83 results on '"Shomali N"'
Search Results
2. Differential effects of docosahexaenoic acid (DHA) and linoleic acid (LA) on miR-101 and miR-342 tumor suppressor microRNAs in Taxol-treated HER2-positive breast cancer cells.
- Author
-
Aslan C, Maralbashi S, Shekari N, Javadian M, Shomali N, and Kazemi T
- Subjects
- Humans, Female, Cell Line, Tumor, Receptor, ErbB-2 genetics, Receptor, ErbB-2 metabolism, Gene Expression Regulation, Neoplastic drug effects, Cell Proliferation drug effects, MicroRNAs genetics, MicroRNAs metabolism, Docosahexaenoic Acids pharmacology, Paclitaxel pharmacology, Breast Neoplasms genetics, Breast Neoplasms drug therapy, Linoleic Acid pharmacology
- Abstract
Background & Aims: Docosahexaenoic acid (DHA) and linoleic acid (LA) have been shown to exhibit anti-proliferative effects against breast cancer cells. However, the mechanisms underlying these effects are not yet fully understood. One potential mechanism is through the regulation of microRNAs (miRs), which are known to play a crucial role in breast cancer development and progression. This study aimed to investigate the expression of miR-342 and miR-101 as tumor-suppressor miRs in the human HER-2 positive breast cancer cell line BT-474 after treatment with DHA, LA, alone or in combination with Taxol, a standard chemotherapy agent., Methods: The human breast cancer cell line BT-474 was cultured, and the IC50 for Taxol was determined using the MTT assay. Cells were then cultured and treated for 24 h with 100 μM DHA and 50 μM LA, alone or in combination with the respective IC50 of Taxol. Cells were harvested, and miRNA extraction and cDNA synthesis were performed using standard methods. Expression levels of miRs were analyzed using quantitative real-time PCR (qRT-PCR), and results were normalized against U6 snRNA expression levels., Results: The Taxol IC50 for BT-474 cells was 19 nM. According to the data obtained from our study, it was observed that Taxol treatment resulted in the down-regulation of both miR-101 and miR-342 (3.69 (p < 0.0001) and 1.88 fold, (p < 0.0001) respectively). In addition, DHA, LA and DHA + LA caused up-regulation of miR-101 (0.11, 0.05, 0.03 fold (p < 0.0001) respectively) but not miR-342 (decreased by 1.93 (p < 0.0001), 2.89 (p < 0.0001) and 1.19 fold (p = 0.0029) respectively). Notably, treatment with DHA, LA and DHA + LA was able to restore the down-regulated expression of miR-101 (0.25 (p < 0.0001), 0.05 (p = 0.0012) and 0.06 fold (p < 0.0001) respectively) during Taxol treatment., Conclusion: Our study demonstrates that DHA and LA can effectively compensate for the reduced expression of miR-101 during Taxol treatment. These findings suggest that dietary fatty acids may play a critical role in modulating the anti-cancer effects of chemotherapy agents. Future studies are needed to investigate the functional aspects of dietary fatty acids on breast cancer development and progression., Competing Interests: Declaration of competing interest None declared., (Copyright © 2024. Published by Elsevier Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
3. Cancer therapy by cyclin-dependent kinase inhibitors (CDKIs): bench to bedside.
- Author
-
Hassanzadeh A, Shomali N, Kamrani A, Soltani-Zangbar MS, Nasiri H, and Akbari M
- Abstract
A major characteristic of cancer is dysregulated cell division, which results in aberrant growth of cells. Consequently, medicinal targets that prevent cell division would be useful in the fight against cancer. The primary regulator of proliferation is a complex consisting of cyclin and cyclin-dependent kinases (CDKs). The FDA has granted approval for CDK inhibitors (CDKIs) to treat metastatic hormone receptor-positive breast cancer. Specifically, CDK4/6 CDKIs block the enzyme activity of CDK4 and CDK6. Unfortunately, the majority of first-generation CDK inhibitors, also known as pan-CDK inhibitors because they target multiple CDKs, have not been authorized for clinical use owing to their serious side effects and lack of selection. In contrast to this, significant advancements have been created to permit the use of pan-CDK inhibitors in therapeutic settings. Notably, the toxicity and negative consequences of pan-CDK inhibitors have been lessened in recent years thanks to the emergence of combination therapy tactics. Therefore, pan-CDK inhibitors have renewed promise for clinical use when used in a combination regimen. The members of the CDK family have been reviewed and their primary roles in cell cycle regulation were covered in this review. Next, we provided an overview of the state of studies on CDK inhibitors., Competing Interests: There is no conflict of interest., (Copyright © 2024 Hassanzadeh et al.)
- Published
- 2024
- Full Text
- View/download PDF
4. Detailed role of mesenchymal stem cell (MSC)-derived exosome therapy in cardiac diseases.
- Author
-
Hassanzadeh A, Shomali N, Kamrani A, Nasiri H, Ahmadian Heris J, Pashaiasl M, Sadeghi M, Sadeghvand S, Valedkarimi Z, and Akbari M
- Abstract
Coronary heart disease (CHD) continues to be the leading cause of morbidity and mortality. There are numerous therapeutic reperfusion methods, including thrombolytic therapy, primary percutaneous coronary intervention, and anti-remodeling drugs like angiotensin-converting enzyme inhibitors and beta-blockers. Despite this, there is no pharmacological treatment that can effectively stop cardiomyocyte death brought on by myocardial ischemia/reperfusion (I/R) injury. For the purpose of regenerating cardiac tissue, mesenchymal stem cell (MSC) therapy has recently gained more attention. The pleiotropic effects of MSCs are instead arbitrated by the secretion of soluble paracrine factors and are unrelated to their capacity for differentiation. One of these paracrine mediators is the extracellular vesicle known as an exosome. Exosomes deliver useful cargo to recipient cells from MSCs, including peptides, proteins, cytokines, lipids, miRNA, and mRNA molecules. Exosomes take part in intercellular communication processes and help tissues and organs that have been injured or are ill heal. Exosomes alone were found to be the cause of MSCs' therapeutic effects in a variety of animal models, according to studies. Here, we have focused on the recent development in the therapeutic capabilities of exosomal MSCs in cardiac diseases., Competing Interests: There is no conflict of interest., (Copyright © 2024 Hassanzadeh et al.)
- Published
- 2024
- Full Text
- View/download PDF
5. New immunotherapy approaches for colorectal cancer: focusing on CAR-T cell, BiTE, and oncolytic viruses.
- Author
-
Kamrani A, Nasiri H, Hassanzadeh A, Ahmadian Heris J, Mohammadinasab R, Sadeghvand S, Sadeghi M, Valedkarimi Z, Hosseinzadeh R, Shomali N, and Akbari M
- Subjects
- Humans, Immunotherapy adverse effects, Immunotherapy methods, Immunotherapy, Adoptive, T-Lymphocytes, Oncolytic Viruses, Colorectal Neoplasms therapy, Neoplasms therapy
- Abstract
Colorectal cancer is one of the most common causes of mortality worldwide. There are several potential risk factors responsible for the initiation and progression of colorectal cancer, including age, family history, a history of inflammatory bowel disease, and lifestyle factors such as physical activity and diet. For decades, there has been a vast amount of study on treatment approaches for colorectal cancer, which has led to conventional therapies such as chemotherapy, surgery, etc. Considering the high prevalence and incidence rate, scholars believe there is an urgent need for an alternative, more efficacious treatment with fewer adverse effects than the abovementioned treatments. Immunotherapy has emerged as a potential treatment alternative in a few years and has become one of the fastest-evolving therapeutic methods. Immunotherapy works by activating or enhancing the immune system's power to identify and attack cancerous cells. This review summarizes the most crucial new immunotherapy methods under investigation for colorectal cancer treatment, including Immune checkpoint inhibitors, CAR-T cell therapy, BiTEs, Tumor-infiltrating lymphocytes, and Oncolytic virus therapy. Furthermore, this study discusses the application of combination therapy, precision medicine, biomarker discovery, overcoming resistance, and immune-related adverse effects. Video Abstract., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
6. Correction to: association of the matrix metalloproteinases (MMPs) family gene polymorphisms and the risk of coronavirus disease 2019 (COVID-19); implications of contribution for development of neurological symptoms in the COVID-19 patients.
- Author
-
Ramezani S, Ezzatifar F, Hojjatipour T, Hemmatzadeh M, Shabgah AG, Navashenaq JG, Aslani S, Shomali N, Arabi M, Babaie F, Jadidi-Niaragh F, Hosseinzadeh R, Feizisani F, Khodayar S, Safari R, and Mohammadi H
- Published
- 2023
- Full Text
- View/download PDF
7. Pattern-recognition receptors (PRRs) in SARS-CoV-2.
- Author
-
Isazadeh A, Heris JA, Shahabi P, Mohammadinasab R, Shomali N, Nasiri H, Valedkarimi Z, Khosroshahi AJ, Hajazimian S, Akbari M, and Sadeghvand S
- Subjects
- Humans, Receptors, Pattern Recognition, Immunity, Innate, Toll-Like Receptors metabolism, Immunologic Factors, SARS-CoV-2 metabolism, COVID-19
- Abstract
Pattern recognition receptors (PRRs) are specific sensors that directly recognize various molecules derived from viral or bacterial pathogens, senescent cells, damaged cells, and apoptotic cells. These sensors act as a bridge between nonspecific and specific immunity in humans. PRRs in human innate immunity were classified into six types: toll-like receptors (TLR), C-type lectin receptors (CLRs), nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs), absent in melanoma 2 (AIM2)-like receptors (ALRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and cyclic GMP-AMP (cGAMP) synthase (cGAS). Numerous types of PRRs are responsible for recognizing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which is immensely effective in prompting interferon responses. Detection of SARS-CoV-2 infection by PRRs causes the initiation of an intracellular signaling cascade and subsequently the activation of various transcription factors that stimulate the production of cytokines, chemokines, and other immune-related factors. Therefore, it seems that PRRs are a promising potential therapeutic approach for combating SARS-CoV-2 infection and other microbial infections. In this review, we have introduced the current knowledge of various PRRs and related signaling pathways in response to SARS-CoV-2., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023. Published by Elsevier Inc.)
