1. Predicting the Structure and Stability of Oxide Nanoscrolls from Dichalcogenide Precursors
- Author
-
Gupta, Adway and Singh, Arunima K.
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Mesoscale and Nanoscale Physics ,Physics - Computational Physics - Abstract
Low-dimensional nanostructures such as nanotubes, nanoscrolls, and nanofilms have found applications in a wide variety of fields such as photocatalysis, sensing, and drug delivery. Recently, Chu et al. demonstrated that nanoscrolls of Mo and W transition metal oxides, which do not exhibit van der Waals (vdW) layering in their bulk counterparts, can be successfully synthesized using a plasma processing of corresponding layered transition metal dichalcogenides. In this work, we employ data mining, first-principles simulations, and physio-mechanical models to theoretically examine the potential of other dichalcogenide precursors to form oxide nanoscrolls. Through data mining of bulk and two-dimensional materials databases, we first identify dichalcogenides that would be mostly amenable to plasma processing on the basis of their vdW layering and thermodynamic stability. To determine the propensity of forming a nanoscroll, we develop a first-principles simulation-based physio-mechanical model to determine the thermodynamic stability of nanoscrolling as well as the equilibrium structure of the nanoscrolls, i.e. their inner radius, outer radius, and interlayer spacing. We validate this model using the experimental observations of Chu et al.'s study and find an excellent agreement for the equilibrium nanoscroll structure. Furthermore, we demonstrate that the model's energies can be utilized for a generalized quantitative categorization of nanoscroll stability. We apply the model to study the oxide nanoscroll formation in MoS$_2$, WS$_2$, MoSe$_2$, WSe$_2$, PdS$_2$, HfS$_2$ and GeS$_2$, paving the way for a systematic study of oxide nanoscroll formation atop other dichalcogenide substrates.
- Published
- 2024