6 results on '"Sihinevich, Iryna"'
Search Results
2. Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
- Author
-
Allesøe, Rosa Lundbye, Lundgaard, Agnete Troen, Hernández Medina, Ricardo, Aguayo-Orozco, Alejandro, Johansen, Joachim, Nissen, Jakob Nybo, Brorsson, Caroline, Mazzoni, Gianluca, Niu, Lili, Biel, Jorge Hernansanz, Brasas, Valentas, Webel, Henry, Benros, Michael Eriksen, Pedersen, Anders Gorm, Chmura, Piotr Jaroslaw, Jacobsen, Ulrik Plesner, Mari, Andrea, Koivula, Robert, Mahajan, Anubha, Vinuela, Ana, Tajes, Juan Fernandez, Sharma, Sapna, Haid, Mark, Hong, Mun-Gwan, Musholt, Petra B., De Masi, Federico, Vogt, Josef, Pedersen, Helle Krogh, Gudmundsdottir, Valborg, Jones, Angus, Kennedy, Gwen, Bell, Jimmy, Thomas, E. Louise, Frost, Gary, Thomsen, Henrik, Hansen, Elizaveta, Hansen, Tue Haldor, Vestergaard, Henrik, Muilwijk, Mirthe, Blom, Marieke T., ‘t Hart, Leen M., Pattou, Francois, Raverdy, Violeta, Brage, Soren, Kokkola, Tarja, Heggie, Alison, McEvoy, Donna, Mourby, Miranda, Kaye, Jane, Hattersley, Andrew, McDonald, Timothy, Ridderstråle, Martin, Walker, Mark, Forgie, Ian, Giordano, Giuseppe N., Pavo, Imre, Ruetten, Hartmut, Pedersen, Oluf, Hansen, Torben, Dermitzakis, Emmanouil, Franks, Paul W., Schwenk, Jochen M., Adamski, Jerzy, McCarthy, Mark I., Pearson, Ewan, Banasik, Karina, Rasmussen, Simon, Brunak, Søren, Froguel, Philippe, Thomas, Cecilia Engel, Häussler, Ragna S., Beulens, Joline, Rutters, Femke, Nijpels, Giel, van Oort, Sabine, Groeneveld, Lenka, Elders, Petra, Giorgino, Toni, Rodriquez, Marianne, Nice, Rachel, Perry, Mandy, Bianzano, Susanna, Graefe-Mody, Ulrike, Hennige, Anita, Grempler, Rolf, Baum, Patrick, Stærfeldt, Hans Henrik, Shah, Nisha, Teare, Harriet, Ehrhardt, Beate, Tillner, Joachim, Dings, Christiane, Lehr, Thorsten, Scherer, Nina, Sihinevich, Iryna, Cabrelli, Louise, Loftus, Heather, Bizzotto, Roberto, Tura, Andrea, Dekkers, Koen, Allesøe, Rosa Lundbye, Lundgaard, Agnete Troen, Hernández Medina, Ricardo, Aguayo-Orozco, Alejandro, Johansen, Joachim, Nissen, Jakob Nybo, Brorsson, Caroline, Mazzoni, Gianluca, Niu, Lili, Biel, Jorge Hernansanz, Brasas, Valentas, Webel, Henry, Benros, Michael Eriksen, Pedersen, Anders Gorm, Chmura, Piotr Jaroslaw, Jacobsen, Ulrik Plesner, Mari, Andrea, Koivula, Robert, Mahajan, Anubha, Vinuela, Ana, Tajes, Juan Fernandez, Sharma, Sapna, Haid, Mark, Hong, Mun-Gwan, Musholt, Petra B., De Masi, Federico, Vogt, Josef, Pedersen, Helle Krogh, Gudmundsdottir, Valborg, Jones, Angus, Kennedy, Gwen, Bell, Jimmy, Thomas, E. Louise, Frost, Gary, Thomsen, Henrik, Hansen, Elizaveta, Hansen, Tue Haldor, Vestergaard, Henrik, Muilwijk, Mirthe, Blom, Marieke T., ‘t Hart, Leen M., Pattou, Francois, Raverdy, Violeta, Brage, Soren, Kokkola, Tarja, Heggie, Alison, McEvoy, Donna, Mourby, Miranda, Kaye, Jane, Hattersley, Andrew, McDonald, Timothy, Ridderstråle, Martin, Walker, Mark, Forgie, Ian, Giordano, Giuseppe N., Pavo, Imre, Ruetten, Hartmut, Pedersen, Oluf, Hansen, Torben, Dermitzakis, Emmanouil, Franks, Paul W., Schwenk, Jochen M., Adamski, Jerzy, McCarthy, Mark I., Pearson, Ewan, Banasik, Karina, Rasmussen, Simon, Brunak, Søren, Froguel, Philippe, Thomas, Cecilia Engel, Häussler, Ragna S., Beulens, Joline, Rutters, Femke, Nijpels, Giel, van Oort, Sabine, Groeneveld, Lenka, Elders, Petra, Giorgino, Toni, Rodriquez, Marianne, Nice, Rachel, Perry, Mandy, Bianzano, Susanna, Graefe-Mody, Ulrike, Hennige, Anita, Grempler, Rolf, Baum, Patrick, Stærfeldt, Hans Henrik, Shah, Nisha, Teare, Harriet, Ehrhardt, Beate, Tillner, Joachim, Dings, Christiane, Lehr, Thorsten, Scherer, Nina, Sihinevich, Iryna, Cabrelli, Louise, Loftus, Heather, Bizzotto, Roberto, Tura, Andrea, and Dekkers, Koen
- Abstract
The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug–omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug–drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities., Correction in DOI 10.1038/s41587-023-01805-9QC 20230626
- Published
- 2023
- Full Text
- View/download PDF
3. Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits
- Author
-
Brown, Andrew A., Fernandez-Tajes, Juan J., Hong, Mun gwan, Brorsson, Caroline A., Koivula, Robert W., Davtian, David, Dupuis, Théo, Sartori, Ambra, Michalettou, Theodora Dafni, Forgie, Ian M., Adam, Jonathan, Allin, Kristine H., Caiazzo, Robert, Cederberg, Henna, De Masi, Federico, Elders, Petra J.M., Giordano, Giuseppe N., Haid, Mark, Hansen, Torben, Hansen, Tue H., Hattersley, Andrew T., Heggie, Alison J., Howald, Cédric, Jones, Angus G., Kokkola, Tarja, Laakso, Markku, Mahajan, Anubha, Mari, Andrea, McDonald, Timothy J., McEvoy, Donna, Mourby, Miranda, Musholt, Petra B., Nilsson, Birgitte, Pattou, Francois, Penet, Deborah, Raverdy, Violeta, Ridderstråle, Martin, Romano, Luciana, Rutters, Femke, Sharma, Sapna, Teare, Harriet, ‘t Hart, Leen, Tsirigos, Konstantinos D., Vangipurapu, Jagadish, Vestergaard, Henrik, Brunak, Søren, Franks, Paul W., Frost, Gary, Grallert, Harald, Jablonka, Bernd, McCarthy, Mark I., Pavo, Imre, Pedersen, Oluf, Ruetten, Hartmut, Walker, Mark, Adragni, Kofi, Allesøe, Rosa Lundbye L., Artati, Anna A., Arumugam, Manimozhiyan, Atabaki-Pasdar, Naeimeh, Baltauss, Tania, Banasik, Karina, Barnett, Anna L., Baum, Patrick, Bell, Jimmy D., Beulens, Joline W., Bianzano, Susanna B., Bizzotto, Roberto, Bonnefond, Amelie, Cabrelli, Louise, Dale, Matilda, Dawed, Adem Y., de Preville, Nathalie, Dekkers, Koen F., Deshmukh, Harshal A., Dings, Christiane, Donnelly, Louise, Dutta, Avirup, Ehrhardt, Beate, Engelbrechtsen, Line, Eriksen, Rebeca, Fan, Yong, Ferrer, Jorge, Fitipaldi, Hugo, Forman, Annemette, Fritsche, Andreas, Froguel, Philippe, Gassenhuber, Johann, Gough, Stephen, Graefe-Mody, Ulrike, Grempler, Rolf, Groeneveld, Lenka, Groop, Leif, Gudmundsdóttir, Valborg, Gupta, Ramneek, Hennige, Anita M.H., Hill, Anita V., Holl, Reinhard W., Hudson, Michelle, Jacobsen, Ulrik Plesner, Jennison, Christopher, Johansen, Joachim, Jonsson, Anna, Karaderi, Tugce, Kaye, Jane, Kennedy, Gwen, Klintenberg, Maria, Kuulasmaa, Teemu, Lehr, Thorsten, Loftus, Heather, Lundgaard, Agnete Troen T., Mazzoni, Gianluca, McRobert, Nicky, McVittie, Ian, Nice, Rachel, Nicolay, Claudia, Nijpels, Giel, Palmer, Colin N., Pedersen, Helle K., Perry, Mandy H., Pomares-Millan, Hugo, Prehn, Cornelia P., Ramisch, Anna, Rasmussen, Simon, Robertson, Neil, Rodriquez, Marianne, Sackett, Peter, Scherer, Nina, Shah, Nisha, Sihinevich, Iryna, Slieker, Roderick C., Sondertoft, Nadja B., Steckel-Hamann, Birgit, Thomas, Melissa K., Thomas, Cecilia Engel E., Thomas, Elizabeth Louise L., Thorand, Barbara, Thorne, Claire E., Tillner, Joachim, Tura, Andrea, Uhlen, Mathias, van Leeuwen, Nienke, van Oort, Sabine, Verkindt, Helene, Vogt, Josef, Wad