22 results on '"Simonin, Loic"'
Search Results
2. River driftwood pretreated via hydrothermal carbonization as a sustainable source of hard carbon for Na-ion battery anodes
- Author
-
Qatarneh, Abdullah F., Dupont, Capucine, Michel, Julie, Simonin, Loïc, Beda, Adrian, Matei Ghimbeu, Camelia, Ruiz-Villanueva, Virginia, da Silva, Denilson, Piégay, Hervé, and Franca, Mário J.
- Published
- 2021
- Full Text
- View/download PDF
3. Review: Insights on Hard Carbon Materials for Sodium‐Ion Batteries (SIBs): Synthesis – Properties – Performance Relationships
- Author
-
Matei Ghimbeu, Camélia, primary, Beda, Adrian, additional, Réty, Bénédicte, additional, El Marouazi, Hamza, additional, Vizintin, Alen, additional, Tratnik, Blaž, additional, Simonin, Loic, additional, Michel, Julie, additional, Abou‐Rjeily, John, additional, and Dominko, Robert, additional
- Published
- 2024
- Full Text
- View/download PDF
4. Le carbone dur pour les batteries Na-ion : de la synthèse aux performances et mécanismes de stockage
- Author
-
DEL MAR SAAVEDRA RIOS, Carolina, primary, BEDA, Adrian, additional, SIMONIN, Loic, additional, and MATEI GHIMBEU, Camélia, additional
- Published
- 2021
- Full Text
- View/download PDF
5. Biochars from various biomass types as precursors for hard carbon anodes in sodium-ion batteries
- Author
-
Saavedra Rios, Carolina del Mar, Simone, Virginie, Simonin, Loïc, Martinet, Sébastien, and Dupont, Capucine
- Published
- 2018
- Full Text
- View/download PDF
6. Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects
- Author
-
Matei Ghimbeu, Camélia, Górka, Joanna, Simone, Virgine, Simonin, Loïc, Martinet, Sébastien, and Vix-Guterl, Cathie
- Published
- 2018
- Full Text
- View/download PDF
7. HTC or pyrolysis as pretreatment in hard carbon synthesis for negative electrode in Na-ion battery: comparison of the two processes
- Author
-
Michel, Julie, Dupont, Capucine, Simonin, Loic, Département de l'électricité et de l'hydrogène dans les transports (DEHT), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institute for Water Education (IHE Delft ), and European Project: 875629,H2020-LC-BAT-2019,NAIMA
- Subjects
[SPI.OTHER]Engineering Sciences [physics]/Other ,[CHIM]Chemical Sciences ,[CHIM.MATE]Chemical Sciences/Material chemistry - Abstract
International audience; Sodium-ion batteries are a promising technology to respond to the critical availability of lithium. The most suitable material for negative electrode is hard-carbon, which can be obtained from biomass. One of the usual synthesis methods is realised in two pyrolysis steps. In order to avoid a drying step, the first pyrolysis can be replaced by hydrothermal carbonisation. This work investigates the impact of this pretreatment by comparing the two intermediates and the final hard carbon, both on their composition and structure, and the influence on the battery perfomances.
