7 results on '"Simon Calcutt"'
Search Results
2. Short Period Seismometer for the Lunar Farside Seismic Suite Mission
- Author
-
Ian M. Standley, William T. Pike, Simon Calcutt, and James P Hoffman
- Published
- 2023
- Full Text
- View/download PDF
3. Farside Seismic Suite (FSS): First-ever seismology on the farside of the Moon and a model for long-lived lunar science
- Author
-
Mark Panning, Sharon Kedar, Neil Bowles, Simon Calcutt, Mélanie Drilleau, Raphael Garcia, Taichi Kawamura, Philippe Lognonné, David Mimoun, Ceri Nunn, W. Tom Pike, Dilan Portela-Moreira, Sébastien de Raucourt, Renee Weber, and Arnaud Wilhelm
- Abstract
The Farside Seismic Suite (FSS), recently selected for flight as part of the NASA PRISM (Payloads and Research Investigations on the Surface of the Moon) program and planned for flight in 2024 or 2025, would deliver two seismometers (both flight-proven through the InSight mission to Mars [Banerdt et al., 2020]) to Schrödinger Basin. The vertical Very BroadBand (VBB) seismometer is the most sensitive flight-ready seismometer ever built [Lognonné et al., 2019], while the Short Period (SP) sensor is the most sensitive and mature compact triaxial sensor available for space application [Lognonné et al., 2019]. Packaged as a self-sufficient payload, with independent power, communications and thermal control allowing survival and operation over the long lunar night, the FSS will outlive the commercial delivery lander, and provide a long-lived seismic experiment capable of answering key scientific questions (figure 1). FSS will address three science objectives with this project:Investigate deep lunar structure and the difference between near and farside activity. Understanding the absence of farside seismicity recorded on Apollo seismometers [e.g. Nakamura et al., 1981] is fundamental to our understanding of the lunar deep interior. Does it reflect a nearside-farside difference in activity rate, or does seismic attenuation from partial melting in the mantle prevent observation of distant events [e.g. Weber et al., 2011]? Direct recording of farside activity, as well as possible recording of known repeating nearside moonquakes or events determined from impact flash observations will illuminate these questions. Understand how the lunar crust is affected by the development of an impact melt basin. Dynamic models of impact processes [e.g. Kring et al., 2016] predict deep structure beneath a well-preserved peak ring impact basin like Schrödinger Basin that can only be revealed through geophysical techniques based on receiver functions [e.g. Vinnik et al., 2011; Knapmeyer-Endrun et al., 2021] and autocorrelation of ambient noise and/or event codas [e.g. Larose et al., 2005; Compaire et al., 2020; Schimmel et al., 2021]. Evaluate the current micrometeorite impact rate and local tectonic activity. Directly constraining micrometeorite impact rates has important implications for future lunar occupation. The lunar background seismic noise is modeled to be driven by micrometeorite impacts [Lognonné et al., 2009]. FSS will record at least 4 months of lunar background hum created by micrometeorite impacts. In order to meet these science objectives, a series of planned measurements were defined and, based on observed Apollo-era seismicity, instrument sensitivity requirements were define. For example, in order to make an estimate of farside seismicity to address objective 1, we require recording at least 50 seismic events, and we assessed that a VBB sensitivity of 2 x 10-10 m/s2/rtHz across the frequency band of 0.1-1Hz would be sufficient to make the measurement during the mission. This is a target, but we assess that we have ample scientific margin if the instrument is unable to reach this noise floor due to either instrument self-noise or other environmental sources of noise (figure 2). To better assess this margin, we are working to quantify the noise sources from the FSS and lander system and the lunar environment (figures 3 and 4). In current modeling, the most important noise sources for the single-component vertical VBB appear to be the instrument self-noise, the noise induced by magnetic field variations as the Moon crosses over the bowshocks surrounding the Earth’s magnetotail, and thermal tilt noise from the regolith which can couple into the VBB signal if the lander is tilted relative to the Moon’s gravitational vector. At typical levels, this noise is close to the proposed instrument requirements (figure 3), while in the stacked worst case (maximum allowed lander tilt and during a bowshock crossing), the noise may exceed the requirement by a factor of 2-3, which still should leave margin for achieving science objectives. FSS is designed to answer several key lunar science questions from a single station on the farside of the Moon. The FSS will also allow for key technical advancement and risk reduction for future missions, such as the Lunar Geophysical Network, a candidate New Frontiers 5 mission [Neal et al., 2020]. Because deployment increases cost and complexity, assessing the need for deployment and characterizing the lander seismic noise environment will be key. In addition, measuring the lunar seismic noise floor beyond what was possible with the Apollo data will permit better requirements definition for future lunar seismic missions and future astrophysics observatories sensitive to lunar ground stability.Figure 1: FSS will return data with unprecedented sensitivity from Schrödinger Crater over multiple lunar diurnal cycles after outliving the delivery lander. Figure adapted from Wieczorek (2009) and Kring et al. (2016).Figure 2: Expected number of events recorded through the mission at various VBB sensitivity levels based on Apollo observation rates, with 95% confidence bounds based on Poisson statistics. Requirements are easily met if VBB performance is within a factor of 5 of the requirement.Figure 3: Expected summed noise sources for a “typical” environment with magnetic noise away from the bowshock crossing and a lander tilt of 5 degrees (half the allowed maximum tilt).Figure 4: Expected worst case instrument noise with magnetic noise at the bowshock crossing and lander tilt at the maximum allowed (10 degrees).
