33 results on '"Sjobak, K."'
Search Results
2. Beam delivery and final focus systems for multi-TeV advanced linear colliders
- Author
-
White, G, Gessner, S, Adli, E, Cao, GJ, Sjobak, K, Barber, S, Schroeder, C, Terzani, D, van Tilborg, J, Esarey, E, Doss, C, Litos, M, Lobach, I, Power, J, and Lindstrøm, CA
- Subjects
Affordable and Clean Energy ,Beam dynamics ,Beam Optics ,Accelerator modelling and simulations (multi-particle dynamics ,single-particle dynamics) ,Wake-field acceleration (laser-driven ,electron-driven) ,Physical Sciences ,Engineering ,Nuclear & Particles Physics - Abstract
The Beam Delivery System (BDS) is a critical component of a high-energy linear collider. It transports the beam from the accelerator and brings it to a focus at the Interaction Point. The BDS system includes diagnostic sections for measuring the beam energy, emittance, and polarization, as well as collimators for machine protection. The length of the BDS increases with collision energy. Higher collision energies also require higher luminosities, and this is a significant constraint on the design for energy-frontier machines. Here, we review BDS designs based on traditional quadrupole magnets and examine the challenges involved in extending these to the Multi-TeV regime consistent with requirements for advanced accelerator concepts.
- Published
- 2022
3. Witness electron beam injection using an active plasma lens for a proton beam-driven plasma wakefield accelerator
- Author
-
Kim, S. -Y., Moon, K., Chung, M., Sjobak, K. N., Adli, E., Doebert, S., Dayyani, M., Yoon, E. S., Nam, I., and Hahn, G.
- Subjects
Physics - Accelerator Physics ,Physics - Plasma Physics - Abstract
An active plasma lens focuses the beam in both the horizontal and vertical planes simultaneously using a magnetic field generated by a discharge current through the plasma. A beam size of 5--10 $\mu$m can be achieved within a short distance using a focusing gradient on the order of 100 T/m. The active plasma lens is therefore an attractive element for plasma wakefield acceleration, because an ultra-small size of the witness electron beam is required for injection into the plasma wakefield to minimize emittance growth and to enhance the capturing efficiency. When the drive beam and witness electron beam co-propagate through the active plasma lens, interactions between the drive and witness beams, and the plasma must be considered. In this paper, through particle-in-cell simulations, we discuss the possibility of using an active plasma lens for the final focusing of the electron beam for the AWAKE RUN 2 experiments. It is confirmed that the amplitude of the plasma wakefield excited by proton bunches remains the same even after propagation through the active plasma lens. The emittance of the witness electron beam increases rapidly in the plasma density ramp regions of the lens. Nevertheless, when the witness electron beam has a charge of 100 pC, emittance of 10 mm mrad, and bunch length of 60 $\mu$m, its emittance growth is not significant along the active plasma lens. For small emittance, such as 2 mm mrad, the emittance growth is found to be strongly dependent on the RMS beam size, plasma density, and multiple Coulomb scattering.
- Published
- 2021
- Full Text
- View/download PDF
4. Multi-kT/m Focusing Gradient in a Linear Active Plasma Lens
- Author
-
Sjobak, K. N., Adli, E., Corsini, R., Farabolini, W., Boyle, G., Lindstrøm, C. A., Meisel, M., Osterhoff, J., Röckemann, J. -H., Schaper, L., and Dyson, A. E.
- Subjects
Physics - Accelerator Physics - Abstract
Active plasma lenses are compact devices developed as a promising beam-focusing alternative for charged particle beams, capable of short focal lengths for high-energy beams. We have previously shown that linear magnetic fields with gradients of around 0.3 kT/m can be achieved in argon-filled plasma lenses that preserve beam emittance [C.A. Lindstr{\o}m et al., Phys. Rev. Lett. 121, 194801 (2018)]. Here we show that with argon in a 500 {\mu}m diameter capillary, the fields are still linear with a focusing gradient of 3.6 kT/m, which is an order of magnitude higher than the gradients of quadrupole magnets. The current pulses that generate the magnetic field are provided by compact Marx banks, and are highly repeatable. These results establish active plasma lenses as an ideal device for pulsed particle beam applications requiring very high focusing gradients that are uniform throughout the lens aperture., Comment: 8 pages, 6 figures. Submitted to Physical Review Applied
- Published
- 2020
- Full Text
- View/download PDF
5. The Compact Linear Collider (CLIC) - 2018 Summary Report
- Author
-
CLIC, The, collaborations, CLICdp, Charles, T. K., Giansiracusa, P. J., Lucas, T. G., Rassool, R. P., Volpi, M., Balazs, C., Afanaciev, K., Makarenko, V., Patapenka, A., Zhuk, I., Collette, C., Boland, M. J., Hoffman, A. C. Abusleme, Diaz, M. A., Garay, F., Chi, Y., He, X., Pei, G., Pei, S., Shu, G., Wang, X., Zhang, J., Zhao, F., Zhou, Z., Chen, H., Gao, Y., Huang, W., Kuang, Y. P., Li, B., Li, Y., Meng, X., Shao, J., Shi, J., Tang, C., Wang, P., Wu, X., Zha, H., Ma, L., Han, Y., Fang, W., Gu, Q., Huang, D., Huang, X., Tan, J., Wang, Z., Zhao, Z., Uggerhøj, U. I., Wistisen, T. N., Aabloo, A., Aare, R., Kuppart, K., Vigonski, S., Zadin, V., Aicheler, M., Baibuz, E., Brücken, E., Djurabekova, F., Eerola, P., Garcia, F., Haeggström, E., Huitu, K., Jansson, V., Kassamakov, I., Kimari, J., Kyritsakis, A., Lehti, S., Meriläinen, A., Montonen, R., Nordlund, K., Österberg, K., Saressalo, A., Väinölä, J., Veske, M., Farabolini, W., Mollard, A., Peauger, F., Plouin, J., Bambade, P., Chaikovska, I., Chehab, R., Delerue, N., Davier, M., Faus-Golfe, A., Irles, A., Kaabi, W., LeDiberder, F., Pöschl, R., Zerwas, D., Aimard, B., Balik, G., Blaising, J. -J., Brunetti, L., Chefdeville, M., Dominjon, A., Drancourt, C., Geoffroy, N., Jacquemier, J., Jeremie, A., Karyotakis, Y., Nappa, J. M., Serluca, M., Vilalte, S., Vouters, G., Bernhard, A., Bründermann, E., Casalbuoni, S., Hillenbrand, S., Gethmann, J., Grau, A., Huttel, E., Müller, A. -S., Peiffer, P., Perić, I., de Jauregui, D. Saez, Emberger, L., Graf, C., Simon, F., Szalay, M., van der Kolk, N., Brass, S., Kilian, W., Alexopoulos, T., Apostolopoulos, T., Gazis, E. N., Gazis, N., Kostopoulos, V., Kourkoulis, S., Heilig, B., Lichtenberger, J., Shrivastava, P., Dayyani, M. K., Ghasem, H., Hajari, S. S., Shaker, H., Ashkenazy, Y., Popov, I., Engelberg, E., Yashar, A., Abramowicz, H., Benhammou, Y., Borysov, O., Borysova, M., Levy, A., Levy, I., Alesini, D., Bellaveglia, M., Buonomo, B., Cardelli, A., Diomede, M., Ferrario, M., Gallo, A., Ghigo, A., Giribono, A., Piersanti, L., Stella, A., Vaccarezza, C., de Blas, J., Franceschini, R., D'Auria, G., Di Mitri, S., Abe, T., Aryshev, A., Fukuda, M., Furukawa, K., Hayano, H., Higashi, Y., Higo, T., Kubo, K., Kuroda, S., Matsumoto, S., Michizono, S., Naito, T., Okugi, T., Shidara, T., Tauchi, T., Terunuma, N., Urakawa, J., Yamamoto, A., Raboanary, R., Luiten, O. J., Stragier, X. F. D., Hart, R., van der Graaf, H., Eigen, G., Adli, E., Lindstrøm, C. A., Lillestøl, R., Malina, L., Pfingstner, J., Sjobak, K. N., Ahmad, A., Hoorani, H., Khan, W. A., Bugiel, S., Bugiel, R., Firlej, M., Fiutowski, T. A., Idzik, M., Moroń, J., Świentek, K. P., de Renstrom, P. Brückman, Krupa, B., Kucharczyk, M., Lesiak, T., Pawlik, B., Sopicki, P., Turbiarz, B., Wojtoń, T., Zawiejski, L. K., Kalinowski, J., Nowak, K., Żarnecki, A. F., Firu, E., Ghenescu, V., Neagu, A. T., Preda, T., Zgura, I. S., Aloev, A., Azaryan, N., Boyko, I., Budagov, J., Chizhov, M., Filippova, M., Glagolev, V., Gongadze, A., Grigoryan, S., Gudkov, D., Karjavine, V., Lyablin, M., Nefedov, Yu., Olyunin, A., Rymbekova, A., Samochkine, A., Sapronov, A., Shelkov, G., Shirkov, G., Soldatov, V., Solodko, E., Trubnikov, G., Tyapkin, I., Uzhinsky, V., Vorozhtov, A., Zhemchugov, A., Levichev, E., Mezentsev, N., Piminov, P., Shatilov, D., Vobly, P., Zolotarev, K., Jelisavčić, I. Božović, Kačarević, G., Dumbelović, G. Milutinović, Pandurović, M., Radulović, M., Stevanović, J., Vukasinović, N., Lee, D. -H., Ayala, N., Benedetti, G., Guenzel, T., Iriso, U., Marti, Z., Perez, F., Pont, M., Trenado, J., Ruiz-Jimeno, A., Vila, I., Calero, J., Dominguez, M., Garcia-Tabares, L., Gavela, D., Lopez, D., Toral, F., Gutierrez, C. Blanch, Boronat, M., Esperante, D., Fullana, E., Fuster, J., García, I., Gimeno, B., Lopez, P. Gomis, González, D., Perelló, M., Ros, E., Villarejo, M. A., Vnuchenko, A., Vos, M., Borgmann, Ch., Brenner, R., Ekelöf, T., Jacewicz, M., Olvegård, M., Ruber, R., Ziemann, V., Aguglia, D., Gonzalvo, J. Alabau, Leon, M. Alcaide, Tehrani, N. Alipour, Anastasopoulos, M., Andersson, A., Andrianala, F., Antoniou, F., Apyan, A., Arominski, D., Artoos, K., Assly, S., Atieh, S., Baccigalupi, C., Sune, R. Ballabriga, Caballero, D. Banon, Barnes, M. J., Garcia, J. Barranco, Bartalesi, A., Bauche, J., Bayar, C., Belver-Aguilar, C., Morell, A. Benot, Bernardini, M., Bett, D. R., Bettoni, S., Bettencourt, M., Bielawski, B., Garcia, O. Blanco, Kraljevic, N. Blaskovic, Bolzon, B., Bonnin, X. A., Bozzini, D., Branger, E., Brondolin, E., Brunner, O., Buckland, M., Bursali, H., Burkhardt, H., Caiazza, D., Calatroni, S., Campbell, M., Lasheras, N. Catalan, Cassany, B., Castro, E., Soares, R. H. Cavaleiro, Bastos, M. Cerqueira, Cherif, A., Chevallay, E., Cilento, V., Corsini, R., Costa, R., Cure, B., Curt, S., Gobbo, A. Dal, Dannheim, D., Daskalaki, E., Deacon, L., Degiovanni, A., De Michele, G., De Oliveira, L., Romano, V. Del Pozo, Delahaye, J. P., Delikaris, D., de