- Published
- 2023
8. Biomass-based hard carbon as negative electrode for sodium-ion batteries
- Author
-
Michel, Julie, Rivas Arrieta, Maria José, Dupont, Capucine, Simonin, Loic, Borén, Eleanora, Kennedy, Maria, Département de l'électricité et de l'hydrogène dans les transports (DEHT), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institute for Water Education (IHE Delft ), Umeå University, and European Project: 875629,H2020-LC-BAT-2019,NAIMA
- Subjects
biomass-based hard carbon ,inorganic elements ,sodium-ion battery ,energy storage ,[CHIM.MATE]Chemical Sciences/Material chemistry - Abstract
International audience; Sodium-ion batteries are a promising technology to respond to the critical availability of lithium. The mostsuitable material for negative electrode is hard-carbon, which can be obtained from biomass. Usually, it issynthetized by two pyrolysis steps at low (about 450ׄ°C) and high temperature (1500°C), which requires adry starting material. Unlike pyrolysis, hydrothermal carbonization (HTC) has the advantage of immergingthe material in water: there is no need in drying the biomass before processing. Furthermore, during theprocess, inorganics tend to leach in the liquid phase, which is can be positive for the resultingelectrochemical properties of hard-carbon. It makes HTC an interesting alternative to the first lowtemperature pyrolysis. The objective of this work is to understand the influence of initial feedstockcomposition, both on the material properties after HTC and the high-temperature pyrolysis and on the final battery performances in order to optimize the chain feedstock/process/product. Elemental compositions were characterized at the different steps by CHNS analysis, ICP-OES and UV-visible spectroscopy, and crystalline structure was characterized by XRD. As expected, the inorganic elements leached to a large extent to the liquid phase during HTC, however in different proportions depending on the feedstock tested.The resulting hard carbons contained therefore little impurities and showed very good performances when tested in batteries, both in terms of initial columbic efficiency, cyclability among 100 cycles and specific capacity. These performances are promising since they are similar to graphite in lithium-ion batterie
- Published
- 2023
9. Role of the composition of lithium-rich layered oxide materials on the voltage decay
- Author
-
Peralta, David, Colin, Jean-François, Boulineau, Adrien, Simonin, Loïc, Fabre, Frédéric, Bouvet, Justin, Feydi, Pierre, Chakir, Mohamed, Chapuis, Marlène, and Patoux, Sébastien
- Published
- 2015
- Full Text
- View/download PDF
10. Lithium-free technologies of batteries developed at CEA: hybrid potassium ion supercapacitors (KIC) for high power applications and sodium ion batteries (SIBs) for energy applications
- Author
-
Yvenat, Marie-Eve, Chavillon, Benoit, Simonin, Loic, Reynier, Yvan, Mayousse, Eric, Département de l'électricité et de l'hydrogène dans les transports (DEHT), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de L'Energie Solaire (INES), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[CHIM]Chemical Sciences - Abstract
International audience; Sodium and potassium benefit from abundant resources as well as physical and chemical properties analogous to those of lithium. This is why they are currently being studied as a replacement element for lithium. As a low costs solution without critical materials, sodium-ion batteries (SIBs) and hybrid potassium-ion supercapacitors (KIC) are promising for energy and high power applications, respectively. Main results obtained at CEA in several projects will be presented.
- Published
- 2022
11. First 18650-format Na-ion cells aging investigation: A degradation mechanism study
- Author
-
European Commission, LabEx STORE-EX, Région Nouvelle-Aquitaine, Agence Nationale de la Recherche (France), Ministerio de Economía y Competitividad (España), Nguyen, Long H. B., Sanz Camacho, Paula, Fondard, Jérémie, Carlier, Dany, Croguennec, Laurence, Palacín, M. Rosa, Ponrouch, Alexandre, Courrèges, Cécile, Dedryvère, Rémi, Trad, Khiem, Jordy, Christian, Genies, Sylvie, Reynier, Yvan, Simonin, Loic, European Commission, LabEx STORE-EX, Région Nouvelle-Aquitaine, Agence Nationale de la Recherche (France), Ministerio de Economía y Competitividad (España), Nguyen, Long H. B., Sanz Camacho, Paula, Fondard, Jérémie, Carlier, Dany, Croguennec, Laurence, Palacín, M. Rosa, Ponrouch, Alexandre, Courrèges, Cécile, Dedryvère, Rémi, Trad, Khiem, Jordy, Christian, Genies, Sylvie, Reynier, Yvan, and Simonin, Loic
- Abstract
Several Hard carbon||Na3V2(PO4)2F3 full-cells in 18650-format are assembled to demonstrate the possible use of SIBs in stationary applications. The cell aging process is investigated in two different conditions: (i) continuous cycling at different current rates, and (ii) storage at different states-of-charge at various temperatures. The obtained results reveal that the cell degradation depends strongly on the temperature, current rates applied in cycling conditions, or state-of-charge of the storage test. Under cycling conditions, the continuous sodiation/desodiation may induce significant mechanical deformation, leading to the detachment of active materials from the current collector. Furthermore, the post-mortem analysis shows that reaction rate and aging process are not homogeneous along the electrode roll. The XRD analysis shows that Na3V2(PO4)2F3 structure is robust; nevertheless, the material cannot recover the initial Na+ content as the cycling progresses, which is the main cause for capacity loss in the positive electrode. The solid-electrolyte interphase present on the hard carbon surface was characterised using XPS. The hard carbon electrode cannot be detected during this study, evidencing the formation of a relatively thick (>5 nm) passivating layer composed of carbonate salts and NaF, which are the main products of electrolyte decomposition.
- Published
- 2022
12. First 18650-format Na-ion cells aging investigation: A degradation mechanism study
- Author
-
Nguyen, Long H. B., Sanz Camacho, Paula, Fondard, Jérémie, Carlier, Dany, Croguennec, Laurence, Palacín, Maria Rosa, Ponrouch, Alexandre, Courreges, Cecile, Dedryvère, Rémi, Trad, Khiem, Jordy, Christian, Genies, Sylvie, Reynier, Yvan, Simonin, Loic, European Commission, LabEx STORE-EX, Région Nouvelle-Aquitaine, Agence Nationale de la Recherche (France), Ministerio de Economía y Competitividad (España), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM), SAFT [Bordeaux], Société des accumulateurs fixes et de traction (SAFT), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Ciència de Materials de Barcelona (ICMAB), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), VITO/EnergyVille, Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), The RS2E Network for the funding of LHBN's PhD thesis as well as the financial support of Région Nouvelle Aquitaine., MRP and AP acknowledge Ministerio de Economía y Competititivad (Spain) for Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0496)., ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), and European Project: 646433,H2020,H2020-LCE-2014-3,NAIADES(2015)
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Batteries ,[CHIM.POLY]Chemical Sciences/Polymers ,Renewable Energy, Sustainability and the Environment ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Cycle-life ,Cathode materials ,Energy Engineering and Power Technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Electrical and Electronic Engineering ,Physical and Theoretical Chemistry ,Solid-electrolyte interphase - Abstract
Several Hard carbon||Na3V2(PO4)2F3 full-cells in 18650-format are assembled to demonstrate the possible use of SIBs in stationary applications. The cell aging process is investigated in two different conditions: (i) continuous cycling at different current rates, and (ii) storage at different states-of-charge at various temperatures. The obtained results reveal that the cell degradation depends strongly on the temperature, current rates applied in cycling conditions, or state-of-charge of the storage test. Under cycling conditions, the continuous sodiation/desodiation may induce significant mechanical deformation, leading to the detachment of active materials from the current collector. Furthermore, the post-mortem analysis shows that reaction rate and aging process are not homogeneous along the electrode roll. The XRD analysis shows that Na3V2(PO4)2F3 structure is robust; nevertheless, the material cannot recover the initial Na+ content as the cycling progresses, which is the main cause for capacity loss in the positive electrode. The solid-electrolyte interphase present on the hard carbon surface was characterised using XPS. The hard carbon electrode cannot be detected during this study, evidencing the formation of a relatively thick (>5 nm) passivating layer composed of carbonate salts and NaF, which are the main products of electrolyte decomposition., The authors acknowledge the European Commission for funding this work through the H2020 NAIADES project (LCE10-2014, Contract number 646433). LC, DC, PSC and LHBN thank the RS2E Network for the funding of LHBN's PhD thesis as well as the financial support of Région Nouvelle Aquitaine. LC, DC, PSC, LHBN, CC, and RD acknowledge the French National Research Agency (STORE-EX Labex Project ANR-10-LABX-76-01) for financial support. MRP and AP acknowledge Ministerio de Economía y Competititivad (Spain) for Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0496). The authors thank E. Garitte (SAFT, France) for her helps to coordinate this project.
