Kostić S, Matović B, Merela M, Miletić B, Morgós A, Paluch R, Pilch K, Rezaie N, Rieder J, Schwab N, Sewerniak P, Stojanović D, Ullmann T, Waszak N, Zin E, Skudnik M, Oštir K, Rammig A, and Buras A
- Subjects
- Forests, Trees, Climate Change, Europe, Eastern, Europe, Ecosystem, Remote Sensing Technology
- Abstract
To enhance our understanding of forest carbon sequestration, climate change mitigation and drought impact on forest ecosystems, the availability of high-resolution annual forest growth maps based on tree-ring width (TRW) would provide a significant advancement to the field. Site-specific characteristics, which can be approximated by high-resolution Earth observation by satellites (EOS), emerge as crucial drivers of forest growth, influencing how climate translates into tree growth. EOS provides information on surface reflectance related to forest characteristics and thus can potentially improve the accuracy of forest growth models based on TRW. Through the modelling of TRW using EOS, climate and topography data, we showed that species-specific models can explain up to 52 % of model variance (Quercus petraea), while combining different species results in relatively poor model performance (R
2 = 13 %). The integration of EOS into models based solely on climate and elevation data improved the explained variance by 6 % on average. Leveraging these insights, we successfully generated a map of annual TRW for the year 2021. We employed the area of applicability (AOA) approach to delineate the range in which our models are deemed valid. The calculated AOA for the established forest-type models was 73 % of the study region, indicating robust spatial applicability. Notably, unreliable predictions predominantly occurred in the climate margins of our dataset. In conclusion, our large-scale assessment underscores the efficacy of combining climate, EOS and topographic data to develop robust models for mapping annual TRW. This research not only fills a critical void in the current understanding of forest growth dynamics but also highlights the potential of integrated data sources for comprehensive ecosystem assessments., Competing Interests: Declaration of competing interest The authors declare no competing interests., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
15. Major tree species of Central European forests differ in their proportion of positive, negative, and nonstationary growth trends.
- Author
-
Kašpar J, Tumajer J, Altman J, Altmanová N, Čada V, Čihák T, Doležal J, Fibich P, Janda P, Kaczka R, Kolář T, Lehejček J, Mašek J, Hellebrandová KN, Rybníček M, Rydval M, Shetti R, Svoboda M, Šenfeldr M, Šamonil P, Vašíčková I, Vejpustková M, and Treml V
- Subjects
- Trees, Forests, Norway, Climate Change, Picea physiology, Pinus sylvestris, Fagus, Quercus
- Abstract
Temperate forests are undergoing significant transformations due to the influence of climate change, including varying responses of different tree species to increasing temperature and drought severity. To comprehensively understand the full range of growth responses, representative datasets spanning extensive site and climatic gradients are essential. This study utilizes tree-ring data from 550 sites from the temperate forests of Czechia to assess growth trends of six dominant Central European tree species (European beech, Norway spruce, Scots pine, silver fir, sessile and pedunculate oak) over 1990-2014. By modeling mean growth series for each species and site, and employing principal component analysis, we identified the predominant growth trends. Over the study period, linear growth trends were evident across most sites (56% increasing, 32% decreasing, and 10% neutral). The proportion of sites with stationary positive trends increased from low toward high elevations, whereas the opposite was true for the stationary negative trends. Notably, within the middle range of their distribution (between 500 and 700 m a.s.l.), Norway spruce and European beech exhibited a mix of positive and negative growth trends. While Scots pine growth trends showed no clear elevation-based pattern, silver fir and oaks displayed consistent positive growth trends regardless of site elevation, indicating resilience to the ongoing warming. We demonstrate divergent growth trajectories across space and among species. These findings are particularly important as recent warming has triggered a gradual shift in the elevation range of optimal growth conditions for most tree species and has also led to a decoupling of growth trends between lowlands and mountain areas. As a result, further future shifts in the elevation range and changes in species diversity of European temperate forests can be expected., (© 2024 John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