Almeida, P. G. Dias, Dobers, T., Doebert, S., Doytchinov, I., Draper, M., Ramos, F. Duarte, Duquenne, M., Plaja, N. Egidos, Elsener, K., Esberg, J., Esposito, M., Evans, L., Fedosseev, V., Ferracin, P., Fiergolski, A., Foraz, K., Fowler, A., Friebel, F., Fuchs, J-F., Gaddi, A., Gamba, D., Fajardo, L. Garcia, Morales, H. Garcia, Garion, C., Gasior, M., Gatignon, L., Gayde, J-C., Gerbershagen, A., Gerwig, H., Giambelli, G., Gilardi, A., Goldblatt, A. N., Anton, S. Gonzalez, Grefe, C., Grudiev, A., Guerin, H., Guillot-Vignot, F. G., Gutt-Mostowy, M. L., Lutz, M. Hein, Hessler, C., Holma, J. K., Holzer, E. B., Hourican, M., Hynds, D., Ikarios, E., Levinsen, Y. Inntjore, Janssens, S., Jeff, A., Jensen, E., Jonker, M., Kamugasa, S. W., Kastriotou, M., Kemppinen, J. M. K., Khan, V., Kieffer, R. B., Klempt, W., Kokkinis, N., Kossyvakis, I., Kostka, Z., Korsback, A., Platia, E. Koukovini, Kovermann, J. W., Kozsar, C-I., Kremastiotis, I., Kröger, J., Kulis, S., Latina, A., Leaux, F., Lebrun, P., Lefevre, T., Leogrande, E., Linssen, L., Liu, X., Cudie, X. Llopart, Magnoni, S., Maidana, C., Maier, A. A., Durand, H. Mainaud, Mallows, S., Manosperti, E., Marelli, C., Lacoma, E. Marin, Marsh, S., Martin, R., Martini, I., Martyanov, M., Mazzoni, S., Mcmonagle, G., Mether, L. M., Meynier, C., Modena, M., Moilanen, A., Mondello, R., Cabral, P. B. Moniz, Irazabal, N. Mouriz, Munker, M., Muranaka, T., Nadenau, J., Navarro, J. G., Quirante, J. L. Navarro, Del Busto, E. Nebo, Nikiforou, N., Ninin, P., Nonis, M., Nisbet, D., Nuiry, F. X., Nürnberg, A., Ögren, J., Osborne, J., Ouniche, A. C., Pan, R., Papadopoulou, S., Papaphilippou, Y., Paraskaki, G., Pastushenko, A., Passarelli, A., Patecki, M., Pazdera, L., Pellegrini, D., Pepitone, K., Codina, E. Perez, Fontenla, A. Perez, Persson, T. H. B., Petrič, M., Pitman, S., Pitters, F., Pittet, S., Plassard, F., Popescu, D., Quast, T., Rajamak, R., Redford, S., Remandet, L., Renier, Y., Rey, S. F., Orozco, O. Rey, Riddone, G., Castro, E. Rodriguez, Roloff, P., Rossi, C., Rossi, F., Rude, V., Ruehl, I., Rumolo, G., Sailer, A., Sandomierski, J., Santin, E., Sanz, C., Bedolla, J. Sauza, Schnoor, U., Schmickler, H., Schulte, D., Senes, E., Serpico, C., Severino, G., Shipman, N., Sicking, E., Simoniello, R., Skowronski, P. K., Mompean, P. Sobrino, Soby, L., Sollander, P., Solodko, A., Sosin, M. P., Spannagel, S., Sroka, S., Stapnes, S., Sterbini, G., Stern, G., Ström, R., Stuart, M. J., Syratchev, I., Szypula, K., Tecker, F., Thonet, P. A., Thrane, P., Timeo, L., Tiirakari, M., Garcia, R. Tomas, Tomoiaga, C. I., Valerio, P., Vaňát, T., Vamvakas, A. L., Van Hoorne, J., Viazlo, O., Pinto, M. Vicente Barreto, Vitoratou, N., Vlachakis, V., Weber, M. A., Wegner, R., Wendt, M., Widorski, M., Williams, O. E., Williams, M., Woolley, B., Wuensch, W., Wulzer, A., Uythoven, J., Xydou, A., Yang, R., Zelios, A., Zhao, Y., Zisopoulos, P., Benoit, M., Sultan, D M S, Riva, F., Bopp, M., Braun, H. H., Craievich, P., Dehler, M., Garvey, T., Pedrozzi, M., Raguin, J. Y., Rivkin, L., Zennaro, R., Guillaume, S., Rothacher, M., Aksoy, A., Nergiz, Z., Yavas, Ö., Denizli, H., Keskin, U., Oyulmaz, K. Y., Senol, A., Ciftci, A. K., Baturin, V., Karpenko, O., Kholodov, R., Lebed, O., Lebedynskyi, S., Mordyk, S., Musienko, I., Profatilova, Ia., Storizhko, V., Bosley, R. R., Price, T., Watson, M. F., Watson, N. K., Winter, A. G., Goldstein, J., Green, S., Marshall, J. S., Thomson, M. A., Xu, B., You, T., Gillespie, W. A., Spannowsky, M., Beggan, C., Martin, V., Zhang, Y., Protopopescu, D., Robson, A., Apsimon, R. J., Bailey, I., Burt, G. C., Dexter, A. C., Edwards, A. V., Hill, V., Jamison, S., Millar, W. L., Papke, K., Casse, G., Vossebeld, J., Aumeyr, T., Bergamaschi, M., Bobb, L., Bosco, A., Boogert, S., Boorman, G., Cullinan, F., Gibson, S., Karataev, P., Kruchinin, K., Lekomtsev, K., Lyapin, A., Nevay, L., Shields, W., Snuverink, J., Towler, J., Yamakawa, E., Boisvert, V., West, S., Jones, R., Joshi, N., Bett, D., Bodenstein, R. M., Bromwich, T., Burrows, P. N., Christian, G. B., Gohil, C., Korysko, P., Paszkiewicz, J., Perry, C., Ramjiawan, R., Roberts, J., Coates, T., Salvatore, F., Bainbridge, A., Clarke, J. A., Krumpa, N., Shepherd, B. J. A., Walsh, D., Chekanov, S., Demarteau, M., Gai, W., Liu, W., Metcalfe, J., Power, J., Repond, J., Weerts, H., Xia, L., Zupan, J., Wells, J. D., Zhang, Z., Adolphsen, C., Barklow, T., Dolgashev, V., Franzi, M., Graf, N., Hewett, J., Kemp, M., Kononenko, O., Markiewicz, T., Moffeit, K., Neilson, J., Nosochkov, Y., Oriunno, M., Phinney, N., Rizzo, T., Tantawi, S., Wang, J., Weatherford, B., White, G., and Woodley, M.
- Subjects
Physics - Accelerator Physics - Abstract
The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^-$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years., Comment: 112 pages, 59 figures; published as CERN Yellow Report Monograph Vol. 2/2018; corresponding editors: Philip N. Burrows, Nuria Catalan Lasheras, Lucie Linssen, Marko Petri\v{c}, Aidan Robson, Daniel Schulte, Eva Sicking, Steinar Stapnes
- Published
- 2018
- Full Text
- View/download PDF
6. Dynamic simulations in SixTrack
- Author
-
Sjobak, K., Olsen, V. K. Berglyd, De Maria, R., Fitterer, M., García, A. Santamaría, Garcia-Morales, H., Mereghetti, A., Wagner, J. F., and Wretborn, S. J.
- Subjects
Physics - Accelerator Physics ,Computer Science - Computational Engineering, Finance, and Science - Abstract
The DYNK module allows element settings in SixTrack to be changed on a turn-by-turn basis. This document contains a technical description of the DYNK module in SixTrack. It is mainly intended for a developer or advanced user who wants to modify the DYNK module, for example by adding more functions that can be used to calculate new element settings, or to add support for new elements that can be used with DYNK., Comment: Submission to CERN yellow report / conference proceeding, the 2015 collimation tracking code workshop
- Published
- 2018
7. Emittance Preservation in an Aberration-Free Active Plasma Lens
- Author
-
Lindstrøm, C. A., Adli, E., Boyle, G., Corsini, R., Dyson, A. E., Farabolini, W., Hooker, S. M., Meisel, M., Osterhoff, J., Röckemann, J. -H., Schaper, L., and Sjobak, K. N.
- Subjects
Physics - Accelerator Physics - Abstract
Active plasma lensing is a compact technology for strong focusing of charged particle beams, which has gained considerable interest for use in novel accelerator schemes. While providing kT/m focusing gradients, active plasma lenses can have aberrations caused by a radially nonuniform plasma temperature profile, leading to degradation of the beam quality. We present the first direct measurement of this aberration, consistent with theory, and show that it can be fully suppressed by changing from a light gas species (helium) to a heavier gas species (argon). Based on this result, we demonstrate emittance preservation for an electron beam focused by an argon-filled active plasma lens., Comment: 6 pages, 3 figures
- Published
- 2018
- Full Text
- View/download PDF
8. Overview of the CLEAR plasma lens experiment
- Author
-
Lindstrøm, C. A., Sjobak, K. N., Adli, E., Röckemann, J. -H., Schaper, L., Osterhoff, J., Dyson, A. E., Hooker, S. M., Farabolini, W., Gamba, D., and Corsini, R.
- Subjects
Physics - Accelerator Physics - Abstract
Discharge capillary-based active plasma lenses are a promising new technology for strongly focusing charged particle beams, especially when combined with novel high gradient acceleration methods. Still, many questions remain concerning such lenses, including their transverse field uniformity, limitations due to plasma wakefields and whether they can be combined in multi-lens lattices in a way to cancel chromaticity. These questions will be addressed in a new plasma lens experiment at the CLEAR User Facility at CERN. All the subsystems have been constructed, tested and integrated into the CLEAR beam line, and are ready for experiments starting late 2017., Comment: Conference proceeding for the European Advanced Accelerator Concepts (EAAC) Workshop 2017, submitted to NIMA Proceedings
- Published
- 2018
- Full Text
- View/download PDF
9. Updated baseline for a staged Compact Linear Collider
- Author
-
CLIC, The, collaborations, CLICdp, Boland, M. J., Felzmann, U., Giansiracusa, P. J., Lucas, T. G., Rassool, R. P., Balazs, C., Charles, T. K., Afanaciev, K., Emeliantchik, I., Ignatenko, A., Makarenko, V., Shumeiko, N., Patapenka, A., Zhuk, I., Hoffman, A. C. Abusleme, Gutierrez, M. A. Diaz, Gonzalez, M. Vogel, Chi, Y., He, X., Pei, G., Pei, S., Shu, G., Wang, X., Zhang, J., Zhao, F., Zhou, Z., Chen, H., Gao, Y., Huang, W., Kuang, Y. P., Li, B., Li, Y., Shao, J., Shi, J., Tang, C., Wu, X., Ma, L., Han, Y., Fang, W., Gu, Q., Huang, D., Huang, X., Tan, J., Wang, Z., Zhao, Z., Laštovička, T., Uggerhoj, U., Wistisen, T. N., Aabloo, A., Eimre, K., Kuppart, K., Vigonski, S., Zadin, V., Aicheler, M., Baibuz, E., Brücken, E., Djurabekova, F., Eerola, P., Garcia, F., Haeggström, E., Huitu, K., Jansson, V., Karimaki, V., Kassamakov, I., Kyritsakis, A., Lehti, S., Meriläinen, A., Montonen, R., Niinikoski, T., Nordlund, K., Österberg, K., Parekh, M., Törnqvist, N. A., Väinölä, J., Veske, M., Farabolini, W., Mollard, A., Napoly, O., Peauger, F., Plouin, J., Bambade, P., Chaikovska, I., Chehab, R., Davier, M., Kaabi, W., Kou, E., LeDiberder, F., Pöschl, R., Zerwas, D., Aimard, B., Balik, G., Baud, J. -P., Blaising, J. -J., Brunetti, L., Chefdeville, M., Drancourt, C., Geoffroy, N., Jacquemier, J., Jeremie, A., Karyotakis, Y., Nappa, J. M., Vilalte, S., Vouters, G., Bernard, A., Peric, I., Gabriel, M., Simon, F., Szalay, M., van der Kolk, N., Alexopoulos, T., Gazis, E. N., Gazis, N., Ikarios, E., Kostopoulos, V., Kourkoulis, S., Gupta, P. D., Shrivastava, P., Arfaei, H., Dayyani, M. K., Ghasem, H., Hajari, S. S., Shaker, H., Ashkenazy, Y., Abramowicz, H., Benhammou, Y., Borysov, O., Kananov, S., Levy, A., Levy, I., Rosenblat, O., D'Auria, G., Di Mitri, S., Abe, T., Aryshev, A., Higo, T., Makida, Y., Matsumoto, S., Shidara, T., Takatomi, T., Takubo, Y., Tauchi, T., Toge, N., Ueno, K., Urakawa, J., Yamamoto, A., Yamanaka, M., Raboanary, R., Hart, R., van der