- Published
- 2022
- Full Text
- View/download PDF
13. Hard Carbon for Na-ion Batteries: From Synthesis to Performance and Storage Mechanism (chapitre 3)
- Author
-
del Mar Saavedra Rios, Carolina, Beda, Adrian, Simonin, Loic, Matei Ghimbeu, Camélia, Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Science des Matériaux de Mulhouse (IS2M), Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
- Subjects
[CHIM]Chemical Sciences - Abstract
International audience; The development of Na‐ion batteries is currently regarded as a sustainable, cheaper and long‐lasting technology compared to that of Li‐ion batteries. This chapter provides a general overview of the hard carbons. It focuses on the description of the main synthesis routes used to prepare hard carbons with a focus on the impact of the precursor type and synthesis conditions on the hard carbon characteristics. The chapter emphasizes the structural, textural and surface chemistry aspects through several selected examples. It discusses the performance in half‐cell and full‐cell in relation with the hard carbon properties. The chapter deals with the sodium storage mechanisms. The main synthesis procedures to obtain hard carbon includes synthetic precursors‐based hard carbon synthesis, bio‐polymers derived hard carbon synthesis and biomass‐based hard carbon synthesis. Surface area, open porosity and closed porosity are key parameters to investigate for hard carbon materials.
- Published
- 2021
- Full Text
- View/download PDF
14. River driftwood pretreated via hydrothermal carbonization as a sustainable source of 1 hard carbon for Na-ion battery anodes
- Author
-
Qatarneh, Abdullah, Dupont, Capucine, Michel, Julie, Simonin, Loic, Beda, Adrian, Matei Ghimbeu, Camelia, RUIZ VILLANUEVA, Virginia, Da Silva Perez, Denilson, PIEGAY, Hervé, FRANCA, Mario, Département de l'électricité et de l'hydrogène dans les transports (DEHT), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de L'Energie Solaire (INES), and Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
[CHIM.INOR]Chemical Sciences/Inorganic chemistry - Abstract
International audience; Producing hard carbon from lignocellulosic biomass has been the focus of recent studies as a promising source of anode material for Na-ion batteries. Woody biomass is a potential source, but it is already well valorised. Consequently, river driftwood can be an excellent alternative, especially since it is a disturbing waste for dam regulators.. It can jeopardize dam safety, damage intake works, and sink in reservoirs, lowering water quality and decreasing reservoir volume. We examine the potential of river driftwood as a source of hard carbon for Na-ion batteries. Hydrothermal carbonization (HTC) was carried out at temperatures between 180 and 220 °C as the first step to produce hydrochar followed by an upgrading pyrolysis step at 1400 °C under an inert atmosphere to obtain hard carbon. We investigated the effect of HTC operational conditions and driftwood biomass (genera) on hydrochar and hard carbon properties, as well as the latter's impact on Na-ion batteries. Anode delivered a reversible discharge of 270 to 300 mAhg-1 for the first cycle. Derived hard carbon had Coulombic efficiency of 77 to 83 % and a promising cyclability of maximum 2% loss after 100 cycles. Moreover, results suggest that obtained hard carbon can compete with commercial materials and is capable to supply large battery factories with anode material.
