18 results on '"Shitamichi K"'
Search Results
2. P8-2 NIRS-measurements of cortical hemodynamic activity in adults and preschool infants in response to static and motion stimuli
- Author
-
Remijn, G.B., primary, Kikuchi, M., additional, Yoshimura, Y., additional, Nagao, K., additional, Shitamichi, K., additional, Ueno, S., additional, Kojima, H., additional, and Minabe, Y., additional
- Published
- 2010
- Full Text
- View/download PDF
3. P33-16 Auditory evoked response of speech stimuli in 3- to 4-year-old children: a magnetoencephalography study
- Author
-
Yoshimura, Y., primary, Kikuchi, M., additional, Remijn, G.B., additional, Nagao, K., additional, Shitamichi, K., additional, Ueno, S., additional, Kojima, H., additional, Tsubokawa, T., additional, and Minabe, Y., additional
- Published
- 2010
- Full Text
- View/download PDF
4. trans-Cyclooctenes as Scavengers of Bromine Involved in Catalytic Bromination.
- Author
-
Murata R, Shitamichi K, Hiramatsu M, Matsubara S, Uraguchi D, and Asano K
- Abstract
Scavengers that capture reactive chemical substances are used to prevent the decomposition of materials. However, in the field of catalysis, the development of scavengers that inhibit background pathways has attracted little attention, although the concept will open up an otherwise inaccessible reaction space. In catalytic bromination, fast non-catalyzed background reactions disturb the catalytic control of the selectivity, even when using N-bromoamide reagents, which have a milder reactivity than bromine (Br
2 ). Here, we developed a trans-cyclooctene (TCO) bearing a 2-pyridylethyl group to efficiently retard background reactions by capturing Br2 in bromocyclization using N-bromosuccinimide. The use of less than a stoichiometric amount of the TCO was sufficient to inhibit non-catalyzed reactions, and mechanistic studies using the TCO revealed that in situ-generated Br2 provides non-catalyzed reaction pathways based on a chain mechanism. The TCO is useful as an additive for improving enantioselectivity and regioselectivity in catalytic reactions. Cooperative systems using the TCO with selective catalysts offer an alternative strategy for optimizing catalyst-controlled selectivity during bromination. Moreover, it also served as an indicator of Br2 involved in catalytic reaction pathways; thus, the TCO was useful as a probe for mechanistic investigations into the involvement of Br2 in bromination reactions of interest., (© 2023 Wiley-VCH GmbH.)- Published
- 2024
- Full Text
- View/download PDF
5. trans-Cyclooctenes as Halolactonization Catalysts.
- Author
-
Einaru S, Shitamichi K, Nagano T, Matsumoto A, Asano K, and Matsubara S
- Abstract
The strained olefins in trans-cyclooctenes serve as efficient catalysts for halolactonizations, including bromolactonizations and iodolactonizations. The trans-cyclooctene framework is essential for excellent catalytic performance, and the substituents also play important roles in determining efficiency. These results are the first demonstration of catalysis by a trans-cyclooctene., (© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2018
- Full Text
- View/download PDF
6. A Near-Infrared Spectroscopy Study on Cortical Hemodynamic Responses to Normal and Whispered Speech in 3- to 7-Year-Old Children.
- Author
-
Remijn GB, Kikuchi M, Yoshimura Y, Shitamichi K, Ueno S, Tsubokawa T, Kojima H, Higashida H, and Minabe Y
- Subjects
- Child, Child, Preschool, Female, Hemoglobins metabolism, Humans, Male, Oxygen blood, Sound Spectrography, Spectroscopy, Near-Infrared, Speech Acoustics, Cerebral Cortex physiology, Cerebrovascular Circulation physiology, Speech Perception physiology
- Abstract
Purpose: The purpose of this study was to assess cortical hemodynamic response patterns in 3- to 7-year-old children listening to two speech modes: normally vocalized and whispered speech. Understanding whispered speech requires processing of the relatively weak, noisy signal, as well as the cognitive ability to understand the speaker's reason for whispering., Method: Near-infrared spectroscopy (NIRS) was used to assess changes in cortical oxygenated hemoglobin from 16 typically developing children., Results: A profound difference in oxygenated hemoglobin levels between the speech modes was found over left ventral sensorimotor cortex. In particular, over areas that represent speech articulatory body parts and motion, such as the larynx, lips, and jaw, oxygenated hemoglobin was higher for whisper than for normal speech. The weaker stimulus, in terms of sound energy, thus induced the more profound hemodynamic response. This, moreover, occurred over areas involved in speech articulation, even though the children did not overtly articulate speech during measurements., Conclusion: Because whisper is a special form of communication not often used in daily life, we suggest that the hemodynamic response difference over left ventral sensorimotor cortex resulted from inner (covert) practice or imagination of the different articulatory actions necessary to produce whisper as opposed to normal speech.