Graaf, H., Eigen, G., Zalieckas, J., Adli, E., Lillestøl, R., Malina, L., Pfingstner, J., Sjobak, K. N., Ahmed, W., Asghar, M. I., Hoorani, H., Bugiel, S., Dasgupta, R., Firlej, M., Fiutowski, T. A., Idzik, M., Kopec, M., Kuczynska, M., Moron, J., Swientek, K. P., Daniluk, W., Krupa, B., Kucharczyk, M., Lesiak, T., Moszczynski, A., Pawlik, B., Sopicki, P., Wojtoń, T., Zawiejski, L., Kalinowski, J., Krawczyk, M., Żarnecki, A. F., Firu, E., Ghenescu, V., Neagu, A. T., Preda, T., Zgura, I-S., Aloev, A., Azaryan, N., Budagov, J., Chizhov, M., Filippova, M., Glagolev, V., Gongadze, A., Grigoryan, S., Gudkov, D., Karjavine, V., Lyablin, M., Olyunin, A., Samochkine, A., Sapronov, A., Shirkov, G., Soldatov, V., Solodko, A., Solodko, E., Trubnikov, G., Tyapkin, I., Uzhinsky, V., Vorozhtov, A., Levichev, E., Mezentsev, N., Piminov, P., Shatilov, D., Vobly, P., Zolotarev, K., Jelisavcic, I. Bozovic, Kacarevic, G., Lukic, S., Milutinovic-Dumbelovic, G., Pandurovic, M., Iriso, U., Perez, F., Pont, M., Trenado, J., Aguilar-Benitez, M., Calero, J., Garcia-Tabares, L., Gavela, D., Gutierrez, J. L., Lopez, D., Toral, F., Moya, D., Jimeno, A. Ruiz, Vila, I., Argyropoulos, T., Gutierrez, C. Blanch, Boronat, M., Esperante, D., Faus-Golfe, A., Fuster, J., Martinez, N. Fuster, Muñoz, N. Galindo, García, I., Navarro, J. Giner, Ros, E., Vos, M., Brenner, R., Ekelöf, T., Jacewicz, M., Ögren, J., Olvegård, M., Ruber, R., Ziemann, V., Aguglia, D., Tehrani, N. Alipour, Andersson, A., Andrianala, F., Antoniou, F., Artoos, K., Atieh, S., Sune, R. Ballabriga, Barnes, M. J., Garcia, J. Barranco, Bartosik, H., Belver-Aguilar, C., Morell, A. Benot, Bett, D. R., Bettoni, S., Blanchot, G., Garcia, O. Blanco, Bonnin, X. A., Brunner, O., Burkhardt, H., Calatroni, S., Campbell, M., Lasheras, N. Catalan, Bastos, M. Cerqueira, Cherif, A., Chevallay, E., Constance, B., Corsini, R., Cure, B., Curt, S., Dalena, B., Dannheim, D., De Michele, G., De Oliveira, L., Deelen, N., Delahaye, J. P., Dobers, T., Doebert, S., Draper, M., Ramos, F. Duarte, Dubrovskiy, A., Elsener, K., Esberg, J., Esposito, M., Fedosseev, V., Ferracin, P., Fiergolski, A., Foraz, K., Fowler, A., Friebel, F., Fuchs, J-F., Rojas, C. A. Fuentes, Gaddi, A., Fajardo, L. Garcia, Morales, H. Garcia, Garion, C., Gatignon, L., Gayde, J-C., Gerwig, H., Goldblatt, A. N., Grefe, C., Grudiev, A., Guillot-Vignot, F. G., Gutt-Mostowy, M. L., Hauschild, M., Hessler, C., Holma, J. K., Holzer, E., Hourican, M., Hynds, D., Levinsen, Y. Inntjore, Jeanneret, B., Jensen, E., Jonker, M., Kastriotou, M., Kemppinen, J. M. K., Kieffer, R. B., Klempt, W., Kononenko, O., Korsback, A., Platia, E. Koukovini, Kovermann, J. W., Kozsar, C-I., Kremastiotis, I., Kulis, S., Latina, A., Leaux, F., Lebrun, P., Lefevre, T., Linssen, L., Cudie, X. Llopart, Maier, A. A., Durand, H. Mainaud, Manosperti, E., Marelli, C., Lacoma, E. Marin, Martin, R., Mazzoni, S., Mcmonagle, G., Mete, O., Mether, L. M., Modena, M., Münker, R. M., Muranaka, T., Del Busto, E. Nebot, Nikiforou, N., Nisbet, D., Nonglaton, J-M., Nuiry, F. X., Nürnberg, A., Olvegard, M., Osborne, J., Papadopoulou, S., Papaphilippou, Y., Passarelli, A., Patecki, M., Pazdera, L., Pellegrini, D., Pepitone, K., Codina, E. Perez, Fontenla, A. Perez, Persson, T. H. B., Petrič, M., Pitters, F., Pittet, S., Plassard, F., Rajamak, R., Redford, S., Renier, Y., Rey, S. F., Riddone, G., Rinolfi, L., Castro, E. Rodriguez, Roloff, P., Rossi, C., Rude, V., Rumolo, G., Sailer, A., Santin, E., Schlatter, D., Schmickler, H., Schulte, D., Shipman, N., Sicking, E., Simoniello, R., Skowronski, P. K., Mompean, P. Sobrino, Soby, L., Sosin, M. P., Sroka, S., Stapnes, S., Sterbini, G., Ström, R., Syratchev, I., Tecker, F., Thonet, P. A., Timeo, L., Timko, H., Garcia, R. Tomas, Valerio, P., Vamvakas, A. L., Vivoli, A., Weber, M. A., Wegner, R., Wendt, M., Woolley, B., Wuensch, W., Uythoven, J., Zha, H., Zisopoulos, P., Benoit, M., Pinto, M. Vicente Barreto, Bopp, M., Braun, H. H., Divall, M. Csatari, Dehler, M., Garvey, T., Raguin, J. Y., Rivkin, L., Zennaro, R., Aksoy, A., Nergiz, Z., Pilicer, E., Tapan, I., Yavas, O., Baturin, V., Kholodov, R., Lebedynskyi, S., Miroshnichenko, V., Mordyk, S., Profatilova, I., Storizhko, V., Watson, N., Winter, A., Goldstein, J., Green, S., Marshall, J. S., Thomson, M. A., Xu, B., Gillespie, W. A., Pan, R., Tyrk, M. A, Protopopescu, D., Robson, A., Apsimon, R., Bailey, I., Burt, G., Constable, D., Dexter, A., Karimian, S., Lingwood, C., Buckland, M. D., Casse, G., Vossebeld, J., Bosco, A., Karataev, P., Kruchinin, K., Lekomtsev, K., Nevay, L., Snuverink, J., Yamakawa, E., Boisvert, V., Boogert, S., Boorman, G., Gibson, S., Lyapin, A., Shields, W., Teixeira-Dias, P., West, S., Jones, R., Joshi, N., Bodenstein, R., Burrows, P. N., Christian, G. B., Gamba, D., Perry, C., Roberts, J., Clarke, J. A., Collomb, N. A., Jamison, S. P., Shepherd, B. J. A., Walsh, D., Demarteau, M., Repond, J., Weerts, H., Xia, L., Wells, J. D., Adolphsen, C., Barklow, T., Breidenbach, M., Graf, N., Hewett, J., Markiewicz, T., McCormick, D., Moffeit, K., Nosochkov, Y., Oriunno, M., Phinney, N., Rizzo, T., Tantawi, S., Wang, F., Wang, J., White, G., and Woodley, M.
- Subjects
Physics - Accelerator Physics ,High Energy Physics - Experiment - Abstract
The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Subsequent stages will focus on measurements of rare Higgs processes, as well as searches for new physics processes and precision measurements of new states, e.g. states previously discovered at LHC or at CLIC itself. In the 2012 CLIC Conceptual Design Report, a fully optimised 3 TeV collider was presented, while the proposed lower energy stages were not studied to the same level of detail. This report presents an updated baseline staging scenario for CLIC. The scenario is the result of a comprehensive study addressing the performance, cost and power of the CLIC accelerator complex as a function of centre-of-mass energy and it targets optimal physics output based on the current physics landscape. The optimised staging scenario foresees three main centre-of-mass energy stages at 380 GeV, 1.5 TeV and 3 TeV for a full CLIC programme spanning 22 years. For the first stage, an alternative to the CLIC drive beam scheme is presented in which the main linac power is produced using X-band klystrons., Comment: 57 pages, 27 figures, 12 tables, published as CERN Yellow Report. Updated version: Minor layout changes for print version
- Published
- 2016
- Full Text
- View/download PDF
10. Preliminary results of 3D-DDTC pixel detectors for the ATLAS upgrade
- Author
-
La Rosa, A., Boscardin, M., Betta, G. -F. Dalla, Darbo, G., Gemme, C., Pernegger, H., Piemonte, C., Povoli, M., Ronchin, S., Zoboli, A., Zorzi, N., Bolle, E., Borri, M., Da Via, C., Dong, S., Fazio, S., Grenier, P., Grinstein, S., Gjersdal, H., Hansson, P., Huegging, F., Jackson, P., Kocian, M., Rivero, F., Rohne, O., Sandaker, H., Sjobak, K., Slavicek, T., Tsung, W., Tsybychev, D., Wermes, N., and Young, C.
- Subjects
Physics - Instrumentation and Detectors - Abstract
3D Silicon sensors fabricated at FBK-irst with the Double-side Double Type Column (DDTC) approach and columnar electrodes only partially etched through p-type substrates were tested in laboratory and in a 1.35 Tesla magnetic field with a 180GeV pion beam at CERN SPS. The substrate thickness of the sensors is about 200um, and different column depths are available, with overlaps between junction columns (etched from the front side) and ohmic columns (etched from the back side) in the range from 110um to 150um. The devices under test were bump bonded to the ATLAS Pixel readout chip (FEI3) at SELEX SI (Rome, Italy). We report leakage current and noise measurements, results of functional tests with Am241 gamma-ray sources, charge collection tests with Sr90 beta-source and an overview of preliminary results from the CERN beam test., Comment: 8 pages, 8 figures, presented at RD09 - 9th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors, 30 September - 2 October 2009, Florence, Italy
- Published
- 2009
11. Strong focusing gradient in a linear active plasma lens
- Author
-
Sjobak, K. N., primary, Adli, E., additional, Corsini, R., additional, Farabolini, W., additional, Boyle, G., additional, Lindstrøm, C. A., additional, Meisel, M., additional, Osterhoff, J., additional, Röckemann, J.-H., additional, Schaper, L., additional, and Dyson, A. E., additional
- Published
- 2021
- Full Text
- View/download PDF
12. Witness electron beam injection using an active plasma lens for a proton beam-driven plasma wakefield accelerator
- Author
-
Kim, S.-Y., primary, Moon, K., additional, Chung, M., additional, Sjobak, K. N., additional, Adli, E., additional, Doebert, S., additional, Dayyani, M., additional, Yoon, E. S., additional, Nam, I., additional, and Hahn, G., additional
- Published
- 2021
- Full Text
- View/download PDF
13. CERN Yellow Reports: Monographs, Vol 2 (2018): The Compact Linear e+e− Collider (CLIC) : 2018 Summary Report
- Author
-