- Published
- 2021
15. Hard Carbon for Na‐ion Batteries: From Synthesis to Performance and Storage Mechanism
- Author
-
del Mar Saavedra Rios, Carolina, primary, Beda, Adrian, additional, Simonin, Loic, additional, and Matei Ghimbeu, Camélia, additional
- Published
- 2021
- Full Text
- View/download PDF
16. Evaluating river driftwood potential for energy storage applications
- Author
-
Qatarneh, Abdullah F, primary, Dupont, Capucine, additional, Ruiz-Villanueva, Virginia, additional, Michel, Julie, additional, Simonin, Loic, additional, Piégay, Hervé, additional, and Franca, Mário J., additional
- Published
- 2021
- Full Text
- View/download PDF
17. Glassy Oxides as Positive Electrode Materials for Sustainable and High Energy Density Li-Ion and Na-Ion Batteries: First Attempts to Establish Relationships between Glass Compositions, Physicochemical Characterizations and Electrochemical Properties with Machine Learning and Design of Experiments Approaches
- Author
-
Guyot, Taos, Cardoso, Alexi, Delanoë, Alexis, Agullo, Julia, Perret, Damien, Simonin, Loic, Van Roekeghem, Ambroise, Gonon, Laurent, and Martinet, Sebastien
- Published
- 2024
- Full Text
- View/download PDF
18. (Invited) Sodium Vanadium Fluorophosphates for Na-Ion Batteries
- Author
-
Croguennec, Laurence, primary, Broux, Thibault, additional, Nguyen, Hoang Bao Long, additional, Sanz Camacho, Paula, additional, Bamine, Tahya, additional, Fauth, François, additional, Olchowka, Jacob, additional, Reynier, Yvan, additional, Simonin, Loic, additional, Carlier, Dany, additional, and Masquelier, Christian, additional
- Published
- 2019
- Full Text
- View/download PDF
19. Electrolyte formulation in Na-ion batteries: towards an improvement of safety and lifetime
- Author
-
Lecarme, Lauréline, Simone, Virginie, Simonin, Loic, Martinet, Sébastien, Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[CHIM.OTHE]Chemical Sciences/Other ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2017
20. Dependence of Electrochemical Properties on Structure and Deeper Understanding of Sodium Insertion in Hard Carbons Used As Anode for Sodium-Ion Batteries
- Author
-
Simone, Virginie, primary, Boulineau, Adrien, additional, De Geyer, Arnaud, additional, Simonin, Loic, additional, and Martinet, Sebastien, additional
- Published
- 2016
- Full Text
- View/download PDF
21. Synthesis and Understanding of Layered Li-Rich Nickel Manganese Oxides for High Energy Density Lithium-Ion Batteries
- Author
-
Martinet, Sebastien, primary, Boulineau, Adrien, additional, Simonin, Loic, additional, Colin, Jean François, additional, Daniel, Lise, additional, Peralta, David, additional, Feydi, Pierre, additional, Fabre, Frederic, additional, Chapuis-Rey, Marlene, additional, and Patoux, Sebastien, additional
- Published
- 2014
- Full Text
- View/download PDF
22. Synthesis of Li and Mn-Rich Layered Oxides as Concentration-Gradients for Lithium-Ion Batteries
- Author
-
Pajot, Segolene, Feydi, Pierre, Weill, Francois, Menetrier, Michel, Yildirim, Gunay, Simonin, Loic, and Croguennec, Laurence
- Abstract
Li and Mn-rich layered oxides, i.e. Li1+xM1-xO2 (M = Mn, Ni and Co), are attractive positive electrode materials for Li-ion batteries due to their promising high specific capacities. Unfortunately, these materials provide an energy-density fading due to a continuous voltage decay resulting from chemical instability of their surface structure upon cycling. The purpose of this paper is to discuss the main insights got from syntheses of materials targeted to be concentration-gradients of global compositions Li1+x(Ni0.29Mn0.53Co0.18)1-xO2 with: (i) Li and Mn-rich layered oxides in the core to deliver high capacity, and (ii) layered oxides enriched in Ni and in Co moving to the surface of the spherical aggregates to promote improved chemical and thermal stability for the electrode material. Concentration-gradient, core-shell or re-homogenized materials were obtained depending on the temperature and excess of lithium used for the high temperature thermal treatment (i.e. the second step of the synthesis). Despite complex to master, the engineering of layered oxide materials was shown to be a track to follow to optimize the performance of an electrode material.
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.