- Published
- 2023
- Full Text
- View/download PDF
8. An updated overview of the application of CAR-T cell therapy in neurological diseases.
- Author
-
Shahabifard H, Zarei M, Kookli K, Esmalian Afyouni N, Soltani N, Maghsoodi S, Adili A, Mahmoudi J, Shomali N, and Sandoghchian Shotorbani S
- Abstract
Genetically modified immune cells, especially CAR-T cells, have captured the attention of scientists over the past 10 years. In the fight against cancer, these cells have a special place. Treatment for hematological cancers, autoimmune disorders, and cancers must include CAR-T cell therapy. Determining the therapeutic targets, side effects, and use of CAR-T cells in neurological disorders, including cancer and neurodegenerative diseases, is the goal of this study. Due to advancements in genetic engineering, CAR-T cells have become crucial in treating some neurological disorders. CAR-T cells have demonstrated a positive role in treating neurological cancers like Glioblastoma and Neuroblastoma due to their ability to cross the blood-brain barrier and use diverse targets. However, CAR-T cell therapy for MS diseases is being researched and could be a potential treatment option. This study aimed to access the most recent studies and scientific articles in the field of CAR-T cells in neurological diseases and/or disorders., (© 2023 American Institute of Chemical Engineers.)
- Published
- 2023
- Full Text
- View/download PDF
9. Cancer immunotherapy focusing on the role of interleukins: A comprehensive and updated study.
- Author
-
Samadi M, Kamrani A, Nasiri H, Shomali N, Heris JA, Shahabi P, Ghahremanzadeh K, Mohammadinasab R, Sadeghi M, Sadeghvand S, Shotorbani SS, and Akbari M
- Subjects
- Humans, Cytokines metabolism, Tumor Necrosis Factor-alpha, Immunotherapy, Interleukins, Neoplasms drug therapy
- Abstract
Cytokines bind to specific receptors on target cells to activate intracellular signaling pathways that control diverse cellular functions, such as proliferation, differentiation, migration, and death. They are essential for the growth, activation, and operation of immune cells and the control of immunological reactions to pathogens, cancer cells, and other dangers. Based on their structural and functional properties, cytokines can be roughly categorized into different families, such as the tumor necrosis factor (TNF) family, interleukins, interferons, and chemokines. Leukocytes produce interleukins, a class of cytokines that have essential functions in coordinating and communicating with immune cells. Cancer, inflammation, and autoimmunity are immune-related disorders brought on by dysregulation of cytokine production or signaling. Understanding cytokines' biology to create novel diagnostic, prognostic, and therapeutic methods for various immune-related illnesses is crucial. Different immune cells, including T cells, B cells, macrophages, and dendritic cells, and other cells in the body, including epithelial cells and fibroblasts, generate and secrete interleukins. The present study's main aim is to fully understand interleukins' roles in cancer development and identify new therapeutic targets and strategies for cancer treatment., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023. Published by Elsevier GmbH.)
- Published
- 2023
- Full Text
- View/download PDF
10. An updated review of a novel method for examining P53 mutations in different forms of cancer.
- Author
-
Shomali N, Kamrani A, Nasiri H, Heris JA, Shahabi P, Yousefi M, Mohammadinasab R, Sadeghvand S, and Akbari M
- Subjects
- Male, Humans, Mutation genetics, Tumor Suppressor Protein p53 genetics, Tumor Suppressor Protein p53 metabolism, Neoplasms genetics, Neoplasms drug therapy
- Abstract
In the past fifteen years, it has been clear that tumor-associated p53 mutations can cause behaviors distinct from those brought on by a simple loss of p53's tumor-suppressive function in its wild-type form. Many of these mutant p53 proteins develop oncogenic characteristics that allow them to encourage cell survival, invasion, and metastasis. But it is now understood that the immune response is also significantly influenced by the cancer cell's p53 status. The recruitment and activity of myeloid and T cells can be impacted by p53 loss or mutation in malignancies, allowing immune evasion and accelerating cancer growth. Additionally, p53 can work in immune cells, which can have various effects that either hinder or assist the growth of tumors. In this review article, we examined different mutations of P53 in some significant cancers, such as liver, colorectal, and prostate, and reviewed some new therapeutic approaches., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier GmbH. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
11. New immunotherapeutic approaches for cancer treatment.
- Author
-
Kamrani A, Hosseinzadeh R, Shomali N, Heris JA, Shahabi P, Mohammadinasab R, Sadeghvand S, Ghahremanzadeh K, Sadeghi M, and Akbari M
- Subjects
- Humans, Immune Checkpoint Inhibitors, Immunotherapy, Adoptive, Cancer Vaccines, Precision Medicine, Immunotherapy, Neoplasms therapy
- Abstract
Neoplasms are a worldwide recognized non-contagious disease which has the most mortality rate after cardiovascular diseases. For decades, there has been a vast amount of study on treatment methods of cancer which has led to conventional therapies such as chemotherapy, radiation therapy, surgery and so on. Clinicians and researchers believed that there is an urgent need, considering the high rate of incidence and prevalence, for an alternative treatment option which is more efficacious and has less adverse effects than the above-mentioned treatments. Immunotherapy has emerged as a potential treatment alternative in a few years and became one of the fastest developing therapeutic approaches. Different kinds of immunotherapies are FDA approved and available for treatment of various cancer types. In this review, we have summarized the major immunotherapy methods including checkpoint inhibitors, CAR T cell therapies and cancer vaccines. Furthermore, application of combination therapy, precision medicine, biomarker discovery, overcoming resistance and reduction of adverse effects are discussed in this study., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier GmbH. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
12. Dysregulation of P53 in breast cancer: Causative factors and treatment strategies.
- Author
-
Shomali N, Kamrani A, Heris JA, Shahabi P, Nasiri H, Sadeghvand S, Ghahremanzadeh K, and Akbari M
- Subjects
- Female, Humans, Genes, p53, Genes, Tumor Suppressor, Mutation, Tumor Suppressor Protein p53 genetics, Tumor Suppressor Protein p53 metabolism, Breast Neoplasms genetics, Breast Neoplasms therapy
- Abstract
One of the most prevalent cancers impacting women worldwide is breast cancer. Although there are several risk factors for breast cancer, the p53 gene's function has recently received much attention. The "gatekeeper" gene, or p53, is sometimes referred to as such since it is crucial in controlling cell proliferation and preventing the development of malignant cells. By identifying DNA damage and initiating cellular repair processes, p53 usually functions as a tumor-suppressor. But p53 gene alterations can result in a lack of function, allowing cells to divide out of control and perhaps triggering the onset of cancer. Various factors, such as mutation genes, signaling pathways, and hormones, can dysregulate P53 proteins and cause breast cancer. A promising strategy for individualized cancer treatment involves focusing on p53 mutations in breast cancer. While numerous techniques, including gene therapy and small compounds, have shown promise, further study is required to create safe and efficient treatments to target p53 mutations in breast cancer successfully., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier GmbH. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
13. Regulatory effect of sericin protein in inflammatory pathways; A comprehensive review.
- Author
-
Rahimpour S, Jabbari H, Yousofi H, Fathi A, Mahmoodi S, Jafarian MJ, Shomali N, and Shotorbani SS
- Subjects
- Humans, Silk chemistry, Silk pharmacology, Skin pathology, Inflammation drug therapy, Inflammation pathology, Sericins pharmacology, Sericins chemistry
- Abstract
Sericin protein is a type of protein derived from silk cocoons. Sericin hydrogen bonds cause adhesion to the silk cocoon. This substance contains a large amount of serine amino acids in its structure. At first, the medicinal properties of this substance were unknown, but today many properties have been discovered for this substance. The unique properties of this substance have made it widely used in the pharmaceutical and cosmetic industries. The applications of Sericin in pharmacy are as follows. Sericin is used to repair wounds by producing collagen. Other uses for the drug include anti-diabetic, anti-cholesterol, metabolic modulator, anti-tumor, heart protection, antioxidant, antibacterial, wound healing, cell proliferation, UV protection, freezing, and skin moisturizing. The physicochemical properties of Sericin have attracted the attention of pharmacists and their widespread use in the production of drugs and treatment of diseases. One of the critical and unique properties of Sericin is its anti-inflammatory property. In this article, this property of Sericin is discussed in detail, and according to the experiments performed by pharmacists, this substance has shown a significant effect in eliminating inflammation. This study aimed to evaluate the impact of Sericin protein in relieving inflammation., Competing Interests: Conflict of interest None., (Copyright © 2023 Elsevier GmbH. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
14. Dysregulation of miR-193a serves as a potential contributor to MS pathogenesis via affecting RhoA and Rock1.
- Author
-
Saeidi N, Goudarzvand H, Mohammadi H, Mardi A, Ghoreishizadeh S, Shomali N, and Goudarzvand M
- Subjects
- Humans, Down-Regulation, rhoA GTP-Binding Protein genetics, rho-Associated Kinases genetics, MicroRNAs genetics, MicroRNAs metabolism, Multiple Sclerosis genetics
- Abstract
Background: Multiple sclerosis (MS) is one of the most common neurological diseases that cause chronic inflammation of the central nervous system and demyelination of the myelin sheath. At present, microRNAs (miRNAs) are considered not only a diagnostic and prognostic indicator of diseases but also a new goal in gene therapy. This study aims to find a simple, non-invasive, valuable biomarker for early detection and potential treatment of MS., Methods: In the present study, 30 patients with MS were included. The qRT-PCR method was performed to evaluate the expression level of miR-193a, RhoA, and ROCK1. Besides, western blotting was performed to determine the expression level of RhoA and ROCK1 at protein levels. Moreover, we aimed to clarify the possible correlation between miR-193a-5p and its-regulated target genes so that miR-193a-5p mimic was transfected into MS-derived cultured PBMSs, and the expression level of RhoA and ROCK1 were then evaluated by qRT-PCR and Western blotting. In the final step, the correlation between miR-193a-5p and clinicopathological features of patients was investigated., Results: Results showed that miR-193a was decreased while RhoA and ROCK1 were up-regulated in PBMCs obtained from patients with MS compared to the control group. It was also revealed that miR-193a transfection reduced RhoA and ROCK1 expression at mRNA and protein levels. The results from the Chi-square analysis showed that down-regulation of miR-193a was associated with increased CRP level, CSF IgG positivity, and MSSS (Multiple Sclerosis Severity Score), suggesting miR-193a is a potential diagnostic and prognostic indicator., Conclusion: We implied that miR-193a could modulate RhoA and ROCK 1 expression in MS patients, in which its down-regulation leads to increased expression of RhoA and ROCK1 and poor prognosis of patients with MS. Therefore, miR-193a and its associated targets could serve potential prognostic, diagnostic, and therapeutic efficacy in MS patients., Competing Interests: Declarations of Competing Interest None., (Copyright © 2022. Published by Elsevier B.V.)
