12 results on '"Simelière F"'
Search Results
2. Development of an injectable biomaterial for the controlled release of extracellular vesicles in the myocardium
- Author
-
Pezzana, C., primary, Gouarderes, S., additional, Pidial, L., additional, Bellamy, V., additional, Simelière, F., additional, Hamada, T., additional, Brunaud, C., additional, Bochot, A., additional, Agnely, F., additional, Silvestre, J., additional, and Menasché, P., additional
- Published
- 2020
- Full Text
- View/download PDF
3. 33 - Exosomes/EVs: EXTRACELLULAR VESICLES FROM HUC-MSC DELIVERED BY AN INJECTABLE BIOMATERIAL AS A CARDIO-REPARATIVE THERAPY IN A RAT MODEL OF MYOCARDIAL ISCHEMIA-REPERFUSION
- Author
-
Pezzana, C., Guesdon, R., Cras, A., Correa, B. Lima, Desgres, M., Alberdi, A., Pidial, L., Guillas, C., Hagège, A., Simelière, F., Bochot, A., Agnely, F., and Menasché, P.
- Published
- 2022
- Full Text
- View/download PDF
4. Hybrid systems combining liposomes and entangled hyaluronic acid chains: Influence of liposome surface and drug encapsulation on the microstructure.
- Author
-
Jaudoin C, Grillo I, Cousin F, Gehrke M, Ouldali M, Arteni AA, Picton L, Rihouey C, Simelière F, Bochot A, and Agnely F
- Subjects
- Cryoelectron Microscopy, Cations chemistry, Anions, Colloids, Polyethylene Glycols chemistry, Lipids chemistry, Polymers, Drug Delivery Systems, Liposomes chemistry, Hyaluronic Acid chemistry
- Abstract
Mixtures of hyaluronic acid (HA) with liposomes lead to hybrid colloid-polymer systems with a great interest in drug delivery. However, little is known about their microstructure. Small angle neutron scattering (SANS) is a valuable tool to characterize these systems in the semi-dilute entangled regime (1.5% HA) at high liposome concentration (80 mM lipids). The objective was to elucidate the influence of liposome surface (neutral, cationic, anionic or anionic PEGylated), drug encapsulation and HA concentration in a buffer mimicking biological fluids (37 °C). First, liposomes were characterized by SANS, cryo-electron microscopy, and dynamic light scattering and HA by SANS, size exclusion chromatography, and rheology. Secondly, HA-liposome mixtures were studied by SANS. In HA, liposomes kept their integrity. Anionic and PEGylated liposomes were in close contact within dense clusters with an amorphous organization. The center-to-center distance between liposomes corresponded to twice their diameter. A depletion mechanism could explain these findings. Encapsulation of a corticoid did not modify this organization. Cationic liposomes formed less dense aggregates and were better dispersed due to their complexation with HA. Liposome surface governed the interactions and microstructure of these hybrid systems., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
5. Biomaterial-embedded extracellular vesicles improve recovery of the dysfunctional myocardium.
- Author
-
Pezzana C, Cras A, Simelière F, Guesdon R, Desgres M, Correa BL, Peuffier A, Bellamy V, Gouarderes S, Alberdi A, Perier MC, Pidial L, Agnely F, Bochot A, Hagège A, Silvestre JS, and Menasché P
- Subjects
- Animals, Rats, Biocompatible Materials, Myocardium pathology, Hyaluronic Acid, Myocardial Infarction pathology, Extracellular Vesicles, Mesenchymal Stem Cells pathology
- Abstract
Extracellular vesicles (EV) are increasingly recognized as a therapeutic option in heart failure. They are usually administered by direct intramyocardial injections with the caveat of a rapid wash-out from the myocardium which might weaken their therapeutic efficacy. To improve their delivery in the failing myocardium, we designed a system consisting of loading EV into a clinical-grade hyaluronic acid (HA) biomaterial. EV were isolated from umbilical cord-derived mesenchymal stromal cells. The suitability of HA as a delivery platform was then assessed in vitro. Rheology studies demonstrated the viscoelastic and shear thinning behaviors of the selected HA allowing its easy injection. Moreover, the release of HA-embedded EV was sustained over more than 10 days, and EV bioactivity was not altered by the biomaterial. In a rat model of myocardial ischemia reperfusion, we showed that HA-embedded EV preserved cardiac function (echocardiography), improved angiogenesis and decreased both apoptosis and fibrosis (histology and transcriptomics) when compared to intramyocardial administration of EV alone. These data thus strengthen the concept that inclusion of EV into a clinically useable biomaterial might optimize their beneficial effects on post-ischemic cardiac repair., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
6. Natural Polyphenol-Containing Gels against HSV-1 Infection: A Comparative Study.
- Author
-
Sicurella M, Sguizzato M, Mariani P, Pepe A, Baldisserotto A, Buzzi R, Huang N, Simelière F, Burholt S, Marconi P, and Esposito E
- Abstract
Herpes simplex virus type 1 infection commonly affects many people, causing perioral sores, as well as severe complications including encephalitis in immunocompromised patients. The main pharmacological approach involves synthetic antiviral drugs, among which acyclovir is the golden standard, often leading to resistant virus strains under long-term use. An alternative approach based on antiviral plant-derived compounds, such as quercetin and mangiferin, demonstrated an antiviral potential. In the present study, semisolid forms for cutaneous application of quercetin and mangiferin were designed and evaluated to treat HSV-1 infection. Phosphatidylcholine- and poloxamer-based gels were produced and characterized. Gel physical-chemical aspects were evaluated by rheological measurements and X-ray diffraction, evidencing the different thermoresponsive behaviors and supramolecular organizations of semisolid forms. Quercetin and mangiferin diffusion kinetics were compared in vitro by a Franz cell system, demonstrating the different gel efficacies to restrain the polyphenol diffusion. The capability of gels to control polyphenol antioxidant potential and stability was evaluated, indicating a higher stability and antioxidant activity in the case of quercetin loaded in poloxamer-based gel. Furthermore, a plaque reduction assay, conducted to compare the virucidal effect of quercetin and mangiferin loaded in gels against the HSV-1 KOS strain, demonstrated the suitability of poloxamer-based gel to prolong the polyphenol activity.
- Published
- 2022
- Full Text
- View/download PDF
7. Mangiferin-Loaded Smart Gels for HSV-1 Treatment.
- Author
-
Sicurella M, Sguizzato M, Cortesi R, Huang N, Simelière F, Montesi L, Marconi P, and Esposito E
- Abstract
Infections due to HSV-1 affect many people all over the world. To counteract this pathology, usually characterized by perioral sores or by less frequent serious symptoms including keratitis, synthetic antiviral drugs are employed, such as acyclovir, often resulting in resistant viral strains under long-term use. Many plant-derived compounds, such as mangiferin and quercetin, have demonstrated antiviral potentials. In this study, smart semisolid forms based on phosphatidylcholine and Pluronic were investigated as delivery systems to administer mangiferin on skin and mucosae affected by HSV-1 infection. Particularly, lecithin organogels, Pluronic gel, and Pluronic lecithin organogels were formulated and characterized. After the selection of gel compositions, physical aspects, such as rheological behavior, spreadability, leakage, and adhesion were evaluated, suggesting a scarce suitability of the lecithin organogel for topical administration. Mangiferin was efficiently included in all type of gels. An in vitro study based on the Franz cell enabled us to find evidence of the gel capability to control drug diffusion, especially in the case of Pluronic organogel, while an in vivo study conducted on human volunteers demonstrated the safeness of all of the gels after cutaneous administration. Furthermore, a plaque reduction assay demonstrated the virucidal effect of mangiferin loaded in a Pluronic gel and a Pluronic lecithin organogel against the HSV-1 KOS strain.
- Published
- 2021
- Full Text
- View/download PDF
8. "Plurethosome" as Vesicular System for Cutaneous Administration of Mangiferin: Formulative Study and 3D Skin Tissue Evaluation.
- Author
-
Sguizzato M, Ferrara F, Mariani P, Pepe A, Cortesi R, Huang N, Simelière F, Boldrini P, Baldisserotto A, Valacchi G, and Esposito E
- Abstract
Human skin is dramatically exposed to toxic pollutants such as ozone. To counteract the skin disorders induced by the air pollution, natural antioxidants such as mangiferin could be employed. A formulative study for the development of vesicular systems for mangiferin based on phosphatidylcholine and the block copolymer pluronic is described. Plurethosomes were designed for mangiferin transdermal administration and compared to ethosome and transethosome. Particularly, the effect of vesicle composition was investigated on size distribution, inner and outer morphology by photon correlation spectroscopy, small angle X-ray diffraction, and transmission electron microscopy. The potential of selected formulations as vehicles for mangiferin was studied, evaluating encapsulation efficiency and in vitro diffusion parameters by Franz cells. The mangiferin antioxidant capacity was verified by the 2,2-diphenyl-1-picrylhydrazyl assay. Vesicle size spanned between 200 and 550 nm, being influenced by phosphatidylcholine concentration and by the presence of polysorbate or pluronic. The vesicle supramolecular structure was multilamellar in the case of ethosome or plurethosome and unilamellar in the case of transethosome. A linear diffusion of mangiferin in the case of ethosome and transethosomes and a biphasic profile in the case of plurethosomes indicated the capability of multilamellar vesicles to retain the drug more efficaciously than the unilamellar ones. The antioxidant and anti-inflammatory potential effect of mangiferin against pollutants was evaluated on 3D human skin models exposed to O
3 . The protective effect exerted by plurethosomes and transethosomes suggests their possible application to enhance the cutaneous antioxidant defense status.- Published
- 2021
- Full Text
- View/download PDF
9. Design and Characterization of Ethosomes for Transdermal Delivery of Caffeic Acid.
- Author
-
Hallan SS, Sguizzato M, Mariani P, Cortesi R, Huang N, Simelière F, Marchetti N, Drechsler M, Ruzgas T, and Esposito E
- Abstract
The present investigation describes a formulative study aimed at designing ethosomes for caffeic acid transdermal administration. Since caffeic acid is characterized by antioxidant potential but also high instability, its encapsulation appears to be an interesting strategy. Ethosomes were produced by adding water into a phosphatidylcholine ethanol solution under magnetic stirring. Size distribution and morphology of ethosome were investigated by photon correlation spectroscopy, small-angle X-ray spectroscopy, and cryogenic transmission electron microscopy, while the entrapment capacity of caffeic acid was evaluated by high-performance liquid chromatography. Caffeic acid stability in ethosome was compared to the stability of the molecule in water, determined by mass spectrometry. Ethosome dispersion was thickened by poloxamer 407, obtaining an ethosomal gel that was characterized for rheological behavior and deformability. Caffeic acid diffusion kinetics were determined by Franz cells, while its penetration through skin, as well as its antioxidant activity, were evaluated using a porcine skin membrane-covered biosensor based on oxygen electrode. Ethosome mean diameter was ≈200 nm and almost stable within three months. The entrapment of caffeic acid in ethosome dramatically prolonged drug stability with respect to the aqueous solution, being 77% w / w in ethosome after six months, while in water, an almost complete degradation occurred within one month. The addition of poloxamer slightly modified vesicle structure and size, while it decreased the vesicle deformability. Caffeic acid diffusion coefficients from ethosome and ethosome gel were, respectively, 137- and 33-fold lower with respect to the aqueous solution. At last, the caffeic acid permeation and antioxidant power of ethosome were more intense with respect to the simple solution.
- Published
- 2020
- Full Text
- View/download PDF
10. Nanoparticulate Gels for Cutaneous Administration of Caffeic Acid.
- Author
-
Sguizzato M, Mariani P, Ferrara F, Drechsler M, Hallan SS, Huang N, Simelière F, Khunti N, Cortesi R, Marchetti N, Valacchi G, and Esposito E
- Abstract
Caffeic acid is a natural antioxidant, largely distributed in plant tissues and food sources, possessing anti-inflammatory, antimicrobial, and anticarcinogenic properties. The object of this investigation was the development of a formulation for caffeic acid cutaneous administration. To this aim, caffeic acid has been loaded in solid lipid nanoparticles by hot homogenization and ultrasonication, obtaining aqueous dispersions with high drug encapsulation efficiency and 200 nm mean dimension, as assessed by photon correlation spectroscopy. With the aim to improve the consistence of the aqueous nanodispersions, different types of polymers have been considered. Particularly, poloxamer 407 and hyaluronic acid gels containing caffeic acid have been produced and characterized by X-ray and rheological analyses. A Franz cell study enabled to select poloxamer 407, being able to better control caffeic acid diffusion. Thus, a nanoparticulate gel has been produced by addition of poloxamer 407 to nanoparticle dispersions. Notably, caffeic acid diffusion from nanoparticulate gel was eight-fold slower with respect to the aqueous solution. In addition, the spreadability of nanoparticulate gel was suitable for cutaneous administration. Finally, the antioxidant effect of caffeic acid loaded in nanoparticulate gel has been demonstrated by ex-vivo evaluation on human skin explants exposed to cigarette smoke, suggesting a protective role exerted by the nanoparticles.