Charles, T. K., Giansiracusa, P. J., Lucas, T. G., Rassool, R. P., Volpi, M., Balazs, C., Afanaciev, K., Makarenko, V., Patapenka, A., Zhuk, I., Collette, C., Boland, M. J., Hoffman, A. C. Abusleme, Diaz, M. A., Garay, F., Chi, Y., He, X., Pei, G., Pei, S., Shu, G., Wang, X., Zhang, J., Zhao, F., Zhou, Z., Chen, H., Gao, Y., Huang, W., Kuang, Y. P., Li, B., Li, Y., Meng, X., Shao, J., Shi, J., Tang, C., Wang, P., Wu, X., Zha, H., Ma, L., Han, Y., Fang, W., Gu, Q., Huang, D., Huang, X., Tan, J., Wang, Z., Zhao, Z., Uggerhøj, U. I., Wistisen, T. N., Aabloo, A., Aare, R., Kuppart, K., Vigonski, S., Zadin, V., Aicheler, M., Baibuz, E., Brücken, E., Djurabekova, F., Eerola, P., Garcia, F., Haeggström, E., Huitu, K., Jansson, V., Kassamakov, I., Kimari, J., Kyritsakis, A., Lehti, S., Meriläinen, A., Montonen, R., Nordlund, K., Österberg, K., Saressalo, A., Väinölä, J., Veske, M., Farabolini, W., Mollard, A., Peauger, F., Plouin, J., Bambade, P., Chaikovska, I., Chehab, R., Delerue, N., Davier, M., Faus-Golfe, A., Irles, A., Kaabi, W., LeDiberder, F., Pöschl, R., Zerwas, D., Aimard, B., Balik, G., Blaising, J. -J., Brunetti, L., Chefdeville, M., Dominjon, A., Drancourt, C., Geoffroy, N., Jacquemier, J., Jeremie, A., Karyotakis, Y., Nappa, J. M., Serluca, M., Vilalte, S., Vouters, G., Bernhard, A., Bründermann, E., Casalbuoni, S., Hillenbrand, S., Gethmann, J., Grau, A., Huttel, E., Müller, A. -S., Peiffer, P., Perić, I., de Jauregui, D. Saez, Emberger, L., Graf, C., Simon, F., Szalay, M., van der Kolk, N., Brass, S., Kilian, W., Alexopoulos, T., Apostolopoulos, T., Gazis, E. N., Gazis, N., Kostopoulos, V., Kourkoulis, S., Heilig, B., Lichtenberger, J., Shrivastava, P., Dayyani, M. K., Ghasem, H., Hajari, S. S., Shaker, H., Ashkenazy, Y., Popov, I., Engelberg, E., Yashar, A., Abramowicz, H., Benhammou, Y., Borysov, O., Borysova, M., Levy, A., Levy, I., Alesini, D., Bellaveglia, M., Buonomo, B., Cardelli, A., Diomede, M., Ferrario, M., Gallo, A., Ghigo, A., Giribono, A., Piersanti, L., Stella, A., Vaccarezza, C., de Blas, J., Franceschini, R., D'Auria, G., Di Mitri, S., Abe, T., Aryshev, A., Fukuda, M., Furukawa, K., Hayano, H., Higashi, Y., Higo, T., Kubo, K., Kuroda, S., Matsumoto, S., Michizono, S., Naito, T., Okugi, T., Shidara, T., Tauchi, T., Terunuma, N., Urakawa, J., Yamamoto, A., Raboanary, R., Luiten, O. J., Stragier, X. F. D., Hart, R., van der Graaf, H., Eigen, G., Adli, E., Lindstrøm, C. A., Lillestøl, R., Malina, L., Pfingstner, J., Sjobak, K. N., Ahmad, A., Hoorani, H., Khan, W. A., Bugiel, S., Bugiel, R., Firlej, M., Fiutowski, T. A., Idzik, M., Moroń, J., Świentek, K. P., Brückman de Renstrom, P., Krupa, B., Kucharczyk, M., Lesiak, T., Pawlik, B., Sopicki, P., Turbiarz, B., Wojtoń, T., Zawiejski, L. K., Kalinowski, J., Nowak, K., Żarnecki, A. F., Firu, E., Ghenescu, V., Neagu, A. T., Preda, T., Zgura, I. S., Aloev, A., Azaryan, N., Boyko, I., Budagov, J., Chizhov, M., Filippova, M., Glagolev, V., Gongadze, A., Grigoryan, S., Gudkov, D., Karjavine, V., Lyablin, M., Nefedov, Yu., Olyunin, A., Rymbekova, A., Samochkine, A., Sapronov, A., Shelkov, G., Shirkov, G., Soldatov, V., Solodko, E., Trubnikov, G., Tyapkin, I., Uzhinsky, V., Vorozhtov, A., Zhemchugov, A., Levichev, E., Mezentsev, N., Piminov, P., Shatilov, D., Vobly, P., Zolotarev, K., Jelisavčić, I. Božović, Kačarević, G., Milutinović Dumbelović, G., Pandurović, M., Radulović, M., Stevanović, J., Vukasinović, N., Lee, D. -H., Ayala, N., Benedetti, G., Guenzel, T., Iriso, U., Marti, Z., Perez, F., Pont, M., Trenado, J., Ruiz-Jimeno, A., Vila, I., Calero, J., Dominguez, M., Garcia-Tabares, L., Gavela, D., Lopez, D., Toral, F., Blanch Gutierrez, C., Boronat, M., Esperante, D., Fullana, E., Fuster, J., García, I., Gimeno, B., Lopez, P. Gomis, González, D., Perelló, M., Ros, E., Villarejo, M. A., Vnuchenko, A., Vos, M., Borgmann, Ch., Brenner, R., Ekelöf, T., Jacewicz, M., Olvegård, M., Ruber, R., Ziemann, V., Aguglia, D., Gonzalvo, J. Alabau, Leon, M. Alcaide, Alipour Tehrani, N., Anastasopoulos, M., Andersson, A., Andrianala, F., Antoniou, F., Apyan, A., Arominski, D., Artoos, K., Assly, S., Atieh, S., Baccigalupi, C., Sune, R. Ballabriga, Caballero, D. Banon, Barnes, M. J., Garcia, J. Barranco, Bartalesi, A., Bauche, J., Bayar, C., Belver-Aguilar, C., Morell, A. Benot, Bernardini, M., Bett, D. R., Bettoni, S., Bettencourt, M., Bielawski, B., Garcia, O. Blanco, Blaskovic Kraljevic, N., Bolzon, B., Bonnin, X. A., Bozzini, D., Branger, E., Brondolin, E., Brunner, O., Buckland, M., Bursali, H., Burkhardt, H., Caiazza, D., Calatroni, S., Campbell, M., Catalan Lasheras, N., Cassany, B., Castro, E., Soares, R. H. Cavaleiro, Cerqueira Bastos, M., Cherif, A., Chevallay, E., Cilento, V., Corsini, R., Costa, R., Cure, B., Curt, S., Gobbo, A. Dal, Dannheim, D., Daskalaki, E., Deacon, L., Degiovanni, A., De Michele, G., De Oliveira, L., Romano, V. Del Pozo, Delahaye, J. P., Delikaris, D., Dias De Almeida, P. G., Dobers, T., Doebert, S., Doytchinov, I., Draper, M., Duarte Ramos, F., Duquenne, M., Plaja, N. Egidos, Elsener, K., Esberg, J., Esposito, M., Evans, L., Fedosseev, V., Ferracin, P., Fiergolski, A., Foraz, K., Fowler, A., Friebel, F., Fuchs, J-F., Gaddi, A., Gamba, D., Morales, L. Garcia Fajardo H. Garcia, Garion, C., Gasior, M., Gatignon, L., Gayde, J-C., Gerbershagen, A., Gerwig, H., Giambelli, G., Gilardi, A., Goldblatt, A. N., Anton, S. Gonzalez, Grefe, C., Grudiev, A., Guerin, H., Guillot-Vignot, F. G., Gutt-Mostowy, M. L., Lutz, M. Hein, Hessler, C., Holma, J. K., Holzer, E. B., Hourican, M., Hynds, D., Ikarios, E., Levinsen, Y. Inntjore, Janssens, S., Jeff, A., Jensen, E., Jonker, M., Kamugasa, S. W., Kastriotou, M., Kemppinen, J. M. K., Khan, V., Kieffer, R. B., Klempt, W., Kokkinis, N., Kossyvakis, I., Kostka, Z., Korsback, A., Koukovini Platia, E., Kovermann, J. W., Kozsar, C-I., Kremastiotis, I., Kröger, J., Kulis, S., Latina, A., Leaux, F., Lebrun, P., Lefevre, T., Leogrande, E., Linssen, L., Liu, X., Llopart Cudie, X., Magnoni, S., Maidana, C., Maier, A. A., Mainaud Durand, H., Mallows, S., Manosperti, E., Marelli, C., Marin Lacoma, E., Marsh, S., Martin, R., Martini, I., Martyanov, M., Mazzoni, S., Mcmonagle, G., Mether, L. M., Meynier, C., Modena, M., Moilanen, A., Mondello, R., Cabral, P. B. Moniz, Irazabal, N. Mouriz, Munker, M., Muranaka, T., Nadenau, J., Navarro, J. G., Navarro Quirante, J. L., Del Busto, E. Nebo, Nikiforou, N., Ninin, P., Nonis, M., Nisbet, D., Nuiry, F. X., Nürnberg, A., Ögren, J., Osborne, J., Ouniche, A. C., Pan, R., Papadopoulou, S., Papaphilippou, Y., Paraskaki, G., Pastushenko, A., Passarelli, A., Patecki, M., Pazdera, L., Pellegrini, D., Pepitone, K., Perez Codina, E., Fontenla, A. Perez, Persson, T. H. B., Petrič, M., Pitman, S., Pitters, F., Pittet, S., Plassard, F., Popescu, D., Quast, T., Rajamak, R., Redford, S., Remandet, L., Renier, Y., Rey, S. F., Orozco, O. Rey, Riddone, G., Rodriguez Castro, E., Roloff, P., Rossi, C., Rossi, F., Rude, V., Ruehl, I., Rumolo, G., Sailer, A., Santin, J. Sandomierski E., Sanz, C., Bedolla, J. Sauza, Schnoor, U., Schmickler, H., Schulte, D., Senes, E., Serpico, C., Severino, G., Shipman, N., Sicking, E., Simoniello, R., Skowronski, P. K., Sobrino Mompean, P., Soby, L., Sollander, P., Solodko, A., Sosin, M. P., Spannagel, S., Sroka, S., Stapnes, S., Sterbini, G., Stern, G., Ström, R., Stuart, M. J., Syratchev, I., Szypula, K., Tecker, F., Thonet, P. A., Thrane, P., Timeo, L., Tiirakari, M., Garcia, R. Tomas, Tomoiaga, C. I., Valerio, P., Vaňát, T., Vamvakas, A. L., Van Hoorne, J., Viazlo, O., Vicente Barreto Pinto, M., Vitoratou, N., Vlachakis, V., Weber, M. A., Wegner, R., Wendt, M., Widorski, M., Williams, O. E., Williams, M., Woolley, B., Wuensch, W., Wulzer, A., Uythoven, J., Xydou, A., Yang, R., Zelios, A., Zhao, Y., Zisopoulos, P., Benoit, M., Sultan, D. M. S., Riva, F., Bopp, M., Braun, H. H., Craievich, P., Dehler, M., Garvey, T., Pedrozzi, M., Raguin, J. Y., Rivkin, L., Zennaro, R., Guillaume, S., Rothacher, M., Aksoy, A., Nergiz, Z., Yavas, Ö., Denizli, H., Keskin, U., Oyulmaz, K. Y., Senol, A., Ciftci, A. K., Baturin, V., Karpenko, O., Kholodov, R., Lebed, O., Lebedynskyi, S., Mordyk, S., Musienko, I., Profatilova, Ia., Storizhko, V., Bosley, R. R., Price, T., Watson, M. F., Watson, N. K., Winter, A. G., Goldstein, J., Green, S., Marshall, J. S., Thomson, M. A., Xu, B., You, T., Gillespie, W. A., Spannowsky, M., Beggan, C., Martin, V., Zhang, Y., Protopopescu, D., Robson, A., Apsimon, R. J., Bailey, I., Burt, G. C., Dexter, A. C., Edwards, A. V., Hill, V., Jamison, S., Millar, W. L., Papke, K., Casse, G., Vossebeld, J., Aumeyr, T., Bergamaschi, M., Bobb, L., Bosco, A., Boogert, S., Boorman, G., Cullinan, F., Gibson, S., Karataev, P., Kruchinin, K., Lekomtsev, K., Lyapin, A., Nevay, L., Shields, W., Snuverink, J., Towler, J., Yamakawa, E., Boisvert, V., West, S., Jones, R., Joshi, N., Bett, D., Bodenstein, R. M., Bromwich, T., Burrows, P. N., Christian, G. B., Gohil, C., Korysko, P., Paszkiewicz, J., Perry, C., Ramjiawan, R., Roberts, J., Coates, T., Salvatore, F., Bainbridge, A., Clarke, J. A., Krumpa, N., Shepherd, B. J. A., Walsh, D., Chekanov, S., Demarteau, M., Gai, W., Liu, W., Metcalfe, J., Power, J., Repond, J., Weerts, H., Xia, L., Zupan, J., Wells, J. D., Zhang, Z., Adolphsen, C., Barklow, T., Dolgashev, V., Franzi, M., Graf, N., Hewett, J., Kemp, M., Kononenko, O., Markiewicz, T., Moffeit, K., Neilson, J., Nosochkov, Y., Oriunno, M., Phinney, N., Rizzo, T., Tantawi, S., Wang, J., Weatherford, B., White, G., Woodley, M., Philip N. Burrows, Nuria Catalán Lasheras, Lucie Linssen, Marko Petrič, Aidan Robson, Daniel Schulte, Eva Sicking, Steinar Stapnes, Charles, T. K., Giansiracusa, P. J., Lucas, T. G., Rassool, R. P., Volpi, M., Balazs, C., Afanaciev, K., Makarenko, V., Patapenka, A., Zhuk, I., Collette, C., Boland, M. J., Hoffman, A. C. Abusleme, Diaz, M. A., Garay, F., Chi, Y., He, X., Pei, G., Pei, S., Shu, G., Wang, X., Zhang, J., Zhao, F., Zhou, Z., Chen, H., Gao, Y., Huang, W., Kuang, Y. P., Li, B., Li, Y., Meng, X., Shao, J., Shi, J., Tang, C., Wang, P., Wu, X., Zha, H., Ma, L., Han, Y., Fang, W., Gu, Q., Huang, D., Huang, X., Tan, J., Wang, Z., Zhao, Z., Uggerhøj, U. I., Wistisen, T. N., Aabloo, A., Aare, R., Kuppart, K., Vigonski, S., Zadin, V., Aicheler, M., Baibuz, E., Brücken, E., Djurabekova, F., Eerola, P., Garcia, F., Haeggström, E., Huitu, K., Jansson, V., Kassamakov, I., Kimari, J., Kyritsakis, A., Lehti, S., Meriläinen, A., Montonen, R., Nordlund, K., Österberg, K., Saressalo, A., Väinölä, J., Veske, M., Farabolini, W., Mollard, A., Peauger, F., Plouin, J., Bambade, P., Chaikovska, I., Chehab, R., Delerue, N., Davier, M., Faus-Golfe, A., Irles, A., Kaabi, W., Lediberder, F., Pöschl, R., Zerwas, D., Aimard, B., Balik, G., Blaising, J. -J., Brunetti, L., Chefdeville, M., Dominjon, A., Drancourt, C., Geoffroy, N., Jacquemier, J., Jeremie, A., Karyotakis, Y., Nappa, J. M., Serluca, M., Vilalte, S., Vouters, G., Bernhard, A., Bründermann, E., Casalbuoni, S., Hillenbrand, S., Gethmann, J., Grau, A., Huttel, E., Müller, A. -S., Peiffer, P., Perić, I., de