- Published
- 2023
- Full Text
- View/download PDF
15. MicroRNA-155 acts as a potential prognostic and diagnostic factor in patients with ankylosing spondylitis by modulating SOCS3.
- Author
-
Jahangir M, Kahrizi MS, Natami M, Moaref Pour R, Ghoreishizadeh S, Hemmatzadeh M, Mohammadi H, Shomali N, and Sandoghchian Shotorbani S
- Subjects
- Humans, Prognosis, Suppressor of Cytokine Signaling 3 Protein genetics, Suppressor of Cytokine Signaling 3 Protein metabolism, Signal Transduction, Suppressor of Cytokine Signaling Proteins genetics, RNA, Small Interfering pharmacology, STAT3 Transcription Factor genetics, STAT3 Transcription Factor metabolism, Spondylitis, Ankylosing diagnosis, Spondylitis, Ankylosing genetics, MicroRNAs metabolism
- Abstract
Background: Ankylosing spondylitis (AS) is a progressive inflammatory disease. Our primary objective was to explore the role of miR-155 and its targeted factors in AS pathogenesis., Methods and Results: PBMCs were isolated from 30 AS patients and 30 healthy individuals using the Ficoll-hypaque isolation approach. The expression of miR-155 and its associated targets, including Suppressor Of Cytokine Signaling 3 (SOCS3), STAT3, and IL-21, were determined using qT-qPCR. Then, PBMCs were cultured, and the effect of miR-155, SOCS3 siRNA (to suppress its expression), pEFSOCS3 (enforced expression), and their combination were investigated by qRT-PCR and western blotting. We also treated the cultured PBMCs with Brefeldin A, a potent inhibitor of cytokine secretion, to determine its effect on IL-21 expression and secretion. In addition, the association between miR-155 and patients' clinicopathological features was examined. The results showed that miR-155, IL-21, and STAT3 were increased in patients with AS, while SOCS3 had decreasing expression trend. It was also determined that miR-155 alleviates SOCS3 expression and increases IL-21 and STAT3 expression; it had a prominent effect when combined with SOCS3 siRNA. Besides, we showed that simultaneous transfection of miR-155 and pEFSOCS3 had no significant effect on IL-21 and STAT3 expression, revealing that miR-155 could alleviate the enforced expression of SOCS3. It was also proven that Brefledine A led to IL-21 up-regulation or accumulation while relieving its secretion. Also, a significant correlation between miR-155 and pathological features of AS patients was found., Conclusion: miR-155 acts as a potential prognostic and diagnostic biomarker. Its up-regulation leads to the down-regulation of SOCS3 and increased expression of IL-21 and STAT3 as characteristic of TH-17 lymphocytes, leading to worsening inflammatory conditions in patients with AS., (© 2022. The Author(s), under exclusive licence to Springer Nature B.V.)
- Published
- 2023
- Full Text
- View/download PDF
16. Association of the matrix metalloproteinases (MMPs) family gene polymorphisms and the risk of coronavirus disease 2019 (COVID-19); implications of contribution for development of neurological symptoms in the COVID-19 patients.
- Author
-
Ramezani S, Ezzatifar F, Hojjatipour T, Hemmatzadeh M, Shabgah AG, Navashenaq JG, Aslani S, Shomali N, Arabi M, Babaie F, Jadidi-Niaragh F, Hosseinzadeh R, Feizisani F, Khodayar S, Safari R, and Mohammadi H
- Subjects
- Humans, Matrix Metalloproteinase 3 genetics, Genetic Predisposition to Disease, Genotype, Polymorphism, Single Nucleotide genetics, Matrix Metalloproteinase 9 genetics, COVID-19 genetics
- Abstract
Background: Seemingly, the Matrix metalloproteinases (MMPs) play a role in the etiopathogenesis of coronavirus disease 2019 (COVID-19). Here in this study, we determined the association of MMP9 rs3918242, MMP3 rs3025058, and MMP2 rs243865 polymorphisms with the risk of COVID-19, especially in those with neurological syndrome (NS)., Methods: We enrolled 500 patients with COVID-19 and 500 healthy individuals. To genotype the target SNPs, the Real-time allelic discrimination technique was used. To determine serum levels of MMPs, Enzyme-linked immunosorbent assay (ELISA) was exerted., Results: The MMP9 gene rs3918242 and MMP3 gene rs3025058 SNP were significantly associated with increased COVID-19 risk and susceptibility to COVID-19 with NS. The serum level of MMP-9 and MMP-3 was significantly higher in COVID-19 cases compared with the healthy controls. Serum MMP-9 and MMP-3 levels were also higher in COVID-19 subjects with NS in comparison to the healthy controls. The polymorphisms in MMP genes were not associated with serum level of MMPs., Conclusion: MMP9 and MMP3 gene polymorphisms increases the susceptibility to COVID-19 as well as COVID-19 with neurologic syndrome, but they probably have no role in the regulation of serum MMP-9 and MMP-3 levels., (© 2022. The Author(s), under exclusive licence to Springer Nature B.V.)
- Published
- 2023
- Full Text
- View/download PDF
17. MicroRNAs Targeting Programmed Cell Death Protein 1 (PD-1) Promote Natural Killer Cell Exhaustion in Rheumatoid Arthritis.
- Author
-
Hemmatzadeh M, Ahangar Parvin E, Ghanavatinejad A, Rostami N, Hajaliloo M, Shomali N, Mohammadi H, and Jadidi-Niaragh F
- Subjects
- Humans, Programmed Cell Death 1 Receptor genetics, Programmed Cell Death 1 Receptor metabolism, Leukocytes, Mononuclear metabolism, Killer Cells, Natural metabolism, RNA, Messenger metabolism, MicroRNAs genetics, MicroRNAs metabolism, Arthritis, Rheumatoid genetics, Arthritis, Rheumatoid metabolism
- Abstract
Natural killer (NK) cells play a role in the pathogenesis of rheumatoid arthritis (RA). Upregulated levels of programmed cell death protein 1 (PD-1) is a sign of exhausted NK cells that could be regulated by microRNAs (miRNAs). In this investigation, we determined PD‑1 expression on NK cells (as a representation of NK cell exhaustion) in RA patients and evaluated if miRNAs are involved in the modulation of PD-1 expression in NK cells. Peripheral blood specimens were obtained from 40 RA patients and 20 healthy subjects. NK cells were isolated by negative selection from a pool of peripheral blood mononuclear cells. The frequency of PD-1-expressing NK cells and the expression of PD-1 on NK cells were analyzed by flow cytometry. Real-time PCR was used to measure the expression levels of PD-1 mRNA and miRNAs in the NK cells. The percentage of the PD-1-expressing NK cells and Mean fluorescence intensity (MFI) of PD-1 expression on the NK cells were significantly higher in the RA cases compared to the controls. The mRNA expression of PD-1 was significantly upregulated in NK cells from RA patients compared to healthy subjects. The expression levels of miR-28, miR-138, and miR-4717 were significantly downregulated in the NK cells from RA patients compared to the healthy group. In RA, miRNAs probably regulate the NK cell exhaustion process through driving PD-1 expression.
- Published
- 2022
- Full Text
- View/download PDF
18. Survivin; a novel therapeutic target that correlates with survival of autoreactive T lymphocytes obtained from patients with ankylosing spondylitis.
- Author
-
Shomali N, Baradaran B, Daei Sorkhabi A, Sarkesh A, Kahrizi MS, Tosan F, Mahmoodpoor A, Mardi A, Mohammadi H, Hassanzadeh A, Saeedi H, Hajialilo M, Hemmatzadeh M, Marofi F, and Sandoghchian Shotorbani S
- Subjects
- Apoptosis, Caspase 9 metabolism, Cell Line, Tumor, Humans, Inhibitor of Apoptosis Proteins genetics, Inhibitor of Apoptosis Proteins metabolism, Leukocytes, Mononuclear metabolism, Survivin genetics, Survivin metabolism, T-Lymphocytes metabolism, MicroRNAs metabolism, Spondylitis, Ankylosing genetics, Spondylitis, Ankylosing metabolism
- Abstract
Ankylosing spondylitis (AS) is progressive immune-mediated arthritis. Persistent autoreactivity of T cells with an up-regulated Survivin expression is strongly implicated in AS immunopathogenesis. Besides, Survivin can inhibit proapoptotic caspase 9 activations. Moreover, microRNAs are small non-coding RNAs that are dysregulated in various diseases, in which their altered expression could modulate Survivin expression. The primary goal of this study was to assess the role of Survivin and its-targeting microRNAs in the immunopathogenesis of AS disease. For this aim, peripheral blood mononuclear cells (PBMCs) were isolated from 15 patients with AS and healthy matched controls using Ficoll-Hypaque. T cells were obtained using the magnetic-activated cell sorting (MACS) method. After that, the expression levels of Survivin, Caspase 9, and specific miRNAs were determined using qT-qPCR. Also, the expression of Survivin and Caspase 9 at protein levels was determined by western blotting. Then, the isolated T cells were co-cultured with interleukin (IL)-2 and muromonab-CD3 (OKT-3) for active-induced cell death (AICD) induction, Survivin siRNA for inhibition of Survivin expression, and their combination to assess the implication of Survivin expression in autoreactive T lymphocytes' resistance to apoptosis by determining the rate of apoptosis by Flowcytometry assay. The results showed that Survivin was up-regulated while Caspase 9 was downregulated in patients with AS. It was also revealed that microRNAs that directly or indirectly target the Survivin mRNA were dysregulated in patients with AS. It was also revealed that T cells obtained from AS patients were more resistant to apoptosis induction than those obtained from healthy people. In summary, the results obtained from this study showed that dysregulation of Survivin and Survivin-targeting miRNAs in T lymphocytes obtained from AS patients contribute to their resistance to apoptosis, suggesting the future development of targeted therapies for AS., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022. Published by Elsevier B.V.)