- Published
- 2022
- Full Text
- View/download PDF
4. Ariel: Enabling planetary science across light-years
- Author
-
Giovanna Tinetti, Paul Eccleston, Carole Haswell, Pierre-Olivier Lagage, Jérémy Leconte, Theresa Lüftinger, Giusi Micela, Michel Min, Göran Pilbratt, Ludovic Puig, Mark Swain, Leonardo Testi, Diego Turrini, Bart Vandenbussche, Maria Rosa Zapatero Osorio, Anna Aret, Jean-Philippe Beaulieu, Buchhave, Lars A., Martin Ferus, Matt Griffin, Manuel Guedel, Paul Hartogh, Pedro Machado, Giuseppe Malaguti, Enric Pallé, Mirek Rataj, Tom Ray, Ignasi Ribas, Robert Szabó, Jonathan Tan, Stephanie Werner, Francesco Ratti, Carsten Scharmberg, Jean-Christophe Salvignol, Nathalie Boudin, Jean-Philippe Halain, Martin Haag, Pierre-Elie Crouzet, Ralf Kohley, Kate Symonds, Florian Renk, Andrew Caldwell, Manuel Abreu, Gustavo Alonso, Jerome Amiaux, Michel Berthé, Georgia Bishop, Neil Bowles, Manuel Carmona, Deirdre Coffey, Josep Colomé, Martin Crook, Lucile Désjonqueres, Díaz, José J., Rachel Drummond, Mauro Focardi, Gómez, Jose M., Warren Holmes, Matthijs Krijger, Zsolt Kovacs, Tom Hunt, Richardo Machado, Gianluca Morgante, Marc Ollivier, Roland Ottensamer, Emanuele Pace, Teresa Pagano, Enzo Pascale, Chris Pearson, Søren Møller Pedersen, Moshe Pniel, Stéphane Roose, Giorgio Savini, Richard Stamper, Peter Szirovicza, Janos Szoke, Ian Tosh, Francesc Vilardell, Joanna Barstow, Luca Borsato, Sarah Casewell, Quentin Changeat, Benjamin Charnay, Svatopluk Civiš, Vincent Coudé du Foresto, Athena Coustenis, Nicolas Cowan, Camilla Danielski, Olivier Demangeon, Pierre Drossart, Edwards, Billy N., Gabriella Gilli, Therese Encrenaz, Csaba Kiss, Anastasia Kokori, Masahiro Ikoma, Juan Carlos Morales, Joao Mendonca, Andrea Moneti, Lorenzo Mugnai, Antonio García Muñoz, Ravit Helled, Mihkel Kama, Yamila Miguel, Nikos Nikolaou, Isabella Pagano, Olja Panic, Miriam Rengel, Hans Rickman, Marco Rocchetto, Subhajit Sarkar, Franck Selsis, Jonathan Tennyson, Angelos Tsiaras, Olivia Venot, Krisztián Vida, Waldmann, Ingo P., Sergey Yurchenko, Gyula Szabó, Rob Zellem, Ahmed Al-Refaie, Javier Perez Alvarez, Lara Anisman, Axel Arhancet, Jaume Ateca, Robin Baeyens, Barnes, John R., Taylor Bell, Serena Benatti, Katia Biazzo, Maria Błęcka, Aldo Stefano Bonomo, José Bosch, Diego Bossini, Jeremy Bourgalais, Daniele Brienza, Anna Brucalassi, Giovanni Bruno, Hamish Caines, Simon Calcutt, Tiago Campante, Rodolfo Canestrari, Nick Cann, Giada Casali, Albert Casas, Giuseppe Cassone, Christophe Cara, Ludmila Carone, Nathalie Carrasco, Paolo Chioetto, Fausto Cortecchia, Markus Czupalla, Chubb, Katy L., Angela Ciaravella, Antonio Claret, Riccardo Claudi, Claudio Codella, Maya Garcia Comas, Gianluca Cracchiolo, Patricio Cubillos, Vania Da Peppo, Leen Decin, Clemence Dejabrun, Elisa Delgado-Mena, Anna Di Giorgio, Emiliano Diolaiti, Caroline Dorn, Vanessa Doublier, Eric Doumayrou, Georgina Dransfield, Luc Dumaye, Emma Dunford, Antonio Jimenez Escobar, Vincent Van Eylen, Maria Farina, Davide Fedele, Alejandro Fernández, Benjamin Fleury, Sergio Fonte, Jean Fontignie, Luca Fossati, Bernd Funke, Camille Galy, Zoltán Garai, Andrés García, Alberto García-Rigo, Antonio Garufi, Giuseppe