Jauregui, D. Saez, Emberger, L., Graf, C., Simon, F., Szalay, M., van der Kolk, N., Brass, S., Kilian, W., Alexopoulos, T., Apostolopoulos, T., Gazis, E. N., Gazis, N., Kostopoulos, V., Kourkoulis, S., Heilig, B., Lichtenberger, J., Shrivastava, P., Dayyani, M. K., Ghasem, H., Hajari, S. S., Shaker, H., Ashkenazy, Y., Popov, I., Engelberg, E., Yashar, A., Abramowicz, H., Benhammou, Y., Borysov, O., Borysova, M., Levy, A., Levy, I., Alesini, D., Bellaveglia, M., Buonomo, B., Cardelli, A., Diomede, M., Ferrario, M., Gallo, A., Ghigo, A., Giribono, A., Piersanti, L., Stella, A., Vaccarezza, C., de Blas, J., Franceschini, R., D'Auria, G., Di Mitri, S., Abe, T., Aryshev, A., Fukuda, M., Furukawa, K., Hayano, H., Higashi, Y., Higo, T., Kubo, K., Kuroda, S., Matsumoto, S., Michizono, S., Naito, T., Okugi, T., Shidara, T., Tauchi, T., Terunuma, N., Urakawa, J., Yamamoto, A., Raboanary, R., Luiten, O. J., Stragier, X. F. D., Hart, R., van der Graaf, H., Eigen, G., Adli, E., Lindstrøm, C. A., Lillestøl, R., Malina, L., Pfingstner, J., Sjobak, K. N., Ahmad, A., Hoorani, H., Khan, W. A., Bugiel, S., Bugiel, R., Firlej, M., Fiutowski, T. A., Idzik, M., Moroń, J., Świentek, K. P., Brückman de Renstrom, P., Krupa, B., Kucharczyk, M., Lesiak, T., Pawlik, B., Sopicki, P., Turbiarz, B., Wojtoń, T., Zawiejski, L. K., Kalinowski, J., Nowak, K., Żarnecki, A. F., Firu, E., Ghenescu, V., Neagu, A. T., Preda, T., Zgura, I. S., Aloev, A., Azaryan, N., Boyko, I., Budagov, J., Chizhov, M., Filippova, M., Glagolev, V., Gongadze, A., Grigoryan, S., Gudkov, D., Karjavine, V., Lyablin, M., Nefedov, Yu., Olyunin, A., Rymbekova, A., Samochkine, A., Sapronov, A., Shelkov, G., Shirkov, G., Soldatov, V., Solodko, E., Trubnikov, G., Tyapkin, I., Uzhinsky, V., Vorozhtov, A., Zhemchugov, A., Levichev, E., Mezentsev, N., Piminov, P., Shatilov, D., Vobly, P., Zolotarev, K., Jelisavčić, I. Božović, Kačarević, G., Milutinović Dumbelović, G., Pandurović, M., Radulović, M., Stevanović, J., Vukasinović, N., Lee, D. -H., Ayala, N., Benedetti, G., Guenzel, T., Iriso, U., Marti, Z., Perez, F., Pont, M., Trenado, J., Ruiz-Jimeno, A., Vila, I., Calero, J., Dominguez, M., Garcia-Tabares, L., Gavela, D., Lopez, D., Toral, F., Blanch Gutierrez, C., Boronat, M., Esperante, D., Fullana, E., Fuster, J., García, I., Gimeno, B., Lopez, P. Gomi, González, D., Perelló, M., Ros, E., Villarejo, M. A., Vnuchenko, A., Vos, M., Borgmann, Ch., Brenner, R., Ekelöf, T., Jacewicz, M., Olvegård, M., Ruber, R., Ziemann, V., Aguglia, D., Gonzalvo, J. Alabau, Leon, M. Alcaide, Alipour Tehrani, N., Anastasopoulos, M., Andersson, A., Andrianala, F., Antoniou, F., Apyan, A., Arominski, D., Artoos, K., Assly, S., Atieh, S., Baccigalupi, C., Sune, R. Ballabriga, Caballero, D. Banon, Barnes, M. J., Garcia, J. Barranco, Bartalesi, A., Bauche, J., Bayar, C., Belver-Aguilar, C., Morell, A. Benot, Bernardini, M., Bett, D. R., Bettoni, S., Bettencourt, M., Bielawski, B., Garcia, O. Blanco, Blaskovic Kraljevic, N., Bolzon, B., Bonnin, X. A., Bozzini, D., Branger, E., Brondolin, E., Brunner, O., Buckland, M., Bursali, H., Burkhardt, H., Caiazza, D., Calatroni, S., Campbell, M., Catalan Lasheras, N., Cassany, B., Castro, E., Soares, R. H. Cavaleiro, Cerqueira Bastos, M., Cherif, A., Chevallay, E., Cilento, V., Corsini, R., Costa, R., Cure, B., Curt, S., Gobbo, A. Dal, Dannheim, D., Daskalaki, E., Deacon, L., Degiovanni, A., De Michele, G., De Oliveira, L., Romano, V. Del Pozo, Delahaye, J. P., Delikaris, D., Dias De Almeida, P. G., Dobers, T., Doebert, S., Doytchinov, I., Draper, M., Duarte Ramos, F., Duquenne, M., Plaja, N. Egido, Elsener, K., Esberg, J., Esposito, M., Evans, L., Fedosseev, V., Ferracin, P., Fiergolski, A., Foraz, K., Fowler, A., Friebel, F., Fuchs, J-F., Gaddi, A., Gamba, D., Morales, L. Garcia Fajardo H. Garcia, Garion, C., Gasior, M., Gatignon, L., Gayde, J-C., Gerbershagen, A., Gerwig, H., Giambelli, G., Gilardi, A., Goldblatt, A. N., Anton, S. Gonzalez, Grefe, C., Grudiev, A., Guerin, H., Guillot-Vignot, F. G., Gutt-Mostowy, M. L., Lutz, M. Hein, Hessler, C., Holma, J. K., Holzer, E. B., Hourican, M., Hynds, D., Ikarios, E., Levinsen, Y. Inntjore, Janssens, S., Jeff, A., Jensen, E., Jonker, M., Kamugasa, S. W., Kastriotou, M., Kemppinen, J. M. K., Khan, V., Kieffer, R. B., Klempt, W., Kokkinis, N., Kossyvakis, I., Kostka, Z., Korsback, A., Koukovini Platia, E., Kovermann, J. W., Kozsar, C-I., Kremastiotis, I., Kröger, J., Kulis, S., Latina, A., Leaux, F., Lebrun, P., Lefevre, T., Leogrande, E., Linssen, L., Liu, X., Llopart Cudie, X., Magnoni, S., Maidana, C., Maier, A. A., Mainaud Durand, H., Mallows, S., Manosperti, E., Marelli, C., Marin Lacoma, E., Marsh, S., Martin, R., Martini, I., Martyanov, M., Mazzoni, S., Mcmonagle, G., Mether, L. M., Meynier, C., Modena, M., Moilanen, A., Mondello, R., Cabral, P. B. Moniz, Irazabal, N. Mouriz, Munker, M., Muranaka, T., Nadenau, J., Navarro, J. G., Navarro Quirante, J. L., Del Busto, E. Nebo, Nikiforou, N., Ninin, P., Nonis, M., Nisbet, D., Nuiry, F. X., Nürnberg, A., Ögren, J., Osborne, J., Ouniche, A. C., Pan, R., Papadopoulou, S., Papaphilippou, Y., Paraskaki, G., Pastushenko, A., Passarelli, A., Patecki, M., Pazdera, L., Pellegrini, D., Pepitone, K., Perez Codina, E., Fontenla, A. Perez, Persson, T. H. B., Petrič, M., Pitman, S., Pitters, F., Pittet, S., Plassard, F., Popescu, D., Quast, T., Rajamak, R., Redford, S., Remandet, L., Renier, Y., Rey, S. F., Orozco, O. Rey, Riddone, G., Rodriguez Castro, E., Roloff, P., Rossi, C., Rossi, F., Rude, V., Ruehl, I., Rumolo, G., Sailer, A., Santin, J. Sandomierski E., Sanz, C., Bedolla, J. Sauza, Schnoor, U., Schmickler, H., Schulte, D., Senes, E., Serpico, C., Severino, G., Shipman, N., Sicking, E., Simoniello, R., Skowronski, P. K., Sobrino Mompean, P., Soby, L., Sollander, P., Solodko, A., Sosin, M. P., Spannagel, S., Sroka, S., Stapnes, S., Sterbini, G., Stern, G., Ström, R., Stuart, M. J., Syratchev, I., Szypula, K., Tecker, F., Thonet, P. A., Thrane, P., Timeo, L., Tiirakari, M., Garcia, R. Toma, Tomoiaga, C. I., Valerio, P., Vaňát, T., Vamvakas, A. L., Van Hoorne, J., Viazlo, O., Vicente Barreto Pinto, M., Vitoratou, N., Vlachakis, V., Weber, M. A., Wegner, R., Wendt, M., Widorski, M., Williams, O. E., Williams, M., Woolley, B., Wuensch, W., Wulzer, A., Uythoven, J., Xydou, A., Yang, R., Zelios, A., Zhao, Y., Zisopoulos, P., Benoit, M., Sultan, D. M. S., Riva, F., Bopp, M., Braun, H. H., Craievich, P., Dehler, M., Garvey, T., Pedrozzi, M., Raguin, J. Y., Rivkin, L., Zennaro, R., Guillaume, S., Rothacher, M., Aksoy, A., Nergiz, Z., Yavas, Ö., Denizli, H., Keskin, U., Oyulmaz, K. Y., Senol, A., Ciftci, A. K., Baturin, V., Karpenko, O., Kholodov, R., Lebed, O., Lebedynskyi, S., Mordyk, S., Musienko, I., Profatilova, Ia., Storizhko, V., Bosley, R. R., Price, T., Watson, M. F., Watson, N. K., Winter, A. G., Goldstein, J., Green, S., Marshall, J. S., Thomson, M. A., Xu, B., You, T., Gillespie, W. A., Spannowsky, M., Beggan, C., Martin, V., Zhang, Y., Protopopescu, D., Robson, A., Apsimon, R. J., Bailey, I., Burt, G. C., Dexter, A. C., Edwards, A. V., Hill, V., Jamison, S., Millar, W. L., Papke, K., Casse, G., Vossebeld, J., Aumeyr, T., Bergamaschi, M., Bobb, L., Bosco, A., Boogert, S., Boorman, G., Cullinan, F., Gibson, S., Karataev, P., Kruchinin, K., Lekomtsev, K., Lyapin, A., Nevay, L., Shields, W., Snuverink, J., Towler, J., Yamakawa, E., Boisvert, V., West, S., Jones, R., Joshi, N., Bett, D., Bodenstein, R. M., Bromwich, T., Burrows, P. N., Christian, G. B., Gohil, C., Korysko, P., Paszkiewicz, J., Perry, C., Ramjiawan, R., Roberts, J., Coates, T., Salvatore, F., Bainbridge, A., Clarke, J. A., Krumpa, N., Shepherd, B. J. A., Walsh, D., Chekanov, S., Demarteau, M., Gai, W., Liu, W., Metcalfe, J., Power, J., Repond, J., Weerts, H., Xia, L., Zupan, J., Wells, J. D., Zhang, Z., Adolphsen, C., Barklow, T., Dolgashev, V., Franzi, M., Graf, N., Hewett, J., Kemp, M., Kononenko, O., Markiewicz, T., Moffeit, K., Neilson, J., Nosochkov, Y., Oriunno, M., Phinney, N., Rizzo, T., Tantawi, S., Wang, J., Weatherford, B., White, G., and Woodley, M.
- Published
- 2018
14. Erratum: Emittance Preservation in an Aberration-Free Active Plasma Lens
- Author
-
Lindstroem, Carl Andreas, Adli, E., Boyle, G., Corsini, R., Dyson, A. E., Farabolini, W., Hooker, S. M., Meisel, M., Osterhoff, J., Röckemann, J.-H., Schaper, L., and Sjobak, K. N.
- Subjects
ddc:530 - Abstract
Physical review letters 122(12), 129901 (2019). doi:10.1103/PhysRevLett.122.129901, Published by APS, College Park, Md.
- Published
- 2019
- Full Text
- View/download PDF
15. SixTrack V and runtime environment
- Author
-
De Maria, R., primary, Andersson, J., additional, Berglyd Olsen, V. K., additional, Field, L., additional, Giovannozzi, M., additional, Hermes, P. D., additional, Høimyr, N., additional, Kostoglou, S., additional, Iadarola, G., additional, Mcintosh, E., additional, Mereghetti, A., additional, Molson, J., additional, Pellegrini, D., additional, Persson, T., additional, Schwinzerl, M., additional, Maclean, E. H., additional, Sjobak, K. N., additional, Zacharov, I., additional, and Singh, S., additional
- Published
- 2019
- Full Text
- View/download PDF
16. Prediction of beam losses during crab cavity quenches at the high luminosity LHC
- Author
-
Apsimon, R., primary, Burt, G., additional, Dexter, A., additional, Shipman, N., additional, Castilla, A., additional, Macpherson, A., additional, Sjobak, K. Ness, additional, Garcia, A. Santamaria, additional, Stapley, N., additional, Alekou, A., additional, and Appleby, R. B., additional
- Published
- 2019
- Full Text
- View/download PDF
17. Electron temperature relaxation and emittance conservation in active plasma lenses
- Author
-
Boyle, Gregory, Meisel, M., Osterhoff, J., Röckemann, Jan-Hendrik, Schaper, L., Adli, E., Lindstrøm, C., Sjobak, K., Corsini, R., Farabolini, W., Dyson, A., and Hooker, S.