- Published
- 2020
- Full Text
- View/download PDF
11. Gallic acid loaded poloxamer gel as new adjuvant strategy for melanoma: A preliminary study.
- Author
-
Sguizzato M, Valacchi G, Pecorelli A, Boldrini P, Simelière F, Huang N, Cortesi R, and Esposito E
- Subjects
- Adjuvants, Immunologic pharmacology, Cell Line, Cell Movement drug effects, Diffusion, Elasticity, Gallic Acid pharmacology, Humans, Kinetics, Phase Transition, Rheology, Temperature, Viscosity, Wound Healing drug effects, Adjuvants, Immunologic therapeutic use, Gallic Acid therapeutic use, Gels chemistry, Melanoma drug therapy, Poloxamer chemistry
- Abstract
The present study describes the production and characterization of poloxamer gels containing the antioxidant molecule gallic acid. The gels were particularly designed in order to obtain a formulation suitable for administration on the skin to treat melanoma. The polymer concentration was selected after rheological characterization and determination of gel transition temperature. In order to study the gallic acid diffusion, in vitro experiments were performed using Franz cells associated to different membranes. As first approach the gallic acid diffusion was evaluated through synthetic membranes, such as cellulose, nylon, polycarbonate, polytetrafluoroethylene, polyvinylidene fluoride and the commercial Strat-M® membrane. The membranes were employed separately or in association and compared to stratum corneum epidermis membranes, in order to find a system able to reproduce the gallic acid diffusion through the skin. Selected membranes were used for studying gallic acid diffusion from poloxamer gel. It was found that the diffusion of gallic acid was dramatically influenced by the type of membrane, both in the case of the aqueous solution or poloxamer gel. Scratch wound healing and migration assays conducted on human keratinocytes and melanoma cells demonstrated the ability of gallic acid loaded gel to inhibit cellular migration, suggesting its potential as adjuvant strategy for melanoma., (Copyright © 2019 Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
12. Monoolein liquid crystalline phases for topical delivery of crocetin.
- Author
-
Esposito E, Carducci F, Mariani P, Huang N, Simelière F, Cortesi R, Romeo G, and Puglia C
- Subjects
- Administration, Cutaneous, Drug Carriers chemistry, Humans, Particle Size, Surface Properties, Viscosity, Vitamin A analogs & derivatives, Carotenoids administration & dosage, Drug Delivery Systems, Glycerides chemistry, Liquid Crystals chemistry, Skin metabolism, Skin Absorption
- Abstract
The present investigation concerns the production and characterization of monoolein-water systems designed for cutaneous administration of crocetin. The different monoolein crystalline phases forming in the presence of crocetin as a function of added water have been investigated by x-ray and polarized light microscopy. Franz cell was employed to compare in vitro the crocetin diffusion from selected monoolein water systems containing 95, 90 or 75% w/w of monoolein, while to investigate the performance of monoolein-water as transdermal delivery systems, in vivo studies, based on tape stripping were performed. The presence of micellar, lamellar and Q230 phases was found in the case of systems containing monoolein 95, 90 and 75% w/w respectively, with a viscosity almost directly proportional to the amount of added water. The higher the amount of water, the longer the crocetin stability, while its diffusion was slower in the case of more viscous systems. Tape stripping results indicated a more rapid depletion of crocetin on stratum corneum in the case of systems characterized by cubic phases, followed by micellar and lamellar ones. This behaviour could be related to a more rapid drug penetration throughout the deeper skin strata., (Copyright © 2018 Elsevier B.V. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.