Germano Sacco, Paolo Giacobbe, Alejandro Gómez, Arturo Gonzalez, Francisco Gonzalez-Galindo, Davide Grassi, Caitlin Griffith, Mario Giuseppe Guarcello, Audrey Goujon, Amélie Gressier, Aleksandra Grzegorczyk, Tristan Guillot, Gloria Guilluy, Peter Hargrave, Marie-Laure Hellin, Enrique Herrero, Matt Hills, Benoit Horeau, Yuichi Ito, Niels Christian Jessen, Petr Kabath, Szilárd Kálmán, Yui Kawashima, Tadahiro Kimura, Antonín Knížek, Laura Kreidberg, Ronald Kruid, Kruijssen, Diederik J. M., Petr Kubelík, Luisa Lara, Sebastien Lebonnois, David Lee, Maxence Lefevre, Tim Lichtenberg, Daniele Locci, Matteo Lombini, Alejandro Sanchez Lopez, Andrea Lorenzani, Ryan MacDonald, Laura Magrini, Jesus Maldonado, Emmanuel Marcq, Alessandra Migliorini, Darius Modirrousta-Galian, Karan Molaverdikhani, Sergio Molinari, Paul Mollière, Vincent Moreau, Giuseppe Morello, Gilles Morinaud, Mario Morvan, Moses, Julianne I., Salima Mouzali, Nariman Nakhjiri, Luca Naponiello, Norio Narita, Valerio Nascimbeni, Athanasia Nikolaou, Vladimiro Noce, Fabrizio Oliva, Pietro Palladino, Andreas Papageorgiou, Vivien Parmentier, Giovanni Peres, Javier Pérez, Santiago Perez-Hoyos, Manuel Perger, Cesare Cecchi Pestellini, Antonino Petralia, Anne Philippon, Arianna Piccialli, Marco Pignatari, Giampaolo Piotto, Linda Podio, Gianluca Polenta, Giampaolo Preti, Theodor Pribulla, Manuel Lopez Puertas, Monica Rainer, Jean-Michel Reess, Paul Rimmer, Séverine Robert, Albert Rosich, Loic Rossi, Duncan Rust, Ayman Saleh, Nicoletta Sanna, Eugenio Schisano, Laura Schreiber, Victor Schwartz, Antonio Scippa, Bálint Seli, Sho Shibata, Caroline Simpson, Oliver Shorttle, Skaf, N., Konrad Skup, Mateusz Sobiecki, Sergio Sousa, Alessandro Sozzetti, Judit Šponer, Lukas Steiger, Paolo Tanga, Paul Tackley, Jake Taylor, Matthias Tecza, Luca Terenzi, Pascal Tremblin, Andrea Tozzi, Amaury Triaud, Loïc Trompet, Shang-Min Tsai, Maria Tsantaki, Diana Valencia, Ann Carine Vandaele, Mathieu Van der Swaelmen, Adibekyan Vardan, Gautam Vasisht, Allona Vazan, Ciro Del Vecchio, Dave Waltham, Piotr Wawer, Thomas Widemann, Paulina Wolkenberg, Gordon Hou Yip, Yuk Yung, Mantas Zilinskas, Tiziano Zingales, Paola Zuppella, University College of London [London] (UCL), Space Science and Technology Department [Didcot] (RAL Space), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC), Université de Bordeaux (UB), Agence Spatiale Européenne = European Space Agency (ESA), SRON Netherlands Institute for Space Research (SRON), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Istituto Nazionale di Astrofisica (INAF), Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astronomico di Bologna (OABO), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), European Space Agency, Agence Spatiale Européenne (ESA), European Space Agency (ESA), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Giovanna Tinetti, Paul Eccleston, Carole Haswell, Pierre-Olivier Lagage, Jérémy Leconte, Theresa Lüftinger, Giusi Micela, Michel Min, Göran Pilbratt, Ludovic Puig, Mark Swain, Leonardo Testi, Diego Turrini, Bart Vandenbussche, Maria Rosa Zapatero Osorio, Anna Aret, Jean-Philippe Beaulieu, Lars Buchhave, Martin Feru, Matt