- Published
- 2022
- Full Text
- View/download PDF
19. Correction: A comprehensive review about immune responses and exhaustion during coronavirus disease (COVID-19).
- Author
-
Mohammed RN, Tamjidifar R, Rahman HS, Adili A, Ghoreishizadeh S, Saeedi H, Thangavelu L, Shomali N, Aslaminabad R, Marof F, Tahavvori M, Danshina S, Akbari M, and Ercan G
- Published
- 2022
- Full Text
- View/download PDF
20. The role of immune regulatory molecules in rheumatoid arthritis: Implication for etiopathogenesis and prospective for treatment.
- Author
-
Hemmatzadeh M, Ahangar Parvin E, Mohammadi H, Azizi G, Shomali N, and Jadidi-Niaragh F
- Subjects
- Autoantibodies, Humans, Prospective Studies, Synovial Membrane immunology, Synovial Membrane metabolism, Arthritis, Rheumatoid, Immune Checkpoint Proteins, Synovitis immunology, Synovitis pathology
- Abstract
Rheumatoid arthritis (RA) is considered an autoimmune chronic disorder and the most common inflammatory arthropathy. Disease progression in RA begins with asymptomatic autoimmune responses in cases with a genetic or environmental predisposition, that alters to arthralgia phase as autoantibodies reach the joints and subjects begin demonstrating nonspecific musculoskeletal presentations lacking any clinical symptoms of synovial inflammation. After that, patients' symptoms develop to undifferentiated arthritis (UA)/idiopathic arthritis (IA) whenever the subjects progress to clinical synovitis systemic comorbidities affecting the vasculature, metabolism, and bone, and eventually with augmented immune cell infiltration, IA/UA patients progress to clinically classifiable RA. RA is mainly correlated with different immune cells and each of them contributes variously to the pathogenesis of the disease. The pathogenesis of RA is altered by the contribution of both T and B cells in an autoimmune irregularity. Modulation of the immune responses occurs through regulatory and inhibitory molecules that control activation of the adaptive system as well as immune hemostasis. To confine the exorbitant T cell-associated inflammatory reactions, the immune system provides a system of inhibitory feedbacks, collectively named immune checkpoints. In this review, we aimed to discuss about inhibitory members of immune checkpoint molecules, including programmed cell death 1 (PD-1)/PD-L1, cytotoxic-T-lymphocyte-antigen-4, lymphocyte activation gene-3, T cell immunoglobulin-3, V-domain Ig suppressor of T cell activation, B- and T-lymphocyte attenuator, and T cell immunoglobulin and ITIM domain and their role in RA., (© 2022 Wiley Periodicals LLC.)
- Published
- 2022
- Full Text
- View/download PDF
21. Immune system-related soluble mediators and COVID-19: basic mechanisms and clinical perspectives.
- Author
-
Soltani-Zangbar MS, Parhizkar F, Abdollahi M, Shomali N, Aghebati-Maleki L, Shahmohammadi Farid S, Roshangar L, Mahmoodpoor A, and Yousefi M
- Subjects
- Adaptive Immunity, Humans, Immune System, Immunity, Innate, SARS-CoV-2, COVID-19
- Abstract
During SARS-CoV-2 infection, an effective immune response provides the first line of defense; however, excessive inflammatory innate immunity and impaired adaptive immunity may harm tissues. Soluble immune mediators are involved in the dynamic interaction of ligands with membrane-bound receptors to maintain and restore health after pathological events. In some cases, the dysregulation of their expression can lead to disease pathology. In this literature review, we described current knowledge of the basic features of soluble immune mediators and their dysregulation during SARS-CoV-2 infections and highlighted their contribution to disease severity and mortality. Video Abstract., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
22. A comprehensive review about the utilization of immune checkpoint inhibitors and combination therapy in hepatocellular carcinoma: an updated review.
- Author
-
Sharafi F, Hasani SA, Alesaeidi S, Kahrizi MS, Adili A, Ghoreishizadeh S, Shomali N, Tamjidifar R, Aslaminabad R, and Akbari M
- Abstract
A pharmacological class known as immune checkpoint inhibitors (ICIs) has been developed as a potential treatment option for various malignancies, including HCC. In HCC, ICIs have demonstrated clinically significant advantages as monotherapy or combination therapy. ICIs that target programmed cell death protein 1 (PD-1) and programmed cell death protein ligand 1 (PD-L1), as well as cytotoxic T lymphocyte antigen 4 (CTLA-4), have made significant advances in cancer treatment. In hepatocellular carcinoma (HCC), several ICIs are being tested in clinical trials, and the area is quickly developing. As immunotherapy-related adverse events (irAEs) linked with ICI therapy expands and gain worldwide access, up-to-date management guidelines become crucial to the safety profile of ICIs. This review aims to describe the evidence for ICIs in treating HCC, emphasizing the use of combination ICIs., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
23. Emerging role of mesenchymal stromal cells (MSCs)-derived exosome in neurodegeneration-associated conditions: a groundbreaking cell-free approach.
- Author
-
Yari H, Mikhailova MV, Mardasi M, Jafarzadehgharehziaaddin M, Shahrokh S, Thangavelu L, Ahmadi H, Shomali N, Yaghoubi Y, Zamani M, Akbari M, and Alesaeidi S
- Subjects
- Animals, Cell Differentiation, Immunomodulation, Exosomes metabolism, Mesenchymal Stem Cells metabolism, Neurodegenerative Diseases therapy
- Abstract
Accumulating proofs signify that pleiotropic effects of mesenchymal stromal cells (MSCs) are not allied to their differentiation competencies but rather are mediated mainly by the releases of soluble paracrine mediators, making them a reasonable therapeutic option to enable damaged tissue repair. Due to their unique immunomodulatory and regenerative attributes, the MSC-derived exosomes hold great potential to treat neurodegeneration-associated neurological diseases. Exosome treatment circumvents drawbacks regarding the direct administration of MSCs, such as tumor formation or reduced infiltration and migration to brain tissue. Noteworthy, MSCs-derived exosomes can cross the blood-brain barrier (BBB) and then efficiently deliver their cargo (e.g., protein, miRNAs, lipid, and mRNA) to damaged brain tissue. These biomolecules influence various biological processes (e.g., survival, proliferation, migration, etc.) in neurons, oligodendrocytes, and astrocytes. Various studies have shown that the systemic or local administration of MSCs-derived exosome could lead to the favored outcome in animals with neurodegeneration-associated disease mainly by supporting BBB integrity, eliciting pro-angiogenic effects, attenuating neuroinflammation, and promoting neurogenesis in vivo. In the present review, we will deliver an overview of the therapeutic benefits of MSCs-derived exosome therapy to ameliorate the pathological symptoms of acute and chronic neurodegenerative disease. Also, the underlying mechanism behind these favored effects has been elucidated., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
24. Potential of chimeric antigen receptor (CAR)-redirected immune cells in breast cancer therapies: Recent advances.
- Author
-
Nikoo M, Rudiansyah M, Bokov DO, Jainakbaev NT, Suksatan W, Ansari MJ, Thangavelu L, Chupradit S, Zamani A, Adili A, Shomali N, and Akbari M
- Subjects
- Female, Humans, Immunotherapy, Adoptive, Killer Cells, Natural, T-Lymphocytes, Tumor Microenvironment, Breast Neoplasms metabolism, Neoplasms drug therapy, Receptors, Chimeric Antigen genetics, Receptors, Chimeric Antigen metabolism
- Abstract
Despite substantial developments in conventional treatments such as surgery, chemotherapy, radiotherapy, endocrine therapy, and molecular-targeted therapy, breast cancer remains the leading cause of cancer mortality in women. Currently, chimeric antigen receptor (CAR)-redirected immune cell therapy has emerged as an innovative immunotherapeutic approach to ameliorate survival rates of breast cancer patients by eliciting cytotoxic activity against cognate tumour-associated antigens expressing tumour cells. As a crucial component of adaptive immunity, T cells and NK cells, as the central innate immune cells, are two types of pivotal candidates for CAR engineering in treating solid malignancies. However, the biological distinctions between NK cells- and T cells lead to differences in cancer immunotherapy outcomes. Likewise, optimal breast cancer removal via CAR-redirected immune cells requires detecting safe target antigens, improving CAR structure for ideal immune cell functions, promoting CAR-redirected immune cells filtration to the tumour microenvironment (TME), and increasing the ability of these engineered cells to persist and retain within the immunosuppressive TME. This review provides a concise overview of breast cancer pathogenesis and its hostile TME. We focus on the CAR-T and CAR-NK cells and discuss their significant differences. Finally, we deliver a summary based on recent advancements in the therapeutic capability of CAR-T and CAR-NK cells in treating breast cancer., (© 2022 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
25. Therapeutic utility of mesenchymal stromal cell (MSC)-based approaches in chronic neurodegeneration: a glimpse into underlying mechanisms, current status, and prospects.