16. Global assessment of relationships between climate and tree growth.
- Author
-
Wilmking M, van der Maaten-Theunissen M, van der Maaten E, Scharnweber T, Buras A, Biermann C, Gurskaya M, Hallinger M, Lange J, Shetti R, Smiljanic M, and Trouillier M
- Subjects
- Carbon, Climate Change, Forests, Climate, Trees
- Abstract
Tree-ring records provide global high-resolution information on tree-species responses to global change, forest carbon and water dynamics, and past climate variability and extremes. The underlying assumption is a stationary (time-stable), quasi-linear relationship between tree growth and environment, which however conflicts with basic ecological and evolutionary theory. Indeed, our global assessment of the relevant tree-ring literature demonstrates non-stationarity in the majority of tested cases, not limited to specific proxies, environmental parameters, regions or species. Non-stationarity likely represents the general nature of the relationship between tree-growth proxies and environment. Studies assuming stationarity however score two times more citations influencing other fields of science and the science-policy interface. To reconcile ecological reality with the application of tree-ring proxies for climate or environmental estimates, we provide a clarification of the stationarity concept, propose a simple confidence framework for the re-evaluation of existing studies and recommend the use of a new statistical tool to detect non-stationarity in tree-ring proxies. Our contribution is meant to stimulate and facilitate discussion in light of our results to help increase confidence in tree-ring-based climate and environmental estimates for science, the public and policymakers., (© 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
17. Plant functional trait change across a warming tundra biome.
- Author
-
Bjorkman AD, Myers-Smith IH, Elmendorf SC, Normand S, Rüger N, Beck PSA, Blach-Overgaard A, Blok D, Cornelissen JHC, Forbes BC, Georges D, Goetz SJ, Guay KC, Henry GHR, HilleRisLambers J, Hollister RD, Karger DN, Kattge J, Manning P, Prevéy JS, Rixen C, Schaepman-Strub G, Thomas HJD, Vellend M, Wilmking M, Wipf S, Carbognani M, Hermanutz L, Lévesque E, Molau U, Petraglia A, Soudzilovskaia NA, Spasojevic MJ, Tomaselli M, Vowles T, Alatalo JM, Alexander HD, Anadon-Rosell A, Angers-Blondin S, Beest MT, Berner L, Björk RG, Buchwal A, Buras A, Christie K, Cooper EJ, Dullinger S, Elberling B, Eskelinen A, Frei ER, Grau O, Grogan P, Hallinger M, Harper KA, Heijmans MMPD, Hudson J, Hülber K, Iturrate-Garcia M, Iversen CM, Jaroszynska F, Johnstone JF, Jørgensen RH, Kaarlejärvi E, Klady R, Kuleza S, Kulonen A, Lamarque LJ, Lantz T, Little CJ, Speed JDM, Michelsen A, Milbau A, Nabe-Nielsen J, Nielsen SS, Ninot JM, Oberbauer SF, Olofsson J, Onipchenko VG, Rumpf SB, Semenchuk P, Shetti R, Collier LS, Street LE, Suding KN, Tape KD, Trant A, Treier UA, Tremblay JP, Tremblay M, Venn S, Weijers S, Zamin T, Boulanger-Lapointe N, Gould WA, Hik DS, Hofgaard A, Jónsdóttir IS, Jorgenson J, Klein J, Magnusson B, Tweedie C, Wookey PA, Bahn M, Blonder B, van Bodegom PM, Bond-Lamberty B, Campetella G, Cerabolini BEL, Chapin FS 3rd, Cornwell WK, Craine J, Dainese M, de Vries FT, Díaz S, Enquist BJ, Green W, Milla R, Niinemets Ü, Onoda Y, Ordoñez JC, Ozinga WA, Penuelas J, Poorter H, Poschlod P, Reich PB, Sandel B, Schamp B, Sheremetev S, and Weiher E
- Subjects
- Biometry, Geographic Mapping, Humidity, Phenotype, Soil chemistry, Spatio-Temporal Analysis, Temperature, Water analysis, Global Warming, Plant Physiological Phenomena, Plants anatomy & histology, Tundra
- Abstract
The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
- Published
- 2018
- Full Text
- View/download PDF
18. Diverging shrub and tree growth from the Polar to the Mediterranean biomes across the European continent.
- Author
-
Pellizzari E, Camarero JJ, Gazol A, Granda E, Shetti R, Wilmking M, Moiseev P, Pividori M, and Carrer M
- Subjects
- Ecosystem, Europe, Temperature, Droughts, Juniperus, Trees growth & development
- Abstract
Climate warming is expected to enhance productivity and growth of woody plants, particularly in temperature-limited environments at the northernmost or uppermost limits of their distribution. However, this warming is spatially uneven and temporally variable, and the rise in temperatures differently affects biomes and growth forms. Here, applying a dendroecological approach with generalized additive mixed models, we analysed how the growth of shrubby junipers and coexisting trees (larch and pine species) responds to rising temperatures along a 5000-km latitudinal range including sites from the Polar, Alpine to the Mediterranean biomes. We hypothesize that, being more coupled to ground microclimate, junipers will be less influenced by atmospheric conditions and will less respond to the post-1950 climate warming than coexisting standing trees. Unexpectedly, shrub and tree growth forms revealed divergent growth trends in all the three biomes, with juniper performing better than trees at Mediterranean than at Polar and Alpine sites. The post-1980s decline of tree growth in Mediterranean sites might be induced by drought stress amplified by climate warming and did not affect junipers. We conclude that different but coexisting long-living growth forms can respond differently to the same climate factor and that, even in temperature-limited area, other drivers like the duration of snow cover might locally play a fundamental role on woody plants growth across Europe., (© 2017 John Wiley & Sons Ltd.)
- Published
- 2017
- Full Text
- View/download PDF
19. Induction of Robust Immune Responses in Swine by Using a Cocktail of Adenovirus-Vectored African Swine Fever Virus Antigens.
- Author
-
Lokhandwala S, Waghela SD, Bray J, Martin CL, Sangewar N, Charendoff C, Shetti R, Ashley C, Chen CH, Berghman LR, Mwangi D, Dominowski PJ, Foss DL, Rai S, Vora S, Gabbert L, Burrage TG, Brake D, Neilan J, and Mwangi W
- Subjects
- Adenoviridae genetics, Animals, Antigens, Viral chemistry, Genetic Vectors, Interferon-gamma biosynthesis, Interferon-gamma immunology, Swine, T-Lymphocytes, Cytotoxic immunology, Vaccines, Subunit adverse effects, Vaccines, Subunit immunology, Viral Vaccines adverse effects, Virulence, African Swine Fever Virus immunology, Antigens, Viral immunology, Immunity, Cellular, Immunogenicity, Vaccine, Viral Vaccines immunology
- Abstract
The African swine fever virus (ASFV) causes a fatal hemorrhagic disease in domestic swine, and at present no treatment or vaccine is available. Natural and gene-deleted, live attenuated strains protect against closely related virulent strains; however, they are yet to be deployed and evaluated in the field to rule out chronic persistence and a potential for reversion to virulence. Previous studies suggest that antibodies play a role in protection, but induction of cytotoxic T lymphocytes (CTLs) could be the key to complete protection. Hence, generation of an efficacious subunit vaccine depends on identification of CTL targets along with a suitable delivery method that will elicit effector CTLs capable of eliminating ASFV-infected host cells and confer long-term protection. To this end, we evaluated the safety and immunogenicity of an adenovirus-vectored ASFV (Ad-ASFV) multiantigen cocktail formulated in two different adjuvants and at two immunizing doses in swine. Immunization with the cocktail rapidly induced unprecedented ASFV antigen-specific antibody and cellular immune responses against all of the antigens. The robust antibody responses underwent rapid isotype switching within 1 week postpriming, steadily increased over a 2-month period, and underwent rapid recall upon boost. Importantly, the primed antibodies strongly recognized the parental ASFV (Georgia 2007/1) by indirect fluorescence antibody (IFA) assay and Western blotting. Significant antigen-specific gamma interferon-positive (IFN-γ
+ ) responses were detected postpriming and postboosting. Furthermore, this study is the first to demonstrate induction of ASFV antigen-specific CTL responses in commercial swine using Ad-ASFV multiantigens. The relevance of the induced immune responses in regard to protection needs to be evaluated in a challenge study., (Copyright © 2016, American Society for Microbiology. All Rights Reserved.)- Published
- 2016
- Full Text
- View/download PDF
20. Role of diazepam in the management of eclampsia.
- Author
-
Kasturilal and Shetti RN
- Subjects
- Adolescent, Adult, Blood Pressure, Body Temperature, Clinical Trials as Topic, Delivery, Obstetric, Eclampsia physiopathology, Female, Humans, Infant, Newborn, Pregnancy, Time Factors, Diazepam therapeutic use, Eclampsia drug therapy
- Published
- 1975
21. Use of neostigmine after snake bite.
- Author
-
Naphade RW and Shetti RN
- Subjects
- Child, Humans, Male, Respiration, Artificial, Snake Bites drug therapy, Neostigmine therapeutic use, Snake Bites therapy
- Abstract
Cobra venom consists of a neurotoxin which is responsible for respiratory paralysis simulating that associated with a non-depolarizing muscle relaxant. A combination of artificial respiration and neostigmine has been useful in resuscitating a child bitten by a snake.
- Published
- 1977
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.