5 results on '"Sifrim–Hitz–Weiss syndrome"'
Search Results
2. Case report: Diagnosis of a patient with Sifrim–Hitz–Weiss syndrome, development and epileptic encephalopathy-14, and medium chain acyl-CoA dehydrogenase deficiency
- Author
-
Naim Zeka, Eris Zeka, Esra Zhubi, and Ilir Hoxha
- Subjects
developmental and epileptic encephalopathy ,genetic variants ,medium-chain acyl-CoA dehydrogenase deficiency ,neurodevelopmental delay ,seizure ,Sifrim–Hitz–Weiss syndrome ,Pediatrics ,RJ1-570 - Abstract
BackgroundIt is generally recognized that genetic metabolic disorders can result in neurological symptoms such as seizures, developmental delay, and intellectual disability. Heterogeneous clinical presentations make the diagnosis challenging.Case presentationIn this case report, we present a unique and complex genetic disorder observed in a female patient who exhibited three pathogenic gene variants in the KCNT1, ACADM, and CHD4 genes. The convergence of these variants resulted in a multifaceted clinical presentation characterized by severe seizures of combined focal and generalized onset, metabolic dysfunction, and neurodevelopmental abnormalities. The identification and functional characterization of these gene variants shed light on the intricate interplay between these genes and the patient's phenotype. EEG revealed an epileptiform abnormality which presented in the inter-ictal period from the left frontal-central area and in the ictal period from the left mid-temporal area. The brain MRI revealed volume loss in the posterior periventricular area and parietal parenchyma, myelin destruction with no sign of hypoxic involvement, and left dominant enlargement of the lateral ventricles secondary to loss of central parenchyma. The patient was diagnosed through exome sequencing with Sifrim–Hitz–Weiss syndrome, development and epileptic encephalopathy-14, and medium-chain acyl-CoA dehydrogenase deficiency. An antiseizure medication regimen with valproic acid, levetiracetam, phenobarbital, and clonazepam was initiated. However, this led to only partial control of the seizures.ConclusionClinical follow-up of the patient will further define the clinical spectrum of KCNT1, ACADM, and CHD4 gene variants. It will also determine the long-term efficacy of the treatment of seizures and the development of precision medicine for epilepsy syndromes due to gain-of-function variants. Special emphasis should be put on the role and importance of large-scale genomic testing in understanding and diagnosing complex phenotypes and atypical epileptic syndromes.
- Published
- 2023
- Full Text
- View/download PDF
3. A Novel Frameshift CHD4 Variant Leading to Sifrim-Hitz-Weiss Syndrome in a Proband with a Subclinical Familial t(17;19) and a Large dup(2)(q14.3q21.1).
- Author
-
Da Silva, Jorge Diogo, Oliva-Teles, Natália, Tkachenko, Nataliya, Fino, Joana, Marques, Mariana, Fortuna, Ana Maria, and David, Dezso
- Subjects
DNA-binding proteins ,GENETIC variation ,DNA helicases ,SYMPTOMS ,SYNDROMES - Abstract
The genetic complexity of neurodevelopmental disorders (NDD), combined with a heterogeneous clinical presentation, makes accurate assessment of their molecular bases and pathogenic mechanisms challenging. Our purpose is to reveal the pathogenic variant underlying a complex NDD through identification of the "full" spectrum of structural genomic and genetic variants. Therefore, clinical phenotyping and identification of variants by genome and exome sequencing, together with comprehensive assessment of these and affected candidate genes, were carried out. A maternally-inherited familial translocation [t(17;19)(p13.1;p13.3)mat] disrupting the GSG1 like 2 gene (GSG1L2), a 3.2 Mb dup(2)(q14.3q21.1) encompassing the autosomal dominant OMIM phenotype-associated PROC and HS6ST1 gene, and a novel frameshift c.4442del, p.(Gly1481Valfs*21) variant within exon 30 of the Chromodomain helicase DNA binding protein 4 (CHD4) have been identified. Considering the pathogenic potential of each variant and the proband's phenotype, we conclude that this case basically fits the Sifrim–Hitz–Weiss syndrome or CHD4-associated neurodevelopmental phenotype. Finally, our data highlight the need for identification of the "full" spectrum of structural genomic and genetic variants and of reverse comparative phenotyping, including unrelated patients with variants in same genes, for improved genomic healthcare of patients with NDD. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