Sackett, Peter W., Wesolowska-Andersen, Agata, Whitcher, Brandon, White, Margaret W., Adamski, Jerzy, Schwenk, Jochen M., Pearson, Ewan R., Dermitzakis, Emmanouil T., Viñuela, Ana, Brown, Andrew A., Fernandez-Tajes, Juan J., Hong, Mun gwan, Brorsson, Caroline A., Koivula, Robert W., Davtian, David, Dupuis, Théo, Sartori, Ambra, Michalettou, Theodora Dafni, Forgie, Ian M., Adam, Jonathan, Allin, Kristine H., Caiazzo, Robert, Cederberg, Henna, De Masi, Federico, Elders, Petra J.M., Giordano, Giuseppe N., Haid, Mark, Hansen, Torben, Hansen, Tue H., Hattersley, Andrew T., Heggie, Alison J., Howald, Cédric, Jones, Angus G., Kokkola, Tarja, Laakso, Markku, Mahajan, Anubha, Mari, Andrea, McDonald, Timothy J., McEvoy, Donna, Mourby, Miranda, Musholt, Petra B., Nilsson, Birgitte, Pattou, Francois, Penet, Deborah, Raverdy, Violeta, Ridderstråle, Martin, Romano, Luciana, Rutters, Femke, Sharma, Sapna, Teare, Harriet, ‘t Hart, Leen, Tsirigos, Konstantinos D., Vangipurapu, Jagadish, Vestergaard, Henrik, Brunak, Søren, Franks, Paul W., Frost, Gary, Grallert, Harald, Jablonka, Bernd, McCarthy, Mark I., Pavo, Imre, Pedersen, Oluf, Ruetten, Hartmut, Walker, Mark, Adragni, Kofi, Allesøe, Rosa Lundbye L., Artati, Anna A., Arumugam, Manimozhiyan, Atabaki-Pasdar, Naeimeh, Baltauss, Tania, Banasik, Karina, Barnett, Anna L., Baum, Patrick, Bell, Jimmy D., Beulens, Joline W., Bianzano, Susanna B., Bizzotto, Roberto, Bonnefond, Amelie, Cabrelli, Louise, Dale, Matilda, Dawed, Adem Y., de Preville, Nathalie, Dekkers, Koen F., Deshmukh, Harshal A., Dings, Christiane, Donnelly, Louise, Dutta, Avirup, Ehrhardt, Beate, Engelbrechtsen, Line, Eriksen, Rebeca, Fan, Yong, Ferrer, Jorge, Fitipaldi, Hugo, Forman, Annemette, Fritsche, Andreas, Froguel, Philippe, Gassenhuber, Johann, Gough, Stephen, Graefe-Mody, Ulrike, Grempler, Rolf, Groeneveld, Lenka, Groop, Leif, Gudmundsdóttir, Valborg, Gupta, Ramneek, Hennige, Anita M.H., Hill, Anita V., Holl, Reinhard W., Hudson, Michelle, Jacobsen, Ulrik Plesner, Jennison, Christopher, Johansen, Joachim, Jonsson, Anna, Karaderi, Tugce, Kaye, Jane, Kennedy, Gwen, Klintenberg, Maria, Kuulasmaa, Teemu, Lehr, Thorsten, Loftus, Heather, Lundgaard, Agnete Troen T., Mazzoni, Gianluca, McRobert, Nicky, McVittie, Ian, Nice, Rachel, Nicolay, Claudia, Nijpels, Giel, Palmer, Colin N., Pedersen, Helle K., Perry, Mandy H., Pomares-Millan, Hugo, Prehn, Cornelia P., Ramisch, Anna, Rasmussen, Simon, Robertson, Neil, Rodriquez, Marianne, Sackett, Peter, Scherer, Nina, Shah, Nisha, Sihinevich, Iryna, Slieker, Roderick C., Sondertoft, Nadja B., Steckel-Hamann, Birgit, Thomas, Melissa K., Thomas, Cecilia Engel E., Thomas, Elizabeth Louise L., Thorand, Barbara, Thorne, Claire E., Tillner, Joachim, Tura, Andrea, Uhlen, Mathias, van Leeuwen, Nienke, van Oort, Sabine, Verkindt, Helene, Vogt, Josef, Wad Sackett, Peter W., Wesolowska-Andersen, Agata, Whitcher, Brandon, White, Margaret W., Adamski, Jerzy, Schwenk, Jochen M., Pearson, Ewan R., Dermitzakis, Emmanouil T., and Viñuela, Ana
- Abstract