Griffin, Manuel Guedel, Paul Hartogh, Pedro Machado, Giuseppe Malaguti, Enric Pallé, Mirek Rataj, Tom Ray, Ignasi Riba, Robert Szabó, Jonathan Tan, Stephanie Werner, Francesco Ratti, Carsten Scharmberg, Jean-Christophe Salvignol, Nathalie Boudin, Jean-Philippe Halain, Martin Haag, Pierre-Elie Crouzet, Ralf Kohley, Kate Symond, Florian Renk, Andrew Caldwell, Manuel Abreu, Gustavo Alonso, Jerome Amiaux, Michel Berthé, Georgia Bishop, Neil Bowle, Manuel Carmona, Deirdre Coffey, Josep Colomé, Martin Crook, Lucile Désjonquere, José J. Díaz, Rachel Drummond, Mauro Focardi, Jose M. Gómez, Warren Holme, Matthijs Krijger, Zsolt Kovac, Tom Hunt, Richardo Machado, Gianluca Morgante, Marc Ollivier, Roland Ottensamer, Emanuele Pace, Teresa Pagano, Enzo Pascale, Chris Pearson, Søren Møller Pedersen, Moshe Pniel, Stéphane Roose, Giorgio Savini, Richard Stamper, Peter Szirovicza, Janos Szoke, Ian Tosh, Francesc Vilardell, Joanna Barstow, Luca Borsato, Sarah Casewell, Quentin Changeat, Benjamin Charnay, Svatopluk Civiš, Vincent Coudé du Foresto, Athena Cousteni, Nicolas Cowan, Camilla Danielski, Olivier Demangeon, Pierre Drossart, Billy N. Edward, Gabriella Gilli, Therese Encrenaz, Csaba Ki, Anastasia Kokori, Masahiro Ikoma, Juan Carlos Morale, João Mendonça, Andrea Moneti, Lorenzo Mugnai, Antonio García Muñoz, Ravit Helled, Mihkel Kama, Yamila Miguel, Nikos Nikolaou, Isabella Pagano, Olja Panic, Miriam Rengel, Hans Rickman, Marco Rocchetto, Subhajit Sarkar, Franck Selsi, Jonathan Tennyson, Angelos Tsiara, Olivia Venot, Krisztián Vida, Ingo P. Waldmann, Sergey Yurchenko, Gyula Szabó, Rob Zellem, Ahmed Al-Refaie, Javier Perez Alvarez, Lara Anisman, Axel Arhancet, Jaume Ateca, Robin Baeyen, John R. Barne, Taylor Bell, Serena Benatti, Katia Biazzo, Maria Błęcka, Aldo Stefano Bonomo, José Bosch, Diego Bossini, Jeremy Bourgalai, Daniele Brienza, Anna Brucalassi, Giovanni Bruno, Hamish Caine, Simon Calcutt, Tiago Campante, Rodolfo Canestrari, Nick Cann, Giada Casali, Albert Casa, Giuseppe Cassone, Christophe Cara, Ludmila Carone, Nathalie Carrasco, Paolo Chioetto, Fausto Cortecchia, Markus Czupalla, Katy L. Chubb, Angela Ciaravella, Antonio Claret, Riccardo Claudi, Claudio Codella, Maya Garcia Coma, Gianluca Cracchiolo, Patricio Cubillo, Vania Da Peppo, Leen Decin, Clemence Dejabrun, Elisa Delgado-Mena, Anna Di Giorgio, Emiliano Diolaiti, Caroline Dorn, Vanessa Doublier, Eric Doumayrou, Georgina Dransfield, Luc Dumaye, Emma Dunford, Antonio Jimenez Escobar, Vincent Van Eylen, Maria Farina, Davide Fedele, Alejandro Fernández, Benjamin Fleury, Sergio Fonte, Jean Fontignie, Luca Fossati, Bernd Funke, Camille Galy, Zoltán Garai, Andrés García, Alberto García-Rigo, Antonio Garufi, Giuseppe Germano Sacco, Paolo Giacobbe, Alejandro Gómez, Arturo Gonzalez, Francisco Gonzalez-Galindo, Davide Grassi, Caitlin Griffith, Mario Giuseppe Guarcello, Audrey Goujon, Amélie Gressier, Aleksandra Grzegorczyk, Tristan Guillot, Gloria Guilluy, Peter Hargrave, Marie-Laure Hellin, Enrique Herrero, Matt Hill, Benoit Horeau, Yuichi Ito, Niels Christian Jessen, Petr Kabath, Szilárd Kálmán, Yui Kawashima, Tadahiro Kimura, Antonín Knížek, Laura Kreidberg, Ronald Kruid, Diederik