4. A Novel Frameshift CHD4 Variant Leading to Sifrim-Hitz-Weiss Syndrome in a Proband with a Subclinical Familial t(17;19) and a Large dup(2)(q14.3q21.1)
- Author
-
Jorge Diogo Da Silva, Natália Oliva-Teles, Nataliya Tkachenko, Joana Fino, Mariana Marques, Ana Maria Fortuna, and Dezso David
- Subjects
Sifrim–Hitz–Weiss syndrome ,CHD4-associated ND phenotype ,frameshift CHD4 variant ,familial translocation ,GSG1L2 ,dup(2)(q14.3q21.1) ,Biology (General) ,QH301-705.5 - Abstract
The genetic complexity of neurodevelopmental disorders (NDD), combined with a heterogeneous clinical presentation, makes accurate assessment of their molecular bases and pathogenic mechanisms challenging. Our purpose is to reveal the pathogenic variant underlying a complex NDD through identification of the “full” spectrum of structural genomic and genetic variants. Therefore, clinical phenotyping and identification of variants by genome and exome sequencing, together with comprehensive assessment of these and affected candidate genes, were carried out. A maternally-inherited familial translocation [t(17;19)(p13.1;p13.3)mat] disrupting the GSG1 like 2 gene (GSG1L2), a 3.2 Mb dup(2)(q14.3q21.1) encompassing the autosomal dominant OMIM phenotype-associated PROC and HS6ST1 gene, and a novel frameshift c.4442del, p.(Gly1481Valfs*21) variant within exon 30 of the Chromodomain helicase DNA binding protein 4 (CHD4) have been identified. Considering the pathogenic potential of each variant and the proband’s phenotype, we conclude that this case basically fits the Sifrim–Hitz–Weiss syndrome or CHD4-associated neurodevelopmental phenotype. Finally, our data highlight the need for identification of the “full” spectrum of structural genomic and genetic variants and of reverse comparative phenotyping, including unrelated patients with variants in same genes, for improved genomic healthcare of patients with NDD.
- Published
- 2022
- Full Text
- View/download PDF
5. CHD4 Neurodevelopmental Disorder
- Author
-
Weiss K, Lachlan K, Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Mirzaa GM, and Amemiya A
- Abstract
Clinical Characteristics: CHD4 neurodevelopmental disorder ( CHD4 -NDD) is associated with developmental delay, speech delay, and usually mild-to-moderate intellectual disability. Variability between individuals with CHD4 -NDD is significant, and a few have normal intelligence. Other manifestations can include brain anomalies, heart defects, and skeletal abnormalities; less common features are hypogonadism in males, hearing impairment, and ophthalmic abnormalities. Most affected individuals have mild nonspecific dysmorphic facial features with or without macrocephaly., Diagnosis/testing: The diagnosis of CHD4 -NDD is established in a proband with suggestive findings and a heterozygous pathogenic variant in CHD4 identified by molecular genetic testing., Management: Treatment of manifestations: Developmental delay / intellectual disability, cervical spine instability and risk of spinal cord compression, refractive errors and strabismus, hearing impairment, congenital heart defects, behavioral issues, growth delay, hypogonadism in males, and renal anomalies are managed per standard care. Surveillance: Follow up of the common manifestations at each clinic visit. Agents/circumstances to avoid: Activities that involve rapid neck motion and/or possible trauma to the head and neck region (e.g., contact sports or thrill rides at amusement parks) because of the possible increased risk for cervical spine instability and spinal cord compression., Genetic Counseling: CHD4 -NDD is an autosomal dominant disorder typically caused by a de novo pathogenic variant. If the CHD4 pathogenic variant identified in the proband is not identified in either parent, the risk to sibs is low (~1%) but greater than that of the general population because of the possibility of parental germline mosaicism. Once the CHD4 pathogenic variant has been identified in an affected family member, prenatal and preimplantation genetic testing are possible., (Copyright © 1993-2021, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.)
- Published
- 1993
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.