- Published
- 2017
- Full Text
- View/download PDF
7. A longitudinal study of auditory evoked field and language development in young children.
- Author
-
Yoshimura Y, Kikuchi M, Ueno S, Shitamichi K, Remijn GB, Hiraishi H, Hasegawa C, Furutani N, Oi M, Munesue T, Tsubokawa T, Higashida H, and Minabe Y
- Subjects
- Biomarkers, Child, Child, Preschool, Female, Functional Laterality physiology, Humans, Longitudinal Studies, Magnetoencephalography instrumentation, Male, Speech Perception physiology, Auditory Cortex physiology, Evoked Potentials, Auditory physiology, Language Development, Magnetoencephalography methods
- Abstract
The relationship between language development in early childhood and the maturation of brain functions related to the human voice remains unclear. Because the development of the auditory system likely correlates with language development in young children, we investigated the relationship between the auditory evoked field (AEF) and language development using non-invasive child-customized magnetoencephalography (MEG) in a longitudinal design. Twenty typically developing children were recruited (aged 36-75 months old at the first measurement). These children were re-investigated 11-25 months after the first measurement. The AEF component P1m was examined to investigate the developmental changes in each participant's neural brain response to vocal stimuli. In addition, we examined the relationships between brain responses and language performance. P1m peak amplitude in response to vocal stimuli significantly increased in both hemispheres in the second measurement compared to the first measurement. However, no differences were observed in P1m latency. Notably, our results reveal that children with greater increases in P1m amplitude in the left hemisphere performed better on linguistic tests. Thus, our results indicate that P1m evoked by vocal stimuli is a neurophysiological marker for language development in young children. Additionally, MEG is a technique that can be used to investigate the maturation of the auditory cortex based on auditory evoked fields in young children. This study is the first to demonstrate a significant relationship between the development of the auditory processing system and the development of language abilities in young children., (Copyright © 2014 Elsevier Inc. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
8. Somatosensory evoked field in response to visuotactile stimulation in 3- to 4-year-old children.
- Author
-
Remijn GB, Kikuchi M, Shitamichi K, Ueno S, Yoshimura Y, Nagao K, Tsubokawa T, Kojima H, Higashida H, and Minabe Y
- Abstract
A child-customized magnetoencephalography system was used to investigate somatosensory evoked field (SEF) in 3- to 4-year-old children. Three stimulus conditions were used in which the children received tactile-only stimulation to their left index finger or visuotactile stimulation. In the two visuotactile conditions, the children received tactile stimulation to their finger while they watched a video of tactile stimulation applied either to someone else's finger (the finger-touch condition) or to someone else's toe (the toe-touch condition). The latencies and source strengths of equivalent current dipoles (ECDs) over contralateral (right) somatosensory cortex were analyzed. In the preschoolers who provided valid ECDs, the stimulus conditions induced an early-latency ECD occurring between 60 and 68 ms mainly with an anterior direction. We further identified a middle-latency ECD between 97 and 104 ms, which predominantly had a posterior direction. Finally, initial evidence was found for a late-latency ECD at about 139-151 ms again more often with an anterior direction. Differences were found in the source strengths of the middle-latency ECDs among the stimulus conditions. For the paired comparisons that could be formed, ECD source strength was more pronounced in the finger-touch condition than in the tactile-only and the toe-touch conditions. Although more research is necessary to expand the data set, this suggests that visual information modulated preschool SEF. The finding that ECD source strength was higher when seen and felt touch occurred to the same body part, as compared to a different body part, might further indicate that connectivity between visual and tactile information is indexed in preschool somatosensory cortical activity, already in a somatotopic way.