J. M. Kruijssen, Petr Kubelík, Luisa Lara, Sebastien Lebonnoi, David Lee, Maxence Lefevre, Tim Lichtenberg, Daniele Locci, Matteo Lombini, Alejandro Sanchez Lopez, Andrea Lorenzani, Ryan MacDonald, Laura Magrini, Jesus Maldonado, Emmanuel Marcq, Alessandra Migliorini, Darius Modirrousta-Galian, Karan Molaverdikhani, Sergio Molinari, Paul Mollière, Vincent Moreau, Giuseppe Morello, Gilles Morinaud, Mario Morvan, Julianne I. Mose, Salima Mouzali, Nariman Nakhjiri, Luca Naponiello, Norio Narita, Valerio Nascimbeni, Athanasia Nikolaou, Vladimiro Noce, Fabrizio Oliva, Pietro Palladino, Andreas Papageorgiou, Vivien Parmentier, Giovanni Pere, Javier Pérez, Santiago Perez-Hoyo, Manuel Perger, Cesare Cecchi Pestellini, Antonino Petralia, Anne Philippon, Arianna Piccialli, Marco Pignatari, Giampaolo Piotto, Linda Podio, Gianluca Polenta, Giampaolo Preti, Theodor Pribulla, Manuel Lopez Puerta, Monica Rainer, Jean-Michel Ree, Paul Rimmer, Séverine Robert, Albert Rosich, Loic Rossi, Duncan Rust, Ayman Saleh, Nicoletta Sanna, Eugenio Schisano, Laura Schreiber, Victor Schwartz, Antonio Scippa, Bálint Seli, Sho Shibata, Caroline Simpson, Oliver Shorttle, N. Skaf, Konrad Skup, Mateusz Sobiecki, Sergio Sousa, Alessandro Sozzetti, Judit Šponer, Lukas Steiger, Paolo Tanga, Paul Tackley, Jake Taylor, Matthias Tecza, Luca Terenzi, Pascal Tremblin, Andrea Tozzi, Amaury Triaud, Loïc Trompet, Shang-Min Tsai, Maria Tsantaki, Diana Valencia, Ann Carine Vandaele, Mathieu Van der Swaelmen, Adibekyan Vardan, Gautam Vasisht, Allona Vazan, Ciro Del Vecchio, Dave Waltham, Piotr Wawer, Thomas Widemann, Paulina Wolkenberg, Gordon Hou Yip, Yuk Yung, Mantas Zilinska, Tiziano Zingale, Paola Zuppella, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), and Cardon, Catherine
- Subjects
[SDU] Sciences of the Universe [physics] ,Earth and Planetary Astrophysics (astro-ph.EP) ,[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Settore FIS/05 - Astronomia E Astrofisica ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,FOS: Physical sciences ,Astrophysics - Instrumentation and Methods for Astrophysic ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics - Earth and Planetary Astrophysics ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution., Comment: Ariel Definition Study Report, 147 pages. Reviewed by ESA Science Advisory Structure in November 2020. Original document available at: https://www.cosmos.esa.int/documents/1783156/3267291/Ariel_RedBook_Nov2020.pdf/
- Published
- 2021
- Full Text
- View/download PDF
5. Ice-Giants Net Flux Radiometer for Heat Flux Measurements
- Author
-
Shahid Aslam, Simon Calcutt, Nicolas Gorius, Patrick Irwin, George Nehmetallah, Gerard Quilligan, and Dat Tran
- Abstract