- Author
-
Rahbaran M, Zekiy AO, Bahramali M, Jahangir M, Mardasi M, Sakhaei D, Thangavelu L, Shomali N, Zamani M, Mohammadi A, and Rahnama N
- Subjects
- Animals, Amyotrophic Lateral Sclerosis metabolism, Amyotrophic Lateral Sclerosis therapy, Mesenchymal Stem Cell Transplantation, Mesenchymal Stem Cells metabolism, Neurodegenerative Diseases metabolism, Neurodegenerative Diseases therapy
- Abstract
Recently, mesenchymal stromal cell (MSC)-based therapy has become an appreciated therapeutic approach in the context of neurodegenerative disease therapy. Accordingly, a myriad of studies in animal models and also some clinical trials have evinced the safety, feasibility, and efficacy of MSC transplantation in neurodegenerative conditions, most importantly in Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The MSC-mediated desired effect is mainly a result of secretion of immunomodulatory factors in association with release of various neurotrophic factors (NTFs), such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Thanks to the secretion of protein-degrading molecules, MSC therapy mainly brings about the degradation of pathogenic protein aggregates, which is a typical appearance of chronic neurodegenerative disease. Such molecules, in turn, diminish neuroinflammation and simultaneously enable neuroprotection, thereby alleviating disease pathological symptoms and leading to cognitive and functional recovery. Also, MSC differentiation into neural-like cells in vivo has partially been evidenced. Herein, we focus on the therapeutic merits of MSCs and also their derivative exosome as an innovative cell-free approach in AD, HD, PD, and ALS conditions. Also, we give a brief glimpse into novel approaches to potentiate MSC-induced therapeutic merits in such disorders, most importantly, administration of preconditioned MSCs., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
26. Correction: Anastasis: cell recovery mechanisms and potential role in cancer.
- Author
-
Mohammed RN, Khosravi M, Rahman HS, Adili A, Kamali N, Soloshenkov PP, Thangavelu L, Saeedi H, Shomali N, Tamjidifar R, Isazadeh A, Aslaminabad R, and Akbari M
- Published
- 2022
- Full Text
- View/download PDF
27. Correction to: A comprehensive review about immune responses and exhaustion during coronavirus disease (COVID-19).
- Author
-
Mohammed RN, Tamjidifar R, Rahman HS, Adili A, Ghoreishizadeh S, Saeedi H, Thangavelu L, Shomali N, Aslaminabad R, Marofi F, Tahavvori M, Danishna S, Akbari M, and Ercan G
- Published
- 2022
- Full Text
- View/download PDF
28. Anastasis: cell recovery mechanisms and potential role in cancer.
- Author
-
Mohammed RN, Khosravi M, Rahman HS, Adili A, Kamali N, Soloshenkov PP, Thangavelu L, Saeedi H, Shomali N, Tamjidifar R, Isazadeh A, Aslaminabad R, and Akbari M
- Subjects
- Apoptosis, Cell Death, Cell Survival, DNA Damage, Humans, Cell Death Reversal, Neoplasms metabolism
- Abstract
Balanced cell death and survival are among the most important cell development and homeostasis pathways that can play a critical role in the onset or progress of malignancy steps. Anastasis is a natural cell recovery pathway that rescues cells after removing the apoptosis-inducing agent or brink of death. The cells recuperate and recover to an active and stable state. So far, minimal knowledge is available about the molecular mechanisms of anastasis. Still, several involved pathways have been explained: recovery through mitochondrial outer membrane permeabilization, caspase cascade arrest, repairing DNA damage, apoptotic bodies formation, and phosphatidylserine. Anastasis can facilitate the survival of damaged or tumor cells, promote malignancy, and increase drug resistance and metastasis. Here, we noted recently known mechanisms of the anastasis process and underlying molecular mechanisms. Additionally, we summarize the consequences of anastatic mechanisms in the initiation and progress of malignancy, cancer cell metastasis, and drug resistance. Video Abstract., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
29. A comprehensive review about immune responses and exhaustion during coronavirus disease (COVID-19).
- Author
-
Mohammed RN, Tamjidifar R, Rahman HS, Adili A, Ghoreishizadeh S, Saeedi H, Thangavelu L, Shomali N, Aslaminabad R, Marofi F, Tahavvori M, Danshina S, Akbari M, and Ercan G
- Subjects
- CD8-Positive T-Lymphocytes, China, Humans, SARS-CoV-2, COVID-19, Immunity, Innate
- Abstract
Coronavirus disease (COVID-19) is a viral infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The infection was reported in Wuhan, China, in late December 2019 and has become a major global concern due to severe respiratory infections and high transmission rates. Evidence suggests that the strong interaction between SARS-CoV-2 and patients' immune systems leads to various clinical symptoms of COVID-19. Although the adaptive immune responses are essential for eliminating SARS-CoV-2, the innate immune system may, in some cases, cause the infection to progress. The cytotoxic CD8
+ T cells in adaptive immune responses demonstrated functional exhaustion through upregulation of exhaustion markers. In this regard, humoral immune responses play an essential role in combat SARS-CoV-2 because SARS-CoV-2 restricts antigen presentation through downregulation of MHC class I and II molecules that lead to the inhibition of T cell-mediated immune response responses. This review summarizes the exact pathogenesis of SARS-CoV-2 and the alteration of the immune response during SARS-CoV-2 infection. In addition, we've explained the exhaustion of the immune system during SARS-CoV-2 and the potential immunomodulation approach to overcome this phenomenon. Video Abstract., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF
30. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool.
- Author
-
Shojaei Baghini S, Gardanova ZR, Abadi SAH, Zaman BA, İlhan A, Shomali N, Adili A, Moghaddar R, and Yaseri AF
- Subjects
- CRISPR-Cas Systems genetics, Genome, Humans, Gene Editing, Neoplasms genetics, Neoplasms therapy
- Abstract
The progress of genetic engineering in the 1970s brought about a paradigm shift in genome editing technology. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a flexible means to target and modify particular DNA sequences in the genome. Several applications of CRISPR/Cas9 are presently being studied in cancer biology and oncology to provide vigorous site-specific gene editing to enhance its biological and clinical uses. CRISPR's flexibility and ease of use have enabled the prompt achievement of almost any preferred alteration with greater efficiency and lower cost than preceding modalities. Also, CRISPR/Cas9 technology has recently been applied to improve the safety and efficacy of chimeric antigen receptor (CAR)-T cell therapies and defeat tumor cell resistance to conventional treatments such as chemotherapy and radiotherapy. The current review summarizes the application of CRISPR/Cas9 in cancer therapy. We also discuss the present obstacles and contemplate future possibilities in this context., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
31. Fetomaternal Immune Tolerance: Crucial Mechanisms of Tolerance for Successful Pregnancy in Humans.
- Author
-
Yousefzadeh Y, Soltani-Zangbar MS, Hemmatzadeh M, Shomali N, Mahmoodpoor A, Ahmadian Heris J, and Yousefi M
- Subjects
- Female, Humans, Pregnancy, T-Lymphocytes, Regulatory, Fetus, Immune Tolerance
- Abstract
For many years, the question of how the maternal immune system tolerates the foreign fetus has remained unanswered, and numerous studies have considerably attempted to elucidate underlying mechanisms for fetomaternal tolerance. This review aimed at discussing various significant mechanisms in fetomaternal compatibility. At the fetomaternal interface, in addition to having efficient control against infections, innate and adaptive maternal immune systems selectively prevent fetal rejection. In general, understanding the complex mechanisms of fetomaternal tolerance is critical for immunologic tolerance induction and spontaneous abortion prevention in high-risk populations. Different cells and molecules, such as regulatory T-cells, dendritic cells, decidua cells, IDO, Class I HLA molecules, TGF-β, and IL-10, induce maternal immune tolerance in the fetus in numerous ways. The findings on fetomaternal immune tolerance have remained controversial and require further research.
- Published
- 2022
- Full Text
- View/download PDF
32. Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; Combination of Oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction.
- Author
-
Mardi A, Shirokova AV, Mohammed RN, Keshavarz A, Zekiy AO, Thangavelu L, Mohamad TAM, Marofi F, Shomali N, Zamani A, and Akbari M
- Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising and rapidly expanding therapeutic option for a wide range of human malignancies. Despite the ongoing progress of CAR T-cell therapy in hematologic malignancies, the application of this therapeutic strategy in solid tumors has encountered several challenges due to antigen heterogeneity, suboptimal CAR T-cell trafficking, and the immunosuppressive features of the tumor microenvironment (TME). Oncolytic virotherapy is a novel cancer therapy that employs competent or genetically modified oncolytic viruses (OVs) to preferentially proliferate in tumor cells. OVs in combination with CAR T-cells are promising candidates for overcoming the current drawbacks of CAR T-cell application in tumors through triggering immunogenic cell death (ICD) in cancer cells. ICD is a type of cellular death in which danger-associated molecular patterns (DAMPs) and tumor-specific antigens are released, leading to the stimulation of potent anti-cancer immunity. In the present review, we discuss the biological causes of ICD, different types of ICD, and the synergistic combination of OVs and CAR T-cells to reach potent tumor-specific immunity., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
33. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons.
- Author
-
Naimi A, Mohammed RN, Raji A, Chupradit S, Yumashev AV, Suksatan W, Shalaby MN, Thangavelu L, Kamrava S, Shomali N, Sohrabi AD, Adili A, Noroozi-Aghideh A, and Razeghian E
- Subjects
- B7-H1 Antigen, Humans, Immunotherapy methods, Immune Checkpoint Inhibitors pharmacology, Immune Checkpoint Inhibitors therapeutic use, Neoplasms drug therapy
- Abstract
The main breakthrough in tumor immunotherapy was the discovery of immune checkpoint (IC) proteins, which act as a potent suppressor of the immune system by a myriad of mechanisms. After that, scientists focused on the immune checkpoint molecules mainly. Thereby, much effort was spent to progress novel strategies for suppressing these inhibitory axes, resulting in the evolution of immune checkpoint inhibitors (ICIs). Then, ICIs have become a promising approach and shaped a paradigm shift in tumor immunotherapies. CTLA-4 plays an influential role in attenuation of the induction of naïve and memory T cells by engagement with its responding ligands like B7-1 (CD80) and B7-2 (CD86). Besides, PD-1 is predominantly implicated in adjusting T cell function in peripheral tissues through its interaction with programmed death-ligand 1 (PD-L1) and PD-L2. Given their suppressive effects on anti-tumor immunity, it has firmly been documented that ICIs based therapies can be practical and rational therapeutic approaches to treat cancer patients. Nonetheless, tumor inherent or acquired resistance to ICI and some treatment-related toxicities restrict their application in the clinic. The current review will deliver a comprehensive overview of the ICI application to treat human tumors alone or in combination with other modalities to support more desired outcomes and lower toxicities in cancer patients. Video Abstract., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