- Published
- 2014
- Full Text
- View/download PDF
9. The brain's response to the human voice depends on the incidence of autistic traits in the general population.
- Author
-
Yoshimura Y, Kikuchi M, Ueno S, Okumura E, Hiraishi H, Hasegawa C, Remijn GB, Shitamichi K, Munesue T, Tsubokawa T, Higashida H, and Minabe Y
- Subjects
- Adult, Female, Humans, Magnetoencephalography, Male, Young Adult, Autistic Disorder physiopathology, Brain physiopathology, Voice
- Abstract
Optimal brain sensitivity to the fundamental frequency (F0) contour changes in the human voice is important for understanding a speaker's intonation, and consequently, the speaker's attitude. However, whether sensitivity in the brain's response to a human voice F0 contour change varies with an interaction between an individual's traits (i.e., autistic traits) and a human voice element (i.e., presence or absence of communicative action such as calling) has not been investigated. In the present study, we investigated the neural processes involved in the perception of F0 contour changes in the Japanese monosyllables "ne" and "nu." "Ne" is an interjection that means "hi" or "hey" in English; pronunciation of "ne" with a high falling F0 contour is used when the speaker wants to attract a listener's attention (i.e., social intonation). Meanwhile, the Japanese concrete noun "nu" has no communicative meaning. We applied an adaptive spatial filtering method to the neuromagnetic time course recorded by whole-head magnetoencephalography (MEG) and estimated the spatiotemporal frequency dynamics of event-related cerebral oscillatory changes in beta band during the oddball paradigm. During the perception of the F0 contour change when "ne" was presented, there was event-related de-synchronization (ERD) in the right temporal lobe. In contrast, during the perception of the F0 contour change when "nu" was presented, ERD occurred in the left temporal lobe and in the bilateral occipital lobes. ERD that occurred during the social stimulus "ne" in the right hemisphere was significantly correlated with a greater number of autistic traits measured according to the Autism Spectrum Quotient (AQ), suggesting that the differences in human voice processing are associated with higher autistic traits, even in non-clinical subjects.
- Published
- 2013
- Full Text
- View/download PDF
10. Atypical brain lateralisation in the auditory cortex and language performance in 3- to 7-year-old children with high-functioning autism spectrum disorder: a child-customised magnetoencephalography (MEG) study.
- Author
-
Yoshimura Y, Kikuchi M, Shitamichi K, Ueno S, Munesue T, Ono Y, Tsubokawa T, Haruta Y, Oi M, Niida Y, Remijn GB, Takahashi T, Suzuki M, Higashida H, and Minabe Y
- Abstract
Background: Magnetoencephalography (MEG) is used to measure the auditory evoked magnetic field (AEF), which reflects language-related performance. In young children, however, the simultaneous quantification of the bilateral auditory-evoked response during binaural hearing is difficult using conventional adult-sized MEG systems. Recently, a child-customised MEG device has facilitated the acquisition of bi-hemispheric recordings, even in young children. Using the child-customised MEG device, we previously reported that language-related performance was reflected in the strength of the early component (P50m) of the auditory evoked magnetic field (AEF) in typically developing (TD) young children (2 to 5 years old) [Eur J Neurosci 2012, 35:644-650]. The aim of this study was to investigate how this neurophysiological index in each hemisphere is correlated with language performance in autism spectrum disorder (ASD) and TD children., Methods: We used magnetoencephalography (MEG) to measure the auditory evoked magnetic field (AEF), which reflects language-related performance. We investigated the P50m that is evoked by voice stimuli (/ne/) bilaterally in 33 young children (3 to 7 years old) with ASD and in 30 young children who were typically developing (TD). The children were matched according to their age (in months) and gender. Most of the children with ASD were high-functioning subjects., Results: The results showed that the children with ASD exhibited significantly less leftward lateralisation in their P50m intensity compared with the TD children. Furthermore, the results of a multiple regression analysis indicated that a shorter P50m latency in both hemispheres was specifically correlated with higher language-related performance in the TD children, whereas this latency was not correlated with non-verbal cognitive performance or chronological age. The children with ASD did not show any correlation between P50m latency and language-related performance; instead, increasing chronological age was a significant predictor of shorter P50m latency in the right hemisphere., Conclusions: Using a child-customised MEG device, we studied the P50m component that was evoked through binaural human voice stimuli in young ASD and TD children to examine differences in auditory cortex function that are associated with language development. Our results suggest that there is atypical brain function in the auditory cortex in young children with ASD, regardless of language development.