- Abstract
60th Annual Meeting of the APS Division of Plasma Physics, Portland, Oregon, 5 Nov 2018 - 9 Nov 2018
- Published
- 2018
- Full Text
- View/download PDF
18. Erratum: Emittance Preservation in an Aberration-Free Active Plasma Lens [Phys. Rev. Lett. 121 , 194801 (2018)]
- Author
-
Lindstrøm, C. A., primary, Adli, E., additional, Boyle, G., additional, Corsini, R., additional, Dyson, A. E., additional, Farabolini, W., additional, Hooker, S. M., additional, Meisel, M., additional, Osterhoff, J., additional, Röckemann, J.-H., additional, Schaper, L., additional, and Sjobak, K. N., additional
- Published
- 2019
- Full Text
- View/download PDF
19. Emittance Preservation in an Aberration-Free Active Plasma Lens
- Author
-
Lindstrøm, C. A., primary, Adli, E., additional, Boyle, G., additional, Corsini, R., additional, Dyson, A. E., additional, Farabolini, W., additional, Hooker, S. M., additional, Meisel, M., additional, Osterhoff, J., additional, Röckemann, J.-H., additional, Schaper, L., additional, and Sjobak, K. N., additional
- Published
- 2018
- Full Text
- View/download PDF
20. Updated baseline for a staged Compact Linear Collider
- Author
-
Boland, M J, Felzmann, U, Giansiracusa, P J, Lucas, T G, Rassool, R P, Balazs, C, Charles, T K, Afanaciev, K, Emeliantchik, I, Ignatenko, A, Makarenko, V, Shumeiko, N, Patapenka, A, Zhuk, I, Abusleme Hoffman, A C, Diaz Gutierrez, M A, Gonzalez, M Vogel, Chi, Y, He, X, Pei, G, Pei, S, Shu, G, Wang, X, Zhang, J, Zhao, F, Zhou, Z, Chen, H, Gao, Y, Huang, W, Kuang, Y P, Li, B, Li, Y, Shao, J, Shi, J, Tang, C, Wu, X, Ma, L, Han, Y, Fang, W, Gu, Q, Huang, D, Huang, X, Tan, J, Wang, Z, Zhao, Z, Laštovička, T, Uggerhoj, U, Wistisen, T N, Aabloo, A, Eimre, K, Kuppart, K, Vigonski, S, Zadin, V, Aicheler, M, Baibuz, E, Brücken, E, Djurabekova, F, Eerola, P, Garcia, F, Haeggström, E, Huitu, K, Jansson, V, Karimaki, V, Kassamakov, I, Kyritsakis, A, Lehti, S, Meriläinen, A, Montonen, R, Niinikoski, T, Nordlund, K, Österberg, K, Parekh, M, Törnqvist, N A, Väinölä, J, Veske, M, Farabolini, W, Mollard, A, Napoly, O, Peauger, F, Plouin, J, Bambade, P, Chaikovska, I, Chehab, R, Davier, M, Kaabi, W, Kou, E, LeDiberder, F, Pöschl, R, Zerwas, D, Aimard, B, Balik, G, Baud, J-P, Blaising, J-J, Brunetti, L, Chefdeville, M, Drancourt, C, Geoffroy, N, Jacquemier, J, Jeremie, A, Karyotakis, Y, Nappa, J M, Vilalte, S, Vouters, G, Bernard, A, Peric, I, Gabriel, M, Simon, F, Szalay, M, van der Kolk, N, Alexopoulos, T, Gazis, E N, Gazis, N, Ikarios, E, Kostopoulos, V, Kourkoulis, S, Gupta, P D, Shrivastava, P, Arfaei, H, Dayyani, M K, Ghasem, H, Hajari, S S, Shaker, H, Ashkenazy, Y, Abramowicz, H, Benhammou, Y, Borysov, O, Kananov, S, Levy, A, Levy, I, Rosenblat, O, D'Auria, G, Di Mitri, S, Abe, T, Aryshev, A, Higo, T, Makida, Y, Matsumoto, S, Shidara, T, Takatomi, T, Takubo, Y, Tauchi, T, Toge, N, Ueno, K, Urakawa, J, Yamamoto, A, Yamanaka, M, Raboanary, R, Hart, R, van der Graaf, H, Eigen, G, Zalieckas, J, Adli, E, Lillestøl, R, Malina, L, Pfingstner, J, Sjobak, K N, Ahmed, W, Asghar, M I, Hoorani, H, Bugiel, S, Dasgupta, R, Firlej, M, Fiutowski, T A, Idzik, M, Kopec, M, Kuczynska, M, Moron, J, Swientek, K P, Daniluk, W, Krupa, B, Kucharczyk, M, Lesiak, T, Moszczynski, A, Pawlik, B, Sopicki, P, Wojtoń, T, Zawiejski, L, Kalinowski, J, Krawczyk, M, Żarnecki, A F, Firu, E, Ghenescu, V, Neagu, A T, Preda, T, Zgura, I-S, Aloev, A, Azaryan, N, Budagov, J, Chizhov, M, Filippova, M, Glagolev, V, Gongadze, A, Grigoryan, S, Gudkov, D, Karjavine, V, Lyablin, M, Olyunin, A, Samochkine, A, Sapronov, A, Shirkov, G, Soldatov, V, Solodko, A, Solodko, E, Trubnikov, G, Tyapkin, I, Uzhinsky, V, Vorozhtov, A, Levichev, E, Mezentsev, N, Piminov, P, Shatilov, D, Vobly, P, Zolotarev, K, Bozovic-Jelisavcic, I, Kacarevic, G, Lukic, S, Milutinovic-Dumbelovic, G, Pandurovic, M, Iriso, U, Perez, F, Pont, M, Trenado, J, Aguilar-Benitez, M, Calero, J, Garcia-Tabares, L, Gavela, D, Gutierrez, J L, Lopez, D, Toral, F, Moya, D, Ruiz-Jimeno, A, Vila, I, Argyropoulos, T, Blanch Gutierrez, C, Boronat, M, Esperante, D, Faus-Golfe, A, Fuster, J, Fuster Martinez, N, Galindo Muñoz, N, García, I, Giner Navarro, J, Ros, E, Vos, M, Brenner, R, Ekelöf, T, Jacewicz, M, Ögren, J, Olvegård, M, Ruber, R, Ziemann, V, Aguglia, D, Alipour Tehrani, N, Andersson, A, Andrianala, F, Antoniou, F, Artoos, K, Atieh, S, Ballabriga Sune, R, Barnes, M J, Barranco Garcia, J, Bartosik, H, Belver-Aguilar, C, Benot Morell, A, Bett, D R, Bettoni, S, Blanchot, G, Blanco Garcia, O, Bonnin, X A, Brunner, O, Burkhardt, H, Calatroni, S, Campbell, M, Catalan Lasheras, N, Cerqueira Bastos, M, Cherif, A, Chevallay, E, Constance, B, Corsini, R, Cure, B, Curt, S, Dalena, B, Dannheim, D, De Michele, G, De Oliveira, L, Deelen, N, Delahaye, J P, Dobers, T, Doebert, S, Draper, M, Duarte Ramos, F, Dubrovskiy, A, Elsener, K, Esberg, J, Esposito, M, Fedosseev, V, Ferracin, P, Fiergolski, A, Foraz, K, Fowler, A, Friebel, F, Fuchs, J-F, Fuentes Rojas, C A, Gaddi, A, Garcia Fajardo, L, Garcia Morales, H, Garion, C, Gatignon, L, Gayde, J-C, Gerwig, H, Goldblatt, A N, Grefe, C, Grudiev, A, Guillot-Vignot, F G, Gutt-Mostowy, M L, Hauschild, M, Hessler, C, Holma, J K, Holzer, E, Hourican, M, Hynds, D, Inntjore Levinsen, Y, Jeanneret, B, Jensen, E, Jonker, M, Kastriotou, M, Kemppinen, J M K, Kieffer, R B, Klempt, W, Kononenko, O, Korsback, A, Koukovini Platia, E, Kovermann, J W, Kozsar, C-I, Kremastiotis, I, Kulis, S, Latina, A, Leaux, F, Lebrun, P, Lefevre, T, Linssen, L, Llopart Cudie, X, Maier, A A, Mainaud Durand, H, Manosperti, E, Marelli, C, Marin Lacoma, E, Martin, R, Mazzoni, S, Mcmonagle, G, Mete, O, Mether, L M, Modena, M, Münker, R M, Muranaka, T, Nebot Del Busto, E, Nikiforou, N, Nisbet, D, Nonglaton, J-M, Nuiry, F X, Nürnberg, A, Olvegard, M, Osborne, J, Papadopoulou, S, Papaphilippou, Y, Passarelli, A, Patecki, M, Pazdera, L, Pellegrini, D, Pepitone, K, Perez Codina, E, Perez Fontenla, A, Persson, T H B, Petrič, M, Pitters, F, Pittet, S, Plassard, F, Rajamak, R, Redford, S, Renier, Y, Rey, S F, Riddone, G, Rinolfi, L, Rodriguez Castro, E, Roloff, P, Rossi, C, Rude, V, Rumolo, G, Sailer, A, Santin, E, Schlatter, D, Schmickler, H, Schulte, D, Shipman, N, Sicking, E, Simoniello, R, Skowronski, P K, Sobrino Mompean, P, Soby, L, Sosin, M P, Sroka, S, Stapnes, S, Sterbini, G, Ström, R, Syratchev, I, Tecker, F, Thonet, P A, Timeo, L, Timko, H, Tomas Garcia, R, Valerio, P, Vamvakas, A L, Vivoli, A, Weber, M A, Wegner, R, Wendt, M, Woolley, B, Wuensch, W, Uythoven, J, Zha, H, Zisopoulos, P, Benoit, M, Vicente Barreto Pinto, M, Bopp, M, Braun, H H, Csatari Divall, M, Dehler, M, Garvey, T, Raguin, J Y, Rivkin, L, Zennaro, R, Aksoy, A, Nergiz, Z, Pilicer, E, Tapan, I, Yavas, O, Baturin, V, Kholodov, R, Lebedynskyi, S, Miroshnichenko, V, Mordyk, S, Profatilova, I, Storizhko, V, Watson, N, Winter, A, Goldstein, J, Green, S, Marshall, J S, Thomson, M A, Xu, B, Gillespie, W A, Pan, R, Tyrk, M A, Protopopescu, D, Robson, A, Apsimon, R, Bailey, I, Burt, G, Constable, D, Dexter, A, Karimian, S, Lingwood, C, Buckland, M D, Casse, G, Vossebeld, J, Bosco, A, Karataev, P, Kruchinin, K, Lekomtsev, K, Nevay, L, Snuverink, J, Yamakawa, E, Boisvert, V, Boogert, S, Boorman, G, Gibson, S, Lyapin, A, Shields, W, Teixeira-Dias, P, West, S, Jones, R, Joshi, N, Bodenstein, R, Burrows, P N, Christian, G B, Gamba, D, Perry, C, Roberts, J, Clarke, J A, Collomb, N A, Jamison, S P, Shepherd, B J A, Walsh, D, Demarteau, M, Repond, J, Weerts, H, Xia, L, Wells, J D, Adolphsen, C, Barklow, T, Breidenbach, M, Graf, N, Hewett, J., Markiewicz, T, McCormick, D, Moffeit, K, Nosochkov, Y, Oriunno, M, Phinney, N, Rizzo, T, Tantawi, S, Wang, F, Wang, J, White, G, and Woodley, M
- Subjects
hep-ex ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Accelerators and Storage Rings ,Particle Physics - Experiment ,physics.acc-ph - Abstract
The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Subsequent stages will focus on measurements of rare Higgs processes, as well as searches for new physics processes and precision measurements of new states, e.g. states previously discovered at LHC or at CLIC itself. In the 2012 CLIC Conceptual Design Report, a fully optimised 3 TeV collider was presented, while the proposed lower energy stages were not studied to the same level of detail. This report presents an updated baseline staging scenario for CLIC. The scenario is the result of a comprehensive study addressing the performance, cost and power of the CLIC accelerator complex as a function of centre-of-mass energy and it targets optimal physics output based on the current physics landscape. The optimised staging scenario foresees three main centre-of-mass energy stages at 380 GeV, 1.5 TeV and 3 TeV for a full CLIC programme spanning 22 years. For the first stage, an alternative to the CLIC drive beam scheme is presented in which the main linac power is produced using X-band klystrons. The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Subsequent stages will focus on measurements of rare Higgs processes, as well as searches for new physics processes and precision measurements of new states, e.g. states previously discovered at LHC or at CLIC itself. In the 2012 CLIC Conceptual Design Report, a fully optimised 3 TeV collider was presented, while the proposed lower energy stages were not studied to the same level of detail. This report presents an updated baseline staging scenario for CLIC. The scenario is the result of a comprehensive study addressing the performance, cost and power of the CLIC accelerator complex as a function of centre-of-mass energy and it targets optimal physics output based on the current physics landscape. The optimised staging scenario foresees three main centre-of-mass energy stages at 380 GeV, 1.5 TeV and 3 TeV for a full CLIC programme spanning 22 years. For the first stage, an alternative to the CLIC drive beam scheme is presented in which the main linac power is produced using X-band klystrons.
- Published
- 2016
21. Status of SixTrack with collimation
- Author
-
Bruce, R., Fiascaris, M., Fitterer, M., Morales, H. Garcia, Hermes, P.D., Kwee-Hinzmann, R., Mereghetti, A., Mirarchi, D., Molson, J., Quaranta, E., Redaelli, S., Salvachua, B., Santamaria Garcia, A., Sjobak, K., Tambasco, C., Wagner, J., Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
charged particle: tracks ,010308 nuclear & particles physics ,collimation ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,collimator ,p: beam ,Accelerators and Storage Rings ,01 natural sciences ,programming ,benchmark ,CERN LHC Coll ,efficiency ,0103 physical sciences ,tracking simulations ,Physics::Accelerator Physics ,upgrade ,LHC ,010306 general physics ,numerical calculations ,activity report - Abstract
In this paper, we review the functionality and status of the collimation version of SixTrack. It is a simulation tool that contains both an accurate magnetic tracking of an ensemble of particles, as well as a model for particle-matter interaction inside collimators, in order to model the efficiency of a proton collimation system. We summarize recent upgrades and improvements and we review also a benchmark with measured data before finally discussing plans for future development., CERN Yellow Reports: Conference Proceedings, Vol. 2 (2018): Proceedings of "Tracking Collimation" ICFA Workshop
- Published
- 2015
- Full Text
- View/download PDF
22. Modeling the Low Level RF Response on the Beam during Crab Cavity Quench
- Author
-
Apsimon, Robert, Burt, Graeme, Dexter, Amos, Appleby, Robert, Baudrenghien, Philippe, Sjobak, K. N., Apsimon, Robert, Burt, Graeme, Dexter, Amos, Appleby, Robert, Baudrenghien, Philippe, and Sjobak, K. N.