We present the evolving design of an Ice-Giants Net Flux Radiometer (IG-NFR) [1][2][3], onboard a probe, Fig. 1, for in-situ measurements of the upward and downward heat flux in seven spectral channels as a function of altitude/pressure. These in situ probe measurements, will improve our understanding of energy balance and interior heat flux [4] and provide a reference profile to lift ambiguities inherent to remote observations [5]. The IG-NFR, Fig. 2, is designed to (i) accommodate seven filter bandpass channels (ii) measure up and down radiation flux in a 10° FOV for all channels in parallel; (iii) measure a change of flux of at least 0.5 W/m2 per decade of pressure; (iv) view five distinct view angles (±80°, ±45°, and 0°); (v) use application specific integrated circuit technology for the detector readout; (vii) be able to integrate radiance for 2 s or longer, and (vi) sample calibration targets every 19 s (assuming 100 m/s descent rate). Uncooled thermopile detectors are chosen for good detection sensitivity of radiation flux. A close hexagonal packing arrangement of Winston cones gives seven channels, with each Winston cone designed to give a 10° clear FOV. The Winston cone non-imaging optics, detectors and filters are all housed in a micro-vessel with CVD diamond and sapphire windows. The evacuated micro-vessel mitigates rapid excursions of temperature during the probe descent. A stepper motor with the aid of a gearbox rotates the micro-vessel, to each of the five view angles, so that the micro-vessel diamond windows have an unobstructed view through apertures in the mechanical enclosure into the atmosphere. The mechanical enclosure accommodates five apertures, hot and cold targets for radiometric calibration for each sequence of measurements (5-views). [1] Aslam, S., et al., (2018). 49th Lunar and Planetary Science Conference 2018, The Woodlands, Texas, USA, Volume: LPI Contrib. No. 2083, 2675 [2] Aslam, S., et al., (2019). International Planetary Probe Workshop 2019, Oxford, UK [3] Aslam, S., et al., (2020). Space Science Reviews, 216(1) [4] Irwin, P. G. J., et al., (2020). EPSC 2020-306, online [5] Mousis, O., et al., (2018). Planetary and Space Science 155:12-40
- Published
- 2021
- Full Text
- View/download PDF
6. MUSE: Looking for life on Earth
- Author
-
Penny, A. J., Davis, G. R., Simon Calcutt, Drummond, J. R., Naylor, D. A., and Seager, S.
- Subjects
Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Future missions to measure the mid-infrared spectra of extrasolar planets will obtain spectra spatially integrated over the visible hemisphere of the planet. Interpretation of these spectra will be difficult because they will depend on several imponderable factors; the axial inclination of the planet to the line of sight, the illumination of the planet by its parent star, and the planets' season and climatic state. The spectra will also contain variable components due to changing clouds, planetary rotation and the presence of large satellites. In order to interpret better such spectra, and to constrain the design of missions to measure them, a study is underway of a dedicated mission to take spectra of the spatially-unresolved Earth and to quantify the dependence of the spectrum on these variables.
7. Infrared limb sounding of Titan with the cassini composite infrared spectrometer: Effects of the mid-IR detector spatial responses: Errata
- Author
-
Nixon, C. A., Teanby, N. A., Simon Calcutt, Aslam, S., Jennings, D. E., Kunde, V. G., Flasar, F. M., Irwin, P. G. J., Taylor, F. W., Glenar, D. A., and Smith, M. D.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.