- Published
- 2013
- Full Text
- View/download PDF
11. Altered brain connectivity in 3-to 7-year-old children with autism spectrum disorder.
- Author
-
Kikuchi M, Shitamichi K, Yoshimura Y, Ueno S, Hiraishi H, Hirosawa T, Munesue T, Nakatani H, Tsubokawa T, Haruta Y, Oi M, Niida Y, Remijn GB, Takahashi T, Suzuki M, Higashida H, and Minabe Y
- Abstract
Autism spectrum disorder (ASD) is often described as a disorder of aberrant neural connectivity and/or aberrant hemispheric lateralization. Although it is important to study the pathophysiology of the developing ASD cortex, the physiological connectivity of the brain in young children with ASD under conscious conditions has not yet been described. Magnetoencephalography (MEG) is a noninvasive brain imaging technique that is practical for use in young children. MEG produces a reference-free signal and is, therefore, an ideal tool for computing the coherence between two distant cortical rhythms. Using a custom child-sized MEG, we recently reported that 5- to 7-year-old children with ASD (n = 26) have inherently different neural pathways than typically developing (TD) children that contribute to their relatively preserved performance of visual tasks. In this study, we performed non-invasive measurements of the brain activity of 70 young children (3-7 years old, of which 18 were aged 3-4 years), a sample consisting of 35 ASD children and 35 TD children. Physiological connectivity and the laterality of physiological connectivity were assessed using intrahemispheric coherence for 9 frequency bands. As a result, significant rightward connectivity between the parietotemporal areas, via gamma band oscillations, was found in the ASD group. As we obtained the non-invasive measurements using a custom child-sized MEG, this is the first study to demonstrate a rightward-lateralized neurophysiological network in conscious young children (including children aged 3-4 years) with ASD.
- Published
- 2013
- Full Text
- View/download PDF
12. A custom magnetoencephalography device reveals brain connectivity and high reading/decoding ability in children with autism.
- Author
-
Kikuchi M, Yoshimura Y, Shitamichi K, Ueno S, Hirosawa T, Munesue T, Ono Y, Tsubokawa T, Haruta Y, Oi M, Niida Y, Remijn GB, Takahashi T, Suzuki M, Higashida H, and Minabe Y
- Subjects
- Autistic Disorder psychology, Brain Mapping, Child, Child, Preschool, Female, Humans, Magnetoencephalography, Male, Reading, Task Performance and Analysis, Autistic Disorder physiopathology, Brain physiology
- Abstract
A subset of individuals with autism spectrum disorder (ASD) performs more proficiently on certain visual tasks than may be predicted by their general cognitive performances. However, in younger children with ASD (aged 5 to 7), preserved ability in these tasks and the neurophysiological correlates of their ability are not well documented. In the present study, we used a custom child-sized magnetoencephalography system and demonstrated that preserved ability in the visual reasoning task was associated with rightward lateralisation of the neurophysiological connectivity between the parietal and temporal regions in children with ASD. In addition, we demonstrated that higher reading/decoding ability was also associated with the same lateralisation in children with ASD. These neurophysiological correlates of visual tasks are considerably different from those that are observed in typically developing children. These findings indicate that children with ASD have inherently different neural pathways that contribute to their relatively preserved ability in visual tasks.
- Published
- 2013
- Full Text
- View/download PDF
13. Anterior prefrontal hemodynamic connectivity in conscious 3- to 7-year-old children with typical development and autism spectrum disorder.
- Author
-
Kikuchi M, Yoshimura Y, Shitamichi K, Ueno S, Hiraishi H, Munesue T, Hirosawa T, Ono Y, Tsubokawa T, Inoue Y, Oi M, Niida Y, Remijn GB, Takahashi T, Suzuki M, Higashida H, and Minabe Y
- Subjects
- Child, Child, Preschool, Consciousness, Female, Functional Laterality physiology, Humans, Male, Spectroscopy, Near-Infrared, Visual Perception physiology, Child Development physiology, Child Development Disorders, Pervasive physiopathology, Hemodynamics, Prefrontal Cortex physiopathology
- Abstract
Socio-communicative impairments are salient features of autism spectrum disorder (ASD) from a young age. The anterior prefrontal cortex (aPFC), or Brodmann area 10, is a key processing area for social function, and atypical development of this area is thought to play a role in the social deficits in ASD. It is important to understand these brain functions in developing children with ASD. However, these brain functions have not yet been well described under conscious conditions in young children with ASD. In the present study, we focused on the brain hemodynamic functional connectivity between the right and the left aPFC in children with ASD and typically developing (TD) children and investigated whether there was a correlation between this connectivity and social ability. Brain hemodynamic fluctuations were measured non-invasively by near-infrared spectroscopy (NIRS) in 3- to 7-year-old children with ASD (n = 15) and gender- and age-matched TD children (n = 15). The functional connectivity between the right and the left aPFC was assessed by measuring the coherence for low-frequency spontaneous fluctuations (0.01-0.10 Hz) during a narrated picture-card show. Coherence analysis demonstrated that children with ASD had a significantly higher inter-hemispheric connectivity with 0.02-Hz fluctuations, whereas a power analysis did not demonstrate significant differences between the two groups in terms of low frequency fluctuations (0.01-0.10 Hz). This aberrant higher connectivity in children with ASD was positively correlated with the severity of social deficit, as scored with the Autism Diagnostic Observation Schedule. This is the first study to demonstrate aberrant brain functional connectivity between the right and the left aPFC under conscious conditions in young children with ASD.
- Published
- 2013
- Full Text
- View/download PDF
14. Spatiotemporal frequency characteristics of cerebral oscillations during the perception of fundamental frequency contour changes in one-syllable intonation.
- Author
-
Ueno S, Okumura E, Remijn GB, Yoshimura Y, Kikuchi M, Shitamichi K, Nagao K, Mochiduki M, Haruta Y, Hayashi N, Munesue T, Tsubokawa T, Oi M, Nakatani H, Higashida H, and Minabe Y
- Subjects
- Acoustic Stimulation, Adult, Female, Humans, Magnetoencephalography, Male, Voice, Cerebral Cortex physiology, Speech Perception physiology
- Abstract
Accurate perception of fundamental frequency (F0) contour changes in the human voice is important for understanding a speaker's intonation, and consequently also his/her attitude. In this study, we investigated the neural processes involved in the perception of F0 contour changes in the Japanese one-syllable interjection "ne" in 21 native-Japanese listeners. A passive oddball paradigm was applied in which "ne" with a high falling F0 contour, used when urging a reaction from the listener, was randomly presented as a rare deviant among a frequent "ne" syllable with a flat F0 contour (i.e., meaningless intonation). We applied an adaptive spatial filtering method to the neuromagnetic time course recorded by whole-head magnetoencephalography (MEG) and estimated the spatiotemporal frequency dynamics of event-related cerebral oscillatory changes in the oddball paradigm. Our results demonstrated a significant elevation of beta band event-related desynchronization (ERD) in the right temporal and frontal areas, in time windows from 100 to 300 and from 300 to 500 ms after the onset of deviant stimuli (high falling F0 contour). This is the first study to reveal detailed spatiotemporal frequency characteristics of cerebral oscillations during the perception of intonational (not lexical) F0 contour changes in the human voice. The results further confirmed that the right hemisphere is associated with perception of intonational F0 contour information in the human voice, especially in early time windows., (Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
15. Language performance and auditory evoked fields in 2- to 5-year-old children.
- Author
-
Yoshimura Y, Kikuchi M, Shitamichi K, Ueno S, Remijn GB, Haruta Y, Oi M, Munesue T, Tsubokawa T, Higashida H, and Minabe Y
- Subjects
- Acoustic Stimulation, Child, Preschool, Cognition physiology, Electroencephalography, Female, Functional Laterality, Humans, Magnetoencephalography, Male, Neuropsychological Tests, Reaction Time, Regression Analysis, Auditory Cortex physiology, Brain Mapping, Evoked Potentials, Auditory physiology, Language, Language Development
- Abstract
Language development progresses at a dramatic rate in preschool children. As rapid temporal processing of speech signals is important in daily colloquial environments, we performed magnetoencephalography (MEG) to investigate the linkage between speech-evoked responses during rapid-rate stimulus presentation (interstimulus interval < 1 s) and language performance in 2- to 5-year-old children (n = 59). Our results indicated that syllables with this short stimulus interval evoked detectable P50m, but not N100m, in most participants, indicating a marked influence of longer neuronal refractory period for stimulation. The results of equivalent dipole estimation showed that the intensity of the P50m component in the left hemisphere was positively correlated with language performance (conceptual inference ability). The observed positive correlations were suggested to reflect the maturation of synaptic organisation or axonal maturation and myelination underlying the acquisition of linguistic abilities. The present study is among the first to use MEG to study brain maturation pertaining to language abilities in preschool children., (© 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.)
- Published
- 2012
- Full Text
- View/download PDF
16. Oxytocin attenuates feelings of hostility depending on emotional context and individuals' characteristics.
- Author
-
Hirosawa T, Kikuchi M, Higashida H, Okumura E, Ueno S, Shitamichi K, Yoshimura Y, Munesue T, Tsubokawa T, Haruta Y, Nakatani H, Hashimoto T, and Minabe Y
- Abstract
In humans, oxytocin (OT) enhances prosocial behaviour. However, it is still unclear how the prosocial effects of OT are modulated by emotional features and/or individuals' characteristics. In a placebo-controlled design, we tested 20 healthy male volunteers to investigate these behavioural and neurophysiological modulations using magnetoencephalography. As an index of the individuals' characteristics, we used the empathy quotient (EQ), the autism spectrum quotient (AQ), and the systemising quotient (SQ). Only during the perception of another person's angry face was a higher SQ a significant predictor of OT-induced prosocial change, both in the behavioural and neurophysiological indicators. In addition, a lower EQ was only a significant predictor of OT-induced prosocial changes in the neurophysiological indicators during the perception of angry faces. Both on the behavioural and the neurophysiological level, the effects of OT were specific for anger and correlated with a higher SQ.
- Published
- 2012
- Full Text
- View/download PDF
17. Hemodynamic responses to visual stimuli in cortex of adults and 3- to 4-year-old children.
- Author
-
Remijn GB, Kikuchi M, Yoshimura Y, Shitamichi K, Ueno S, Nagao K, Munesue T, Kojima H, and Minabe Y
- Subjects
- Adult, Cerebral Cortex blood supply, Cerebrovascular Circulation physiology, Child, Preschool, Female, Humans, Male, Photic Stimulation, Young Adult, Brain Mapping methods, Cerebral Cortex physiology, Hemodynamics physiology, Spectroscopy, Near-Infrared
- Abstract
In this study we used near-infrared spectroscopy (NIRS) to measure relative changes in cortical hemodynamics from 19 adult and 19 preschool children (aged 3-4 years old), while they watched epochs of static and motion pictures extracted from TV programs. The spatio-temporal characteristics of oxygenated and deoxygenated hemoglobin volumes (oxy- and deoxy-Hb) of both subject groups were described and compared where appropriate for five regions of interest (ROIs). These were striate, left and right middle temporal, and left and right temporo-parietal areas. Over these areas, deoxy-Hb volumes did not differ between both groups. Preschool data showed significant increases in oxy-Hb over striate, middle temporal and temporo-parietal areas in response to visual motion stimuli. Static stimuli caused a significant oxy-Hb increase over striate and left middle temporal areas. Surprisingly, changes in adult oxy-Hb were not profound and did not show a significant oxy-Hb increase in striate and middle temporal areas in response to the motion stimuli, warranting further research. In spite of oxy-Hb volume differences, oxy-Hb recovery to baseline followed a similar pattern in both groups in response to both static and motion stimuli. Together, the results suggest that near-infrared spectroscopy is a viable method to investigate cortical development of preschool children by monitoring their hemodynamic response patterns., (Copyright © 2011 Elsevier B.V. All rights reserved.)
- Published
- 2011
- Full Text
- View/download PDF
18. Neurovascular coupling in the human somatosensory cortex: a single trial study.
- Author
-
Kikuchi M, Shitamichi K, Ueno S, Yoshimura Y, Remijn GB, Nagao K, Munesue T, Iiyama K, Tsubokawa T, Haruta Y, Inoue Y, Watanabe K, Hashimoto T, Higashida H, and Minabe Y
- Subjects
- Adult, Beta Rhythm physiology, Cerebrovascular Circulation physiology, Data Interpretation, Statistical, Electric Stimulation, Electroencephalography, Female, Humans, Image Processing, Computer-Assisted methods, Magnetic Resonance Imaging, Magnetoencephalography, Male, Median Nerve physiology, Oxyhemoglobins metabolism, Somatosensory Cortex blood supply, Spectroscopy, Near-Infrared, Neural Pathways physiology, Somatosensory Cortex physiology
- Abstract
Oscillations in the higher frequency range are closely related to regional brain hemodynamic changes. Here we investigated this neurovascular coupling in humans in response to electrical stimulation of the right median nerve. In a single-trial study, we simultaneously recorded hemodynamic fluctuations in the somatosensory cortex by near infrared spectroscopy and brain neuronal oscillations by whole-head magnetoencephalography (MEG). The results from six volunteers showed that neural fluctuations at β or γ-band power were correlated with hemodynamic fluctuation during stimulus conditions. These correlations were prominent with a time delay of 5-7 s. This study provides new direct evidence that hemodynamic onset lags specific neural oscillations in the order of seconds in human awake conditions using noninvasive methods.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.