- Abstract
The High Luminosity Upgrade for the LHC (HL-LHC) relies on crab cavities to compensate for the luminosity reduction due to the crossing angle of the colliding bunches at the interaction points. In this paper we present the simulation studies of cavity quenches and the impact on the beam. The cavity voltage and phase during the quench is determined from a simulation in Matlab and used to determine the impact on the beam from tracking simulations in SixTrack. The results of this study are important for determining the required machine protection and interlock systems for HL-LHC.
- Published
- 2017
23. Updated baseline for a staged Compact Linear Collider
- Author
-
The, CLIC, collaborations, CLICdp, Boland, M. J., Felzmann, U., Giansiracusa, P. J., Lucas, T. G., Rassool, R. P., Balazs, C., Charles, T. K., Afanaciev, K., Emeliantchik, I., Ignatenko, A., Makarenko, V., Shumeiko, N., Patapenka, A., Zhuk, I., Hoffman, A. C. Abusleme, Gutierrez, M. A. Diaz, Gonzalez, M. Vogel, Chi, Y., Pei, G., Shu, G., Zhao, F., Huang, W., Kuang, Y. P., Tang, C., Ma, L., Fang, W., Gu, Q., Huang, D., Tan, J., Zhao, Z., Laštovička, T., Uggerhoj, U., Wistisen, T. N., Aabloo, A., Eimre, K., Kuppart, K., Vigonski, S., Zadin, V., Aicheler, M., Baibuz, E., Brücken, E., Djurabekova, F., Eerola, P., Haeggström, E., Huitu, K., Jansson, V., Karimaki, V., Kassamakov, I., Kyritsakis, A., Lehti, S., Meriläinen, A., Montonen, R., Niinikoski, T., Nordlund, K., Österberg, K., Parekh, M., Törnqvist, N. A., Väinölä, J., Veske, M., Farabolini, W., Mollard, A., Napoly, O., Peauger, F., Plouin, J., Bambade, P., Chaikovska, I., Chehab, R., Davier, M., Kaabi, W., Kou, E., LeDiberder, F., Pöschl, R., Zerwas, D., Aimard, B., Balik, G., Baud, J. -P., Blaising, J. -J., Brunetti, L., Chefdeville, M., Drancourt, C., Geoffroy, N., Jacquemier, J., Jeremie, A., Karyotakis, Y., Nappa, J. M., Vilalte, S., Vouters, G., Bernard, A., Peric, I., Gabriel, M., Simon, F., Szalay, M., Kolk, N. van der, Alexopoulos, T., Gazis, E. N., Gazis, N., Ikarios, E., Kostopoulos, V., Kourkoulis, S., Gupta, P. D., Shrivastava, P., Arfaei, H., Dayyani, M. K., Ghasem, H., Hajari, S. S., Shaker, H., Ashkenazy, Y., Abramowicz, H., Benhammou, Y., Borysov, O., Kananov, S., Levy, A., Levy, I., Rosenblat, O., D'Auria, G., Mitri, S. Di, Abe, T., Aryshev, A., Higo, T., Makida, Y., Matsumoto, S., Shidara, T., Takatomi, T., Takubo, Y., Tauchi, T., Toge, N., Ueno, K., Urakawa, J., Yamamoto, A., Yamanaka, M., Raboanary, R., Hart, R., Graaf, H. van der, Eigen, G., Zalieckas, J., Adli, E., Lillestøl, R., Malina, L., Pfingstner, J., Sjobak, K. N., Ahmed, W., Hoorani, H., Bugiel, S., Dasgupta, R., Firlej, M., Fiutowski, T. A., Idzik, M., Kopec, M., Kuczynska, M., Moron, J., Swientek, K. P., Daniluk, W., Krupa, B., Kucharczyk, M., Lesiak, T., Moszczynski, A., Pawlik, B., Sopicki, P., Wojtoń, T., Zawiejski, L., Kalinowski, J., Krawczyk, M., Żarnecki, A. F., Firu, E., Ghenescu, V., Neagu, A. T., Preda, T., Zgura, I-S, Aloev, A., Azaryan, N., Budagov, J., Chizhov, M., Filippova, M., Glagolev, V., Gongadze, A., Grigoryan, S., Gudkov, D., Karjavine, V., Lyablin, M., Olyunin, A., Samochkine, A., Sapronov, A., Shirkov, G., Soldatov, V., Solodko, A., Solodko, E., Trubnikov, G., Tyapkin, I., Uzhinsky, V., Vorozhtov, A., Levichev, E., Mezentsev, N., Piminov, P., Shatilov, D., Vobly, P., Zolotarev, K., Jelisavcic, I. Bozovic, Kacarevic, G., Lukic, S., Milutinovic-Dumbelovic, G., Pandurovic, M., Iriso, U., Perez, F., Pont, M., Trenado, J., Aguilar-Benitez, M., Calero, J., Garcia-Tabares, L., Gavela, D., Lopez, D., Toral, F., Moya, D., Jimeno, A. Ruiz, Vila, I., Argyropoulos, T., Gutierrez, C. Blanch, Boronat, M., Esperante, D., Faus-Golfe, A., Fuster, J., Martinez, N. Fuster, Muñoz, N. Galindo, García, I., Navarro, J. Giner, Ros, E., Vos, M., Brenner, R., Ekelöf, T., Jacewicz, M., Ögren, J., Olvegård, M., Ruber, R., Ziemann, V., Aguglia, D., Tehrani, N. Alipour, Andersson, A., Andrianala, F., Antoniou, F., Artoos, K., Atieh, S., Sune, R. Ballabriga, Garcia, J. Barranco, Bartosik, H., Belver-Aguilar, C., Morell, A. Benot, Bett, D. R., Bettoni, S., Blanchot, G., Garcia, O. Blanco, Bonnin, X. A., Brunner, O., Burkhardt, H., Calatroni, S., Campbell, M., Lasheras, N. Catalan, Bastos, M. Cerqueira, Cherif, A., Chevallay, E., Constance, B., Corsini, R., Cure, B., Curt, S., Dalena, B., Dannheim, D., Michele, G. De, Oliveira, L. De, Deelen, N., Delahaye, J. P., Dobers, T., Doebert, S., Draper, M., Ramos, F. Duarte, Dubrovskiy, A., Elsener, K., Esberg, J., Esposito, M., Fedosseev, V., Ferracin, P., Fiergolski, A., Foraz, K., Friebel, F., Fuchs, J-F, Rojas, C. A. Fuentes, Gaddi, A., Fajardo, L. Garcia, Morales, H. Garcia, Garion, C., Gatignon, L., Gayde, J-C, Gerwig, H., Goldblatt, A. N., Grefe, C., Grudiev, A., Guillot-Vignot, F. G., Gutt-Mostowy, M. L., Hauschild, M., Hessler, C., Holma, J. K., Holzer, E., Hourican, M., Hynds, D., Levinsen, Y. Inntjore, Jeanneret, B., Jensen, E., Jonker, M., Kastriotou, M., Kemppinen, J. M. K., Kieffer, R. B., Klempt, W., Kononenko, O., Korsback, A., Platia, E. Koukovini, Kovermann, J. W., Kozsar, C-I, Kremastiotis, I., Kulis, S., Latina, A., Leaux, F., Lebrun, P., Lefevre, T., Linssen, L., Cudie, X. Llopart, Maier, A. A., Durand, H. Mainaud, Manosperti, E., Marelli, C., Lacoma, E. Marin, Mcmonagle, G., Mete, O., Mether, L. M., Modena, M., Münker, R. M., Muranaka, T., Busto, E. Nebot Del, Nikiforou, N., Nisbet, D., Nonglaton, J-M, Nuiry, F. X., Nürnberg, A., Olvegard, M., Osborne, J., Papadopoulou, S., Papaphilippou, Y., Passarelli, A., Patecki, M., Pazdera, L., Pellegrini, D., Pepitone, K., Codina, E. Perez, Fontenla, A. Perez, Persson, T. H. B., Petrič, M., Pitters, F., Pittet, S., Plassard, F., Rajamak, R., Redford, S., Renier, Y., Rey, S. F., Riddone, G., Rinolfi, L., Castro, E. Rodriguez, Roloff, P., Rossi, C., Rude, V., Rumolo, G., Sailer, A., Santin, E., Schlatter, D., Schmickler, H., Schulte, D., Sicking, E., Simoniello, R., Skowronski, P. K., Mompean, P. Sobrino, Soby, L., Sosin, M. P., Sroka, S., Stapnes, S., Sterbini, G., Ström, R., Syratchev, I., Tecker, F., Thonet, P. A., Timeo, L., Timko, H., Garcia, R. Tomas, Valerio, P., Vamvakas, A. L., Vivoli, A., Weber, M. A., Wegner, R., Wendt, M., Woolley, B., Wuensch, W., Uythoven, J., Zha, H., Zisopoulos, P., Benoit, M., Pinto, M. Vicente Barreto, Bopp, M., Braun, H. H., Divall, M. Csatari, Dehler, M., Garvey, T., Raguin, J. Y., Rivkin, L., Zennaro, R., Aksoy, A., Nergiz, Z., Pilicer, E., Tapan, I., Yavas, O., Baturin, V., Kholodov, R., Lebedynskyi, S., Miroshnichenko, V., Mordyk, S., Profatilova, I., Storizhko, V., Winter, A., Goldstein, J., Xu, B., Gillespie, W. A., Pan, R., Tyrk, M. A, Protopopescu, D., Apsimon, R., Bailey, I., Burt, G., Constable, D., Dexter, A., Karimian, S., Lingwood, C., Buckland, M. D., Casse, G., Vossebeld, J., Bosco, A., Karataev, P., Kruchinin, K., Lekomtsev, K., Nevay, L., Snuverink, J., Yamakawa, E., Boisvert, V., Boogert, S., Boorman, G., Lyapin, A., Shields, W., Teixeira-Dias, P., West, S., Joshi, N., Bodenstein, R., Burrows, P. N., Christian, G. B., Gamba, D., Perry, C., Collomb, N. A., Jamison, S. P., Shepherd, B. J. A., Walsh, D., Demarteau, M., Repond, J., Weerts, H., Xia, L., Wells, J. D., Adolphsen, C., Barklow, T., Breidenbach, M., Graf, N., Hewett, J., Markiewicz, T., McCormick, D., Moffeit, K., Nosochkov, Y., Oriunno, M., Phinney, N., Rizzo, T., Tantawi, S., Wang, F., Woodley, M., The, CLIC, collaborations, CLICdp, Boland, M. J., Felzmann, U., Giansiracusa, P. J., Lucas, T. G., Rassool, R. P., Balazs, C., Charles, T. K., Afanaciev, K., Emeliantchik, I., Ignatenko, A., Makarenko, V., Shumeiko, N., Patapenka, A., Zhuk, I., Hoffman, A. C. Abusleme, Gutierrez, M. A. Diaz, Gonzalez, M. Vogel, Chi, Y., Pei, G., Shu, G., Zhao, F., Huang, W., Kuang, Y. P., Tang, C., Ma, L., Fang, W., Gu, Q., Huang, D., Tan, J., Zhao, Z., Laštovička, T., Uggerhoj, U., Wistisen, T. N., Aabloo, A., Eimre, K., Kuppart, K., Vigonski, S., Zadin, V., Aicheler, M., Baibuz, E., Brücken, E., Djurabekova, F., Eerola, P., Haeggström, E., Huitu, K., Jansson, V., Karimaki, V., Kassamakov, I., Kyritsakis, A., Lehti, S., Meriläinen, A., Montonen, R., Niinikoski, T., Nordlund, K., Österberg, K., Parekh, M., Törnqvist, N. A., Väinölä, J., Veske, M., Farabolini, W., Mollard, A., Napoly, O., Peauger, F., Plouin, J., Bambade, P., Chaikovska, I., Chehab, R., Davier, M., Kaabi, W., Kou, E., LeDiberder, F., Pöschl, R., Zerwas, D., Aimard, B., Balik, G., Baud, J. -P., Blaising, J. -J., Brunetti, L., Chefdeville, M., Drancourt, C., Geoffroy, N., Jacquemier, J., Jeremie, A., Karyotakis, Y., Nappa, J. M., Vilalte, S., Vouters, G., Bernard, A., Peric, I., Gabriel, M., Simon, F., Szalay, M., Kolk, N. van der, Alexopoulos, T., Gazis, E. N., Gazis, N., Ikarios, E., Kostopoulos, V., Kourkoulis, S., Gupta, P. D., Shrivastava, P., Arfaei, H., Dayyani, M. K., Ghasem, H., Hajari, S. S., Shaker, H., Ashkenazy, Y., Abramowicz, H., Benhammou, Y., Borysov, O., Kananov, S., Levy, A., Levy, I., Rosenblat, O., D'Auria, G., Mitri, S. Di, Abe, T., Aryshev, A., Higo, T., Makida, Y., Matsumoto, S., Shidara, T., Takatomi, T., Takubo, Y., Tauchi, T., Toge, N., Ueno, K., Urakawa, J., Yamamoto, A., Yamanaka, M., Raboanary, R., Hart, R., Graaf, H. van