We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with multiple molecular phenotypes over multiple genomic regions. The highest proportion of share genetic regulation is detected between gene expression and proteins (66.6%), with a further median shared genetic associations across 49 different tissues of 78.3% and 62.4% between plasma proteins and gene expression. We represent the genetic and molecular associations in networks including 2828 known GWAS variants, showing that GWAS variants are more often connected to gene expression in trans than other molecular phenotypes in the network. Our work provides a roadmap to understanding molecular networks and deriving the underlying mechanism of action of GWAS variants using different molecular phenotypes in an accessible tissue.
- Published
- 2023
4. Model-Based Analysis of SARS-CoV-2 Infections, Hospitalization and Outcome in Germany, the Federal States and Districts
- Author
-
Dings, Christiane, primary, Götz, Katharina Martha, additional, Och, Katharina, additional, Sihinevich, Iryna, additional, Werthner, Quirin, additional, Smola, Sigrun, additional, Bliem, Marc, additional, Mahfoud, Felix, additional, Volk, Thomas, additional, Kreuer, Sascha, additional, Rissland, Jürgen, additional, Selzer, Dominik, additional, and Lehr, Thorsten, additional
- Published
- 2022
- Full Text
- View/download PDF
5. Influence of the skeletal muscle index on pharmacokinetics and toxicity of fluorouracil
- Author
-
Schmulenson, Eduard, primary, Zimmermann, Nigina, additional, Müller, Lothar, additional, Kapsa, Stefanie, additional, Sihinevich, Iryna, additional, and Jaehde, Ulrich, additional
- Published
- 2022
- Full Text
- View/download PDF
6. Influence of the skeletal muscle index on pharmacokinetics and toxicity of fluorouracil.
- Author
-
Schmulenson, Eduard, Zimmermann, Nigina, Müller, Lothar, Kapsa, Stefanie, Sihinevich, Iryna, and Jaehde, Ulrich
- Subjects
SKELETAL muscle ,FLUOROURACIL ,DRUG monitoring ,PHARMACOKINETICS ,PSOAS muscles - Abstract
Background: The body composition of patients has been associated with tolerability and effectiveness of anticancer therapy. This study aimed to assess the influence of the skeletal muscle index (SMI) on the pharmacokinetics and toxicity of fluorouracil. Methods: Patients treated in an oncological practice with fluorouracil‐based chemotherapy and undergoing therapeutic drug monitoring were retrospectively investigated. Computed tomography images were analyzed to measure abdominal skeletal muscle areas in Hounsfield units for the psoas major muscle, back and total skeletal muscle to determine the SMI. For the latter, an automated segmentation method was used additionally. SMI measures were tested as covariates on fluorouracil clearance in a population pharmacokinetic model. Furthermore, regression analyses were performed to analyze the influence of SMI measures on the probability of clinically relevant adverse events (CTCAE grades ≥ 2). Results: Fluorouracil plasma concentrations of 111 patients were available. Covariate analyses showed significant improvements of the model fit by all SMI measures. However, interindividual variability of fluorouracil clearance was only slightly reduced, whereas the SMI of the back muscle showed the largest reduction (−1.1 percentage points). Lower SMI values of the back muscle increased the probability for polyneuropathy and lower SMI of the psoas increased the probability for fatigue. Conclusions: Our results suggest that pharmacokinetics and toxicity of fluorouracil may be associated with specific SMI measures which deserve further investigation. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.