34. Cancer combination therapies by angiogenesis inhibitors; a comprehensive review.
- Author
-
Ansari MJ, Bokov D, Markov A, Jalil AT, Shalaby MN, Suksatan W, Chupradit S, Al-Ghamdi HS, Shomali N, Zamani A, Mohammadi A, and Dadashpour M
- Subjects
- Humans, Immunotherapy, Neovascularization, Pathologic metabolism, Angiogenesis Inhibitors pharmacology, Angiogenesis Inhibitors therapeutic use, Neoplasms drug therapy, Neoplasms pathology
- Abstract
Abnormal vasculature is one of the most conspicuous traits of tumor tissue, largely contributing to tumor immune evasion. The deregulation mainly arises from the potentiated pro-angiogenic factors secretion and can also target immune cells' biological events, such as migration and activation. Owing to this fact, angiogenesis blockade therapy was established to fight cancer by eliminating the nutrient and oxygen supply to the malignant cells by impairing the vascular network. Given the dominant role of vascular-endothelium growth factor (VEGF) in the angiogenesis process, the well-known anti-angiogenic agents mainly depend on the targeting of its actions. However, cancer cells mainly show resistance to anti-angiogenic agents by several mechanisms, and also potentiated local invasiveness and also distant metastasis have been observed following their administration. Herein, we will focus on clinical developments of angiogenesis blockade therapy, more particular, in combination with other conventional treatments, such as immunotherapy, chemoradiotherapy, targeted therapy, and also cancer vaccines. Video abstract., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
35. Hurdles to breakthrough in CAR T cell therapy of solid tumors.
- Author
-
Marofi F, Achmad H, Bokov D, Abdelbasset WK, Alsadoon Z, Chupradit S, Suksatan W, Shariatzadeh S, Hasanpoor Z, Yazdanifar M, Shomali N, and Khiavi FM
- Subjects
- Humans, Immunotherapy, Adoptive, T-Lymphocytes, Tumor Microenvironment, Neoplasms therapy, Receptors, Chimeric Antigen genetics
- Abstract
Autologous T cells genetically engineered to express chimeric antigen receptor (CAR) have shown promising outcomes and emerged as a new curative option for hematological malignancy, especially malignant neoplasm of B cells. Notably, when T cells are transduced with CAR constructs, composed of the antigen recognition domain of monoclonal antibodies, they retain their cytotoxic properties in a major histocompatibility complex (MHC)-independent manner. Despite its beneficial effect, the current CAR T cell therapy approach faces myriad challenges in solid tumors, including immunosuppressive tumor microenvironment (TME), tumor antigen heterogeneity, stromal impediment, and tumor accessibility, as well as tribulations such as on-target/off-tumor toxicity and cytokine release syndrome (CRS). Herein, we highlight the complications that hamper the effectiveness of CAR T cells in solid tumors and the strategies that have been recommended to overcome these hurdles and improve infused T cell performance., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
36. Under hypoxic conditions, MSCs affect the expression and methylation level of survival-related genes in ALL independent of apoptosis pathways in vitro.
- Author
-
Marofi F, Shomali N, Younus LA, Hassanzadeh A, Vahedi G, Kuznetsova MY, Solali S, Gharibi T, Hosseini A, Mohammed RN, Mohammadi H, Tamjidifar R, Firouzi-Amandi A, and Farshdousti Hagh M
- Subjects
- Apoptosis genetics, Bone Marrow Cells metabolism, Cell Hypoxia genetics, Humans, Hypoxia metabolism, Methionine Adenosyltransferase, Methylation, RNA, Messenger metabolism, Sirolimus, Mesenchymal Stem Cells metabolism, Precursor Cell Lymphoblastic Leukemia-Lymphoma metabolism
- Abstract
Mesenchymal stem cells (MSCs) are one of the most prominent cells in the bone marrow. MSCs can affect acute lymphocytic leukemia (ALL) cells under hypoxic conditions. With this aim, we used MOLT-4 cells as simulators of ALL cells cocultured with bone marrow mesenchymal stem cells (BMMSCs) under hypoxic conditions in vitro. Then, mRNA and protein expression of the MAT2A, PDK1, and HK2 genes were evaluated by real-time PCR and Western blot which was also followed by apoptosis measurement by a flow-cytometric method. Next, the methylation status of the target genes was investigated by MS-qPCR. Additionally, candidate gene expressions were examined after treatment with rapamycin using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. We found that the mRNA expression of the candidate genes was augmented under the hypoxic condition in which MAT2A was upregulated in cocultured cells compared to MOLT-4, while HK2 and PDK1 were downregulated. Moreover, we found an association between gene expression and promoter methylation levels of target genes. Besides, expressions of the candidate genes were decreased, while their methylation levels were promoted following treatment with rapamycin. Our results suggest an important role for the BMMSC in regulating the methylation of genes involved in cell survival in hypoxia conditions; however, we found no evidence to prove the MSCs' effect on directing malignant lymphoblastic cells to apoptosis., (© 2021 International Union of Biochemistry and Molecular Biology, Inc.)
- Published
- 2022
- Full Text
- View/download PDF
37. Dysregulation of Survivin-Targeting microRNAs in Autoimmune Diseases: New Perspectives for Novel Therapies.
- Author
-
Shomali N, Suliman Maashi M, Baradaran B, Daei Sorkhabi A, Sarkesh A, Mohammadi H, Hemmatzadeh M, Marofi F, Sandoghchian Shotorbani S, and Jarahian M
- Subjects
- Autoimmunity genetics, Humans, Survivin genetics, Autoimmune Diseases genetics, Autoimmune Diseases therapy, MicroRNAs genetics
- Abstract
It has been well established that the etiopathogenesis of diverse autoimmune diseases is rooted in the autoreactive immune cells' excessively proliferative state and impaired apoptotic machinery. Survivin is an anti-apoptotic and mitotic factor that has sparked a considerable research interest in this field. Survivin overexpression has been shown to contribute significantly to the development of autoimmune diseases via autoreactive immune cell overproliferation and apoptotic dysregulation. Several microRNAs (miRNAs/miRs) have been discovered to be involved in survivin regulation, rendering the survivin-miRNA axis a perspective target for autoimmune disease therapy. In this review, we discuss the role of survivin as an immune regulator and a highly implicated protein in the pathogenesis of autoimmune diseases, the significance of survivin-targeting miRNAs in autoimmunity, and the feasibility of targeting the survivin-miRNA axis as a promising therapeutic option for autoimmune diseases., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Shomali, Suliman Maashi, Baradaran, Daei Sorkhabi, Sarkesh, Mohammadi, Hemmatzadeh, Marofi, Sandoghchian Shotorbani and Jarahian.)
- Published
- 2022
- Full Text
- View/download PDF
38. Cardiotoxicity of immune checkpoint inhibitors: An updated review.
- Author
-
Behravesh S, Shomali N, Danbaran GR, Aslani S, Hemmatzadeh M, Hosseinzadeh R, Gowhari-Shabgah A, and Mohammadi H
- Subjects
- Cardiotoxicity etiology, Humans, Immune Checkpoint Inhibitors, Immunotherapy adverse effects, Myocarditis chemically induced, Neoplasms drug therapy
- Abstract
The immune checkpoint molecules are involved in the regulation of T cells in order to prevent them from attacking to sell tissues and play a role in the immune response homeostasis. Application of the immune checkpoint inhibitors (ICIs) has provided a promising therapeutic approach in pathologies where the immune system is suppressed. The extended utilization of ICIs in several cancers has caused immune-related side effects in the cardiovascular system like cardiomyopathy and myocarditis. Cardiac toxicity, one of the main side effects of the ICIs-based therapeutic approach, has less been concerned; however, during the last years, many cases of fatal heart failure and myocarditis have been reported in patients treated with ICIs. In this review article, we attempted to discuss the cardiac adverse effects of inhibiting different immune checkpoint molecules., (© 2020 International Union of Biochemistry and Molecular Biology, Inc.)
- Published
- 2022
- Full Text
- View/download PDF
39. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor (CAR) for tumor immunotherapy; recent progress.
- Author
-
Budi HS, Ahmad FN, Achmad H, Ansari MJ, Mikhailova MV, Suksatan W, Chupradit S, Shomali N, and Marofi F
- Subjects
- Humans, Immunotherapy, Killer Cells, Natural, Receptor, ErbB-2 genetics, Receptor, ErbB-2 metabolism, Receptors, Chimeric Antigen genetics, Receptors, Chimeric Antigen metabolism
- Abstract
Due to the overexpression or amplification of human epidermal growth factor receptor 2 (HER2) with poor prognosis in a myriad of human tumors, recent studies have focused on HER2-targeted therapies. Deregulation in HER2 signaling pathways is accompanied by sustained tumor cells growth concomitant with their migration and also tumor angiogenesis and metastasis by stimulation of proliferation of a network of blood vessels. A large number of studies have provided clear evidence that the emerging HER2-directed treatments could be the outcome of patients suffering from HER2 positive breast and also gastric/gastroesophageal cancers. Thanks to its great anti-tumor competence, immunotherapy using HER2-specific chimeric antigen receptor (CAR) expressing immune cell has recently attracted increasing attention. Human T cells and also natural killer (NK) cells can largely be found in the tumor microenvironment, mainly contributing to the tumor immune surveillance. Such properties make them perfect candidate for genetically modification to express constructed CARs. Herein, we will describe the potential targets of the HER2 signaling in tumor cells to clarify HER2-mediated tumorigenesis and also discuss recent findings respecting the HER2-specific CAR-expressing immune cells (CAR T and CAR NK cell) for the treatment of HER2-expressing tumors., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
40. Potential anti-inflammatory effect of anti-HMGB1 in animal models of ICH by downregulating the TLR4 signaling pathway and regulating the inflammatory cytokines along with increasing HO1 and NRF2.