der, Eigen, G., Zalieckas, J., Adli, E., Lillestøl, R., Malina, L., Pfingstner, J., Sjobak, K. N., Ahmed, W., Hoorani, H., Bugiel, S., Dasgupta, R., Firlej, M., Fiutowski, T. A., Idzik, M., Kopec, M., Kuczynska, M., Moron, J., Swientek, K. P., Daniluk, W., Krupa, B., Kucharczyk, M., Lesiak, T., Moszczynski, A., Pawlik, B., Sopicki, P., Wojtoń, T., Zawiejski, L., Kalinowski, J., Krawczyk, M., Żarnecki, A. F., Firu, E., Ghenescu, V., Neagu, A. T., Preda, T., Zgura, I-S, Aloev, A., Azaryan, N., Budagov, J., Chizhov, M., Filippova, M., Glagolev, V., Gongadze, A., Grigoryan, S., Gudkov, D., Karjavine, V., Lyablin, M., Olyunin, A., Samochkine, A., Sapronov, A., Shirkov, G., Soldatov, V., Solodko, A., Solodko, E., Trubnikov, G., Tyapkin, I., Uzhinsky, V., Vorozhtov, A., Levichev, E., Mezentsev, N., Piminov, P., Shatilov, D., Vobly, P., Zolotarev, K., Jelisavcic, I. Bozovic, Kacarevic, G., Lukic, S., Milutinovic-Dumbelovic, G., Pandurovic, M., Iriso, U., Perez, F., Pont, M., Trenado, J., Aguilar-Benitez, M., Calero, J., Garcia-Tabares, L., Gavela, D., Lopez, D., Toral, F., Moya, D., Jimeno, A. Ruiz, Vila, I., Argyropoulos, T., Gutierrez, C. Blanch, Boronat, M., Esperante, D., Faus-Golfe, A., Fuster, J., Martinez, N. Fuster, Muñoz, N. Galindo, García, I., Navarro, J. Giner, Ros, E., Vos, M., Brenner, R., Ekelöf, T., Jacewicz, M., Ögren, J., Olvegård, M., Ruber, R., Ziemann, V., Aguglia, D., Tehrani, N. Alipour, Andersson, A., Andrianala, F., Antoniou, F., Artoos, K., Atieh, S., Sune, R. Ballabriga, Garcia, J. Barranco, Bartosik, H., Belver-Aguilar, C., Morell, A. Benot, Bett, D. R., Bettoni, S., Blanchot, G., Garcia, O. Blanco, Bonnin, X. A., Brunner, O., Burkhardt, H., Calatroni, S., Campbell, M., Lasheras, N. Catalan, Bastos, M. Cerqueira, Cherif, A., Chevallay, E., Constance, B., Corsini, R., Cure, B., Curt, S., Dalena, B., Dannheim, D., Michele, G. De, Oliveira, L. De, Deelen, N., Delahaye, J. P., Dobers, T., Doebert, S., Draper, M., Ramos, F. Duarte, Dubrovskiy, A., Elsener, K., Esberg, J., Esposito, M., Fedosseev, V., Ferracin, P., Fiergolski, A., Foraz, K., Friebel, F., Fuchs, J-F, Rojas, C. A. Fuentes, Gaddi, A., Fajardo, L. Garcia, Morales, H. Garcia, Garion, C., Gatignon, L., Gayde, J-C, Gerwig, H., Goldblatt, A. N., Grefe, C., Grudiev, A., Guillot-Vignot, F. G., Gutt-Mostowy, M. L., Hauschild, M., Hessler, C., Holma, J. K., Holzer, E., Hourican, M., Hynds, D., Levinsen, Y. Inntjore, Jeanneret, B., Jensen, E., Jonker, M., Kastriotou, M., Kemppinen, J. M. K., Kieffer, R. B., Klempt, W., Kononenko, O., Korsback, A., Platia, E. Koukovini, Kovermann, J. W., Kozsar, C-I, Kremastiotis, I., Kulis, S., Latina, A., Leaux, F., Lebrun, P., Lefevre, T., Linssen, L., Cudie, X. Llopart, Maier, A. A., Durand, H. Mainaud, Manosperti, E., Marelli, C., Lacoma, E. Marin, Mcmonagle, G., Mete, O., Mether, L. M., Modena, M., Münker, R. M., Muranaka, T., Busto, E. Nebot Del, Nikiforou, N., Nisbet, D., Nonglaton, J-M, Nuiry, F. X., Nürnberg, A., Olvegard, M., Osborne, J., Papadopoulou, S., Papaphilippou, Y., Passarelli, A., Patecki, M., Pazdera, L., Pellegrini, D., Pepitone, K., Codina, E. Perez, Fontenla, A. Perez, Persson, T. H. B., Petrič, M., Pitters, F., Pittet, S., Plassard, F., Rajamak, R., Redford, S., Renier, Y., Rey, S. F., Riddone, G., Rinolfi, L., Castro, E. Rodriguez, Roloff, P., Rossi, C., Rude, V., Rumolo, G., Sailer, A., Santin, E., Schlatter, D., Schmickler, H., Schulte, D., Sicking, E., Simoniello, R., Skowronski, P. K., Mompean, P. Sobrino, Soby, L., Sosin, M. P., Sroka, S., Stapnes, S., Sterbini, G., Ström, R., Syratchev, I., Tecker, F., Thonet, P. A., Timeo, L., Timko, H., Garcia, R. Tomas, Valerio, P., Vamvakas, A. L., Vivoli, A., Weber, M. A., Wegner, R., Wendt, M., Woolley, B., Wuensch, W., Uythoven, J., Zha, H., Zisopoulos, P., Benoit, M., Pinto, M. Vicente Barreto, Bopp, M., Braun, H. H., Divall, M. Csatari, Dehler, M., Garvey, T., Raguin, J. Y., Rivkin, L., Zennaro, R., Aksoy, A., Nergiz, Z., Pilicer, E., Tapan, I., Yavas, O., Baturin, V., Kholodov, R., Lebedynskyi, S., Miroshnichenko, V., Mordyk, S., Profatilova, I., Storizhko, V., Winter, A., Goldstein, J., Xu, B., Gillespie, W. A., Pan, R., Tyrk, M. A, Protopopescu, D., Apsimon, R., Bailey, I., Burt, G., Constable, D., Dexter, A., Karimian, S., Lingwood, C., Buckland, M. D., Casse, G., Vossebeld, J., Bosco, A., Karataev, P., Kruchinin, K., Lekomtsev, K., Nevay, L., Snuverink, J., Yamakawa, E., Boisvert, V., Boogert, S., Boorman, G., Lyapin, A., Shields, W., Teixeira-Dias, P., West, S., Joshi, N., Bodenstein, R., Burrows, P. N., Christian, G. B., Gamba, D., Perry, C., Collomb, N. A., Jamison, S. P., Shepherd, B. J. A., Walsh, D., Demarteau, M., Repond, J., Weerts, H., Xia, L., Wells, J. D., Adolphsen, C., Barklow, T., Breidenbach, M., Graf, N., Hewett, J., Markiewicz, T., McCormick, D., Moffeit, K., Nosochkov, Y., Oriunno, M., Phinney, N., Rizzo, T., Tantawi, S., Wang, F., and Woodley, M.
- Abstract
The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Subsequent stages will focus on measurements of rare Higgs processes, as well as searches for new physics processes and precision measurements of new states, e.g. states previously discovered at LHC or at CLIC itself. In the 2012 CLIC Conceptual Design Report, a fully optimised 3 TeV collider was presented, while the proposed lower energy stages were not studied to the same level of detail. This report presents an updated baseline staging scenario for CLIC. The scenario is the result of a comprehensive study addressing the performance, cost and power of the CLIC accelerator complex as a function of centre-of-mass energy and it targets optimal physics output based on the current physics landscape. The optimised staging scenario foresees three main centre-of-mass energy stages at 380 GeV, 1.5 TeV and 3 TeV for a full CLIC programme spanning 22 years. For the first stage, an alternative to the CLIC drive beam scheme is presented in which the main linac power is produced using X-band klystrons.
- Published
- 2016
24. Updated baseline for a staged Compact Linear Collider
- Author
-
University of Helsinki, Helsinki Institute of Physics, University of Helsinki, Department of Physics, University of Helsinki, Department of Physics (-2009), Boland, M. J., Felzmann, U., Giansiracusa, P. J., Lucas, T. G., Rassool, R. P., Balazs, C., Charles, T. K., Afanaciev, K., Emeliantchik, I., Ignatenko, A., Makarenko, V., Shumeiko, N., Patapenka, A., Zhuk, I., Hoffman, A. C. Abusleme, Gutierrez, M. A. Diaz, Gonzalez, M. Vogel, Chi, Y., He, X., Pei, G., Pei, S., Shu, G., Wang, X., Zhang, J., Zhao, F., Zhou, Z., Chen, H., Gao, Y., Huang, W., Kuang, Y. P., Li, B., Li, Y., Shao, J., Shi, J., Tang, C., Wu, X., Ma, L., Han, Y., Fang, W., Gu, Q., Huang, D., Huang, X., Tan, J., Wang, Z., Zhao, Z., Laštovička, T., Uggerhoj, U., Wistisen, T. N., Aabloo, A., Eimre, K., Kuppart, K., Vigonski, S., Zadin, V., Aicheler, M., Baibuz, E., Brücken, E., Djurabekova, F., Eerola, P., Garcia, F., Haeggström, E., Huitu, K., Jansson, V., Karimaki, V., Kassamakov, I., Kyritsakis, A., Lehti, S., Meriläinen, A., Montonen, R., Niinikoski, T., Nordlund, K., Österberg, K., Parekh, M., Törnqvist, N. A., Väinölä, J., Veske, M., Farabolini, W., Mollard, A., Napoly, O., Peauger, F., Plouin, J., Bambade, P., Chaikovska, I., Chehab, R., Davier, M., Kaabi, W., Kou, E., LeDiberder, F., Pöschl, R., Zerwas, D., Aimard, B., Balik, G., Baud, J. -P., Blaising, J. -J., Brunetti, L., Chefdeville, M., Drancourt, C., Geoffroy, N., Jacquemier, J., Jeremie, A., Karyotakis, Y., Nappa, J. M., Vilalte, S., Vouters, G., Bernard, A., Peric, I., Gabriel, M., Simon, F., Szalay, M., Kolk, N. van der, Alexopoulos, T., Gazis, E. N., Gazis, N., Ikarios, E., Kostopoulos, V., Kourkoulis, S., Gupta, P. D., Shrivastava, P., Arfaei, H., Dayyani, M. K., Ghasem, H., Hajari, S. S., Shaker, H., Ashkenazy, Y., Abramowicz, H., Benhammou, Y., Borysov, O., Kananov, S., Levy, A., Levy, I., Rosenblat, O., D'Auria, G., Mitri, S. Di, Abe, T., Aryshev, A., Higo, T., Makida, Y., Matsumoto, S., Shidara, T., Takatomi, T., Takubo, Y., Tauchi, T., Toge, N., Ueno, K., Urakawa, J., Yamamoto, A., Yamanaka, M., Raboanary, R., Hart, R., Graaf, H. van der, Eigen, G., Zalieckas, J., Adli, E., Lillestøl, R., Malina, L., Pfingstner, J., Sjobak, K. N., Ahmed, W., Asghar, M. I., Hoorani, H., Bugiel, S., Dasgupta, R., Firlej, M., Fiutowski, T. A., Idzik, M., Kopec, M., Kuczynska, M., Moron, J., Swientek, K. P., Daniluk, W., Krupa, B., Kucharczyk, M., Lesiak, T., Moszczynski, A., Pawlik, B., Sopicki, P., Wojtoń, T., Zawiejski, L., Kalinowski, J., Krawczyk, M., Żarnecki, A. F., Firu, E., Ghenescu, V., Neagu, A. T., Preda, T., Zgura, I-S, Aloev, A., Azaryan, N., Budagov, J., Chizhov, M., Filippova, M., Glagolev, V., Gongadze, A., Grigoryan, S., Gudkov, D., Karjavine, V., Lyablin, M., Olyunin, A., Samochkine, A., Sapronov, A., Shirkov, G., Soldatov, V., Solodko, A., Solodko, E., Trubnikov, G., Tyapkin, I., Uzhinsky, V., Vorozhtov, A., Levichev, E., Mezentsev, N., Piminov, P., Shatilov, D., Vobly, P., Zolotarev, K., Jelisavcic, I. Bozovic, Kacarevic, G., Lukic, S., Milutinovic-Dumbelovic, G., Pandurovic, M., Iriso, U., Perez, F., Pont, M., Trenado, J., Aguilar-Benitez, M., Calero, J., Garcia-Tabares, L., Gavela, D., Gutierrez, J. L., Lopez, D., Toral, F., Moya, D., Jimeno, A. Ruiz, Vila, I., Argyropoulos, T., Gutierrez, C. Blanch, Boronat, M., Esperante, D., Faus-Golfe, A., Fuster, J., Martinez, N. Fuster, Muñoz, N. Galindo, García, I., Navarro, J. Giner, Ros, E., Vos, M., Brenner, R., Ekelöf, T., Jacewicz, M., Ögren, J., Olvegård, M., Ruber, R., Ziemann, V., Aguglia, D., Tehrani, N. Alipour, Andersson, A., Andrianala, F., Antoniou, F., Artoos, K., Atieh, S., Sune, R. Ballabriga, Barnes, M. J., Garcia, J. Barranco, Bartosik, H., Belver-Aguilar, C., Morell, A. Benot, Bett, D. R., Bettