1. A trapped single ion inside a Bose-Einstein condensate
- Author
-
Zipkes, Christoph and Köhl, Michael
- Subjects
530 ,Single ion ,Bose-Einstein condensate ,Ion trap ,BEC ,Charge exchange ,Langevin ,Induced dipole ,Micromotion ,Ion neutral interaction ,Mass spectrometry ,Sympathetic cooling - Abstract
In recent years, improved control of the motional and internal quantum states of ultracold neutral atoms and ions has opened intriguing possibilities for quantum simulation and quantum computation. Many-body effects have been explored with hundreds of thousands of quantum-degenerate neutral atoms and coherent light-matter interfaces have been built. Systems of single or a few trapped ions have been used to demonstrate universal quantum computing algorithms and to detect variations of fundamental constants in precision atomic clocks. Now in our experiment we investigate how the two systems can be advantageously combined. We immerse a single trapped Yb+ ion in a Bose-Einstein condensate of Rb atoms. Our hybrid setup consists of a linear RF-Paul trap which is overlapped with a magnetic trap and an optical dipole trap for the neutral atoms. A first synergetic effect is the sympathetic cooling of the trapped ions to very low temperatures through collisions with the ultracold neutral gas and thus without applying laser light to the ions. We observe the dynamics of this effect by measuring the mean ion energy after having an initially hot ion immersed into the condensate for various interaction times, while at the same time monitoring the effects of the collisions on the condensate. The observed ion cooling effect calls for further research into the possibility of using such hybrid systems for the continuous cooling of quantum computers. To this end a good understanding of the fundamental interaction processes between the ion and the neutrals is essential. We investigate the energy dependent elastic scattering properties by measuring neutral atom losses and temperature increase from an ultracold thermal cloud of Rb. By comparison with a Monte-Carlo simulation we gain a deeper understanding of how the different parameters affect the collisional effects. Additionally, we observe charge exchange reactions at the single particle level and measure the energy-independent reaction rate constants. The reaction products are identified by in-trap mass spectrometry, revealing the branching ratio between radiative and non-radiative charge exchange processes.
- Published
- 2011
- Full Text
- View/download PDF