- Author
-
Xu J, Firouz SM, Farrokhian M, Ghoreishizadeh S, Merza Mohamad TA, Rostami A, Tamjididfar R, Akbari M, Shomali N, Zamiri RE, Shotorbani SS, and Shahi AS
- Subjects
- Animals, Mice, Male, Cerebral Hemorrhage metabolism, Cerebral Hemorrhage drug therapy, Heme Oxygenase-1 metabolism, Heme Oxygenase-1 genetics, Microglia drug effects, Microglia metabolism, Inflammation Mediators metabolism, Membrane Proteins, Toll-Like Receptor 4 metabolism, HMGB1 Protein metabolism, HMGB1 Protein genetics, NF-E2-Related Factor 2 metabolism, Signal Transduction drug effects, Cytokines metabolism, Anti-Inflammatory Agents pharmacology, Down-Regulation drug effects, Disease Models, Animal
- Abstract
Intracerebral hemorrhage (ICH) is a severe clinical problem without effective treatment; the leading cause is neuroinflammation. High-mobility group box one protein (HMGB1) is an abundant protein in the cell nucleus of most mammalian cells, which exerts its function by binding to chromatin. The present study focused on the therapeutic effect of anti-HMGB1 on ICH via the downregulation of inflammatory pathways. The ICH mice models were created by collagenase IV injection in the striatum of mice. Then, mice were received different medications and divided into three groups: anti-HMGB1, anti-Toll-like receptor 4 (TLR4), and non-treated ICH groups. Cerebrospinal fluid (CSF) was obtained, and ELISA was carried out to determine the levels of inflammatory agents. Microglial cells were isolated from the cerebral hemispheres, and then Real-Time PCR and western blot were performed. The results showed that the anti-inflammatory effects of anti-HMGB1 were tremendous than anti-TLR4. Overall, the results showed that anti-HMGB1 had a more reducer effect on pro-inflammatory cytokines release (****P < 0.0001) and expression (****P < 0.0001) than anti-TLR4 when compared with the control group. It was also determined that anti-HMGB1 increased heme-oxygenase-1 (HO1) and nuclear factor erythroid-derived factor 2-related factor 2 (NRF2) (****P < 0.0001) expression in comparison with the control group while it was not significant for anti-TLR4 (CLI-095). The present study suggested that anti-HMGB1 serves as a potential anti-inflammatory molecule via reducing TLR4-related signaling pathways, pro-inflammatory cytokines production, and increasing the production of the anti-inflammatory cytokine along with heme-oxygenase-1 HO1 and NRF2 increment., (Copyright © 2021. Published by Elsevier B.V.)
- Published
- 2022
- Full Text
- View/download PDF
41. The Relationship between Extracellular/intracellular microRNAs and TLRs May Be Used as a Diagnostic and Therapeutic Approach in Sepsis.
- Author
-
Shomali N, Mahmoodpoor A, Abbas Abad AN, Marofi F, Akbari M, Xu H, and Sandoghchian Shotorbani S
- Subjects
- 3' Untranslated Regions, Biomarkers, Humans, Immunity, Innate genetics, MicroRNAs genetics, Sepsis diagnosis, Sepsis genetics, Sepsis therapy, Toll-Like Receptors genetics
- Abstract
One of the leading causes of death in the intensive care unit (ICU) is sepsis. Different studies have been performed on different markers to determine the cause of sepsis. microRNAs (miRNAs) are non-coding RNAs that can be released both inside and outside the cell and regulate the target gene expression by binding to the 3' untranslated region (3'UTR) of the target genes. TLRs play an important role in innate immunity that can be modulated by biological markers such as microRNAs. In this study, we summarized the recent progress on the role of extracellular and intracellular microRNAs in sepsis. It has also been focused on the association of TLRs with extracellular and intracellular micro RNAs in the regulation of sepsis. In conclusion, this study has provided new insight into the role of microRNAs as a regulator of the TLRs which may lead to the aberrant inflammatory response in sepsis. Therefore, it suggests that both intracellular and extracellular microRNAs may play a therapeutic role in the treatment of sepsis via regulating TLRs. However, yet sepsis and septic shock are medical emergencies and further studies are needed to specify the exact role of microRNAs and TLRs in sepsis.
- Published
- 2022
- Full Text
- View/download PDF
42. The Role of Janus Kinase/STAT3 Pathway in Hematologic Malignancies With an Emphasis on Epigenetics.
- Author
-
Zeinalzadeh E, Valerievich Yumashev A, Rahman HS, Marofi F, Shomali N, Kafil HS, Solali S, Sajjadi-Dokht M, Vakili-Samiani S, Jarahian M, and Hagh MF
- Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway has been known to be involved in cell growth, cellular differentiation processes development, immune cell survival, and hematopoietic system development. As an important member of the STAT family, STAT3 participates as a major regulator of cellular development and differentiation-associated genes. Prolonged and persistent STAT3 activation has been reported to be associated with tumor cell survival, proliferation, and invasion. Therefore, the JAK-STAT pathway can be a potential target for drug development to treat human cancers, e.g., hematological malignancies. Although STAT3 upregulation has been reported in hematopoietic cancers, protein-level STAT3 mutations have also been reported in invasive leukemias/lymphomas. The principal role of STAT3 in tumor cell growth clarifies the importance of approaches that downregulate this molecule. Epigenetic modifications are a major regulatory mechanism controlling the activity and function of STAT3. So far, several compounds have been developed to target epigenetic regulatory enzymes in blood malignancies. Here, we discuss the current knowledge about STAT3 abnormalities and carcinogenic functions in hematopoietic cancers, novel STAT3 inhibitors, the role of epigenetic mechanisms in STAT3 regulation, and targeted therapies, by focusing on STAT3-related epigenetic modifications., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Zeinalzadeh, Valerievich Yumashev, Rahman, Marofi, Shomali, Kafil, Solali, Sajjadi-Dokht, Vakili-Samiani, Jarahian and Hagh.)
- Published
- 2021
- Full Text
- View/download PDF
43. MicroRNAs and JAK/STAT3 signaling: A new promising therapeutic axis in blood cancers.
- Author
-
Sajjadi-Dokht M, Merza Mohamad TA, Sulaiman Rahman H, Suliman Maashi M, Danshina S, Shomali N, Solali S, Marofi F, Zeinalzadeh E, Akbari M, Adili A, Aslaminabad R, Farshdousti Hagh M, and Jarahian M
- Abstract
Blood disorders include a wide spectrum of blood-associated malignancies resulting from inherited or acquired defects. The ineffectiveness of existing therapies against blood disorders arises from different reasons, one of which is drug resistance, so different types of leukemia may show different responses to treatment. Leukemia occurs for a variety of genetic and acquired reasons, leading to uncontrolled proliferation in one or more cell lines. Regarding the genetic defects, oncogene signal transducer and activator of transcription (STAT) family transcription factor, especially STAT3, play an essential role in hematological disorders onset and progress upon mutations, dysfunction, or hyperactivity. Besides, microRNAs, as biological molecules, has been shown to play a dual role in either tumorigenesis and tumor suppression in various cancers. Besides, a strong association between STAT3 and miRNA has been reported. For example, miRNAs can regulate STAT3 via targeting its upstream mediators such as IL6, IL9, and JAKs or directly binding to the STAT3 gene. On the other hand, STAT3 can regulate miRNAs. In this review study, we aimed to determine the role of either microRNAs and STAT3 along with their effect on one another's activity and function in hematological malignancies., Competing Interests: Authors declare no conflict of interests., (© 2021 Chongqing Medical University. Production and hosting by Elsevier B.V.)
- Published
- 2021
- Full Text
- View/download PDF
44. Optimizing sgRNA to Improve CRISPR/Cas9 Knockout Efficiency: Special Focus on Human and Animal Cell.
- Author
-
Shojaei Baghini S, Gardanova ZR, Zekiy AO, Shomali N, Tosan F, and Jarahian M
- Abstract
During recent years, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technologies have been noticed as a rapidly evolving tool to deliver a possibility for modifying target sequence expression and function. The CRISPR/Cas9 tool is currently being used to treat a myriad of human disorders, ranging from genetic diseases and infections to cancers. Preliminary reports have shown that CRISPR technology could result in valued consequences for the treatment of Duchenne muscular dystrophy (DMD), cystic fibrosis (CF), β-thalassemia, Huntington's diseases (HD), etc. Nonetheless, high rates of off-target effects may hinder its application in clinics. Thereby, recent studies have focused on the finding of the novel strategies to ameliorate these off-target effects and thereby lead to a high rate of fidelity and accuracy in human, animals, prokaryotes, and also plants. Meanwhile, there is clear evidence indicating that the design of the specific sgRNA with high efficiency is of paramount importance. Correspondingly, elucidation of the principal parameters that contributed to determining the sgRNA efficiencies is a prerequisite. Herein, we will deliver an overview regarding the therapeutic application of CRISPR technology to treat human disorders. More importantly, we will discuss the potent influential parameters (e.g., sgRNA structure and feature) implicated in affecting the sgRNA efficacy in CRISPR/Cas9 technology, with special concentration on human and animal studies., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Shojaei Baghini, Gardanova, Zekiy, Shomali, Tosan and Jarahian.)
- Published
- 2021
- Full Text
- View/download PDF
45. PD-1/PD-L1 blockade: Prospectives for immunotherapy in cancer and autoimmunity.
- Author
-
Hosseinzadeh R, Feizisani F, Shomali N, Abdelbasset WK, Hemmatzadeh M, Gholizadeh Navashenaq J, Jadidi-Niaragh F, Bokov DO, Janebifam M, and Mohammadi H
- Subjects
- Antineoplastic Combined Chemotherapy Protocols immunology, Antineoplastic Combined Chemotherapy Protocols pharmacology, Arthritis, Rheumatoid immunology, Autoimmunity, B7-H1 Antigen genetics, B7-H1 Antigen immunology, B7-H1 Antigen metabolism, Biomarkers, Tumor immunology, Diabetes Mellitus, Type 1 immunology, Gastrointestinal Microbiome physiology, Humans, Immune Checkpoint Inhibitors adverse effects, Immune Checkpoint Inhibitors immunology, Lupus Erythematosus, Systemic immunology, Neoplasms immunology, Polymorphism, Single Nucleotide, Prognosis, Programmed Cell Death 1 Receptor immunology, Programmed Cell Death 1 Receptor metabolism, Gastrointestinal Microbiome drug effects, Immune Checkpoint Inhibitors pharmacology, Immunotherapy adverse effects, Immunotherapy methods, Neoplasms therapy
- Abstract
Immune checkpoint blockade therapy (ICBT) has become a successful cancer treatment approach in the field of cancer immunotherapy. Blockade of programmed death 1 (PD-1) and programmed death-ligand 1 (PD-L1) with monoclonal antibodies have been known as successful examples of cancer immunotherapy in recent years. Although ICBT has been shown to be beneficial in cancers, such benefits have only been seen in a portion of cancer patients. In this regard, enhancing the therapeutic effects of inhibiting PD-1 and PD-L1 and reducing the side effects of this approach can be considered as a potential approach in a successful ICBT. In this review, we have highlighted new viewpoints regarding improving the therapeutic effect of PD-1 and PD-L1 blockades in cancer therapy. Besides, their expression levels as a biomarker with prognostic value, their role in intestinal microbiota modulation, combination therapy, and immune-related side effects (irAEs) have been discussed., (© 2021 International Union of Biochemistry and Molecular Biology.)
- Published
- 2021
- Full Text
- View/download PDF
46. Matrix metalloproteinases are involved in the development of neurological complications in patients with Coronavirus disease 2019.
- Author
-
Mohammadhosayni M, Sadat Mohammadi F, Ezzatifar F, Mahdavi Gorabi A, Khosrojerdi A, Aslani S, Hemmatzadeh M, Yazdani S, Arabi M, Marofi F, Jadidi-Niaragh F, Shomali N, and Mohammadi H
- Subjects
- Aged, Chemokines analysis, Cytokines analysis, Female, Humans, Intercellular Adhesion Molecule-1 analysis, Male, Middle Aged, COVID-19 complications, Matrix Metalloproteinases physiology, Nervous System Diseases etiology, SARS-CoV-2
- Abstract
Background: Evidence show that Matrix metalloproteinases (MMPs) have been associated with neurological complications in the viral infections. Here in the current investigation, we intended to reveal if MMPs are potentially involved in the development of neurological symptoms in the patients with Coronavirus disease 2019 (COVID-19)., Methods: The levels of MMPs, inflammatory cytokines, chemokines, and adhesion molecules were evaluated in the serum and cerebrospinal fluid (CSF) samples from 10 COVID-19 patients with neurological syndrome (NS) and 10 COVID-19 patients lacking NS. Monocytes from the CSF samples were treated with TNF-α and the secreted levels of MMPs were determined., Results: The frequency of monocytes were increased in the CSF samples of COVID-19 patients with NS compared to patients without NS. Levels of inflammatory cytokines IL-1β, IL-6, and TNF-α, chemokines CCL2, CCL3, CCL4, CCL7, CCL12, CXCL8, and CX3CL1, MMPs MMP-2, MMP-3, MMP-9, and MMP-12, and adhesion molecules ICAM-1, VCAM-1, and E-selectin were significantly increased in the CSF samples of COVID-19 patients with NS compared with patients without NS. Treatment of CSF-derived monocytes obtained from COVID-19 patients with NS caused increased production of MMP-2, MMP-3, MMP-9, and MMP-12., Conclusions: Higher levels of inflammatory cytokines might promote the expression of adhesion molecules on blood-CSF barrier (BCSFB), resulting in facilitation of monocyte recruitment. Increased levels of CSF chemokines might also help to the trafficking of monocytes to CSF. Inflammatory cytokines might enhance production of MMPs from monocytes, leading to disruption of BCSFB (and therefore further infiltration of inflammatory cells to CSF) in COVID-19 patients with NS., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
47. Antifungal Effects of Voriconazole-Loaded Nano-Liposome on Fluconazole - Resistant Clinical Isolates of Candida albicans , Biological Activity and ERG11, CDR1, and CDR2 Gene Expression.
- Author
-
Hassanpour P, Hamishehkar H, Bahari Baroughi B, Baradaran B, Sandoghchian Shotorbani S, Mohammadi M, Shomali N, Aghebati-Maleki L, and Nami S
- Subjects
- Antifungal Agents pharmacology, Drug Resistance, Fungal genetics, Fungal Proteins genetics, Gene Expression, Humans, Liposomes, Microbial Sensitivity Tests, Voriconazole pharmacology, Candida albicans genetics, Fluconazole pharmacology
- Abstract
This study aimed to assess the effect of voriconazole (VCZ)-loaded nano-liposomes on biological activity and expression of ERG11 , CDR1 , and CDR2 genes in fluconazole (FCZ)-resistant Candida albicans . In this study, 5 resistant isolates of C. albicans and 3 susceptible clinical isolates to FCZ were scrutinized from 60 patients suspected of candidiasis. The liposomal formulation of VCZ was produced. After that, the minimum biofilm inhibitory concentration (MBIC) testing was performed and the percentage of growth inhibition was determined. Finally, ERG11 , CDR1, and CDR2 mRNA levels were amplified by the quantitative reverse transcription PCR (qRT-PCR) instrument. The obtained results unveiled that VCZ-loaded nano-liposome reduction of minimum inhibitory concentration in C. albicans isolates was remarkable. The results of the MBIC in the most optimum inhibitory concentration of VCZ-loaded nano-liposome were determined to be 4.54 and 4.88 μg/mL for susceptible isolate and resistant isolate, respectively. The ERG11 gene expression in FCZ-resistant C. albicans strains in VCZ-treated, liposomal formulation of VCZ-treated, and nontreated specimens stood at 91%, 63%, and 100%, respectively. Expression levels of CDR1 genes in FCZ-resistant C. albicans were shown to be 91%, 88%, and 100%, respectively. Concerning CDR2 genes, this rate varied to 91%, 78%, and 100% in FCZ resistant, respectively. What our study unveiled was that the use of liposomal VCZ formulation could further reduce the expression of azole-resistant genes compared to VCZ itself. In addition, thanks to more efficacious penetration of the liposomal form, the rate of growth inhibition was considerably higher.
- Published
- 2021
- Full Text
- View/download PDF
48. Multi-facets of neutrophil extracellular trap in infectious diseases: Moving beyond immunity.
- Author
-
Tabrizi ZA, Khosrojerdi A, Aslani S, Hemmatzadeh M, Babaie F, Bairami A, Shomali N, Hosseinzadeh R, Safari R, and Mohammadi H
- Subjects
- Humans, NADPH Oxidases, Neutrophils, Prospective Studies, Reactive Oxygen Species, Communicable Diseases, Extracellular Traps
- Abstract
Neutrophil extracellular traps (NETs) are networks of extracellular chromosomal DNA fibers, histones, and cytoplasmic granule proteins. The release of NET components from neutrophils is involved in the suppression of pathogen diffusion. Development of NETs around target microbes leads to disruption of the cell membrane, eventuating in kind of cell death that is called as NETosis. The very first step in the process of NETosis is activation of Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase upon signaling by innate immune receptors. Afterwards, produced Reactive oxygen species (ROS) trigger protein-arginine deiminase type 4, neutrophil elastase, and myeloperoxidase to generate decondensed chromatin and disrupted integrity of nuclear membrane. Subsequently, decondensed chromatin is mixed with several enzymes in the cytoplasm released from granules, leading to release of DNA and histones, and finally formation of NET. Several reports have indicated that NETosis might contribute to the immune responses through limiting the dissemination of microbial organisms. In this review, we discuss recent advances on the role of neutrophils, NETs, and their implications in the pathogenesis of microbial infections. Additionally, the prospective of the NET modulation as a therapeutic strategy to treat infectious diseases are clarified., (Copyright © 2021 Elsevier Ltd. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
49. Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients.
- Author
-
Marofi F, Rahman HS, Al-Obaidi ZMJ, Jalil AT, Abdelbasset WK, Suksatan W, Dorofeev AE, Shomali N, Chartrand MS, Pathak Y, Hassanzadeh A, Baradaran B, Ahmadi M, Saeedi H, Tahmasebi S, and Jarahian M
- Subjects
- Humans, Immunotherapy, Immunotherapy, Adoptive, T-Lymphocytes, Leukemia, Myeloid, Acute therapy, Receptors, Chimeric Antigen genetics
- Abstract
Acute myeloid leukemia (AML) is a serious, life-threatening, and hardly curable hematological malignancy that affects the myeloid cell progenies and challenges patients of all ages but mostly occurs in adults. Although several therapies are available including chemotherapy, allogeneic hematopoietic stem cell transplantation (alloHSCT), and receptor-antagonist drugs, the 5-year survival of patients is quietly disappointing, less than 30%. alloHSCT is the major curative approach for AML with promising results but the treatment has severe adverse effects such as graft-versus-host disease (GVHD). Therefore, as an alternative, more efficient and less harmful immunotherapy-based approaches such as the adoptive transferring T cell therapy are in development for the treatment of AML. As such, chimeric antigen receptor (CAR) T cells are engineered T cells which have been developed in recent years as a breakthrough in cancer therapy. Interestingly, CAR T cells are effective against both solid tumors and hematological cancers such as AML. Gradually, CAR T cell therapy found its way into cancer therapy and was widely used for the treatment of hematologic malignancies with successful results particularly with somewhat better results in hematological cancer in comparison to solid tumors. The AML is generally fatal, therapy-resistant, and sometimes refractory disease with a disappointing low survival rate and weak prognosis. The 5-year survival rate for AML is only about 30%. However, the survival rate seems to be age-dependent. Novel CAR T cell therapy is a light at the end of the tunnel. The CD19 is an important target antigen in AML and lymphoma and the CAR T cells are engineered to target the CD19. In addition, a lot of research goes on the discovery of novel target antigens with therapeutic efficacy and utilizable for generating CAR T cells against various types of cancers. In recent years, many pieces of research on screening and identification of novel AML antigen targets with the goal of generation of effective anti-cancer CAR T cells have led to new therapies with strong cytotoxicity against cancerous cells and impressive clinical outcomes. Also, more recently, an improved version of CAR T cells which were called modified or smartly reprogrammed CAR T cells has been designed with less unwelcome effects, less toxicity against normal cells, more safety, more specificity, longer persistence, and proliferation capability. The purpose of this review is to discuss and explain the most recent advances in CAR T cell-based therapies targeting AML antigens and review the results of preclinical and clinical trials. Moreover, we will criticize the clinical challenges, side effects, and the different strategies for CAR T cell therapy., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
50. Correction to: Any closer to successful therapy of multiple myeloma? CAR-T cell is a good reason for optimism.
- Author
-
Marofi F, Tahmasebi S, Rahman HS, Kaigorodov D, Markov A, Yumashev AV, Shomali N, Chartrand MS, Pathak Y, Mohammed RN, Jarahian M, Motavalli R, and Khiavi FM
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.