1. Real-time PCR primers and probes for the detection of Shiga toxin genes, including novel subtypes.
- Author
-
McMahon T, Clarke S, Deschênes M, Tapp K, Blais B, and Gill A
- Subjects
- Food Microbiology, Food Contamination analysis, Shiga Toxin genetics, Multiplex Polymerase Chain Reaction methods, Real-Time Polymerase Chain Reaction methods, Shiga-Toxigenic Escherichia coli genetics, Shiga-Toxigenic Escherichia coli classification, Shiga-Toxigenic Escherichia coli isolation & purification, DNA Primers genetics
- Abstract
Shiga toxin-producing Escherichia coli (STEC) are foodborne enteric pathogens. STEC are differentiated from other E. coli by detection of Shiga toxin (Stx) or its gene (stx). The established nomenclature of Stx identifies ten subtypes (Stx1a, Stx1c, Stxd, Stx2a to Stx2g). An additional nine subtypes have been reported and described (Stx1e, Stx2h to Stx2o). Many PCR protocols only detect a subset of Stx subtypes which limits their inclusivity. Here we describe a real-time PCR assay inclusive of the DNA sequences of representatives of all currently described Stx subtypes. A multiplex real-time PCR assay for detection of stx was developed using nine primers and four probes. Since the identification of STEC does not require differentiation of stx subtypes, the probes use the same fluorescent reporter to enable detection of multiple possible targets in a single reaction. The PCR mixture includes an internal positive control to detect inhibition of the reaction. Thus, the protocol can be performed on a two-channel real-time PCR platform. To reduce the biosafety risk inherent in the use of STEC cultures as process controls, the protocol also includes the option of a non-pathogenic E. coli transformant carrying a plasmid encoding the targeted fragment of the stx2a sequence. The inclusivity of the PCR was assessed against colonies of 137 STEC strains and one strain of Shigella dysenteriae, including strains carrying single copies of stx representing fourteen subtypes (stx1 a, c, d; stx2 a-j and o). Five additional subtypes (stx1e, 2k, 2l, 2m and 2n) were represented by E. coli transformed with plasmids encoding toxoid (enzymatically inactive A subunit) sequences. The exclusivity panel consisted of 70 bacteria, including 21 stx-negative E. coli. Suitability for food analysis was assessed with artificially inoculated ground beef, spinach, cheese, and apple cider. The real-time PCR generated positive results for all 19 stx subtypes, represented by colonies of STEC, S. dysenteriae and E. coli transformants carrying stx toxoid plasmids. Tests of exclusivity panel colonies were all negative. The real-time PCR detected the presence of stx in all inoculated food enrichments tested, and the presence of STEC was confirmed by isolation., Competing Interests: Declaration of competing interest None., (Crown Copyright © 2024. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF