1. Arrays of Si vacancies in 4H-SiC produced by focused Li ion beam implantation
- Author
-
Shojan P. Pavunny, Andrew L. Yeats, Hunter B. Banks, Edward Bielejec, Rachael L. Myers-Ward, Matthew T. DeJarld, Allan S. Bracker, D. Kurt Gaskill, and Samuel G. Carter
- Subjects
Medicine ,Science - Abstract
Abstract Point defects in SiC are an attractive platform for quantum information and sensing applications because they provide relatively long spin coherence times, optical spin initialization, and spin-dependent fluorescence readout in a fabrication-friendly semiconductor. The ability to precisely place these defects at the optimal location in a host material with nano-scale accuracy is desirable for integration of these quantum systems with traditional electronic and photonic structures. Here, we demonstrate the precise spatial patterning of arrays of silicon vacancy ( $${V}_{Si}$$ V Si ) emitters in an epitaxial 4H-SiC (0001) layer through mask-less focused ion beam implantation of Li+. We characterize these arrays with high-resolution scanning confocal fluorescence microscopy on the Si-face, observing sharp emission lines primarily coming from the $${V1}^{{\prime}}$$ V 1 ′ zero-phonon line (ZPL). The implantation dose is varied over 3 orders of magnitude, leading to $${V}_{Si}$$ V Si densities from a few per implantation spot to thousands per spot, with a linear dependence between ZPL emission and implantation dose. Optically-detected magnetic resonance (ODMR) is also performed, confirming the presence of V2 $${V}_{Si}$$ V Si . Our investigation reveals scalable and reproducible defect generation.
- Published
- 2021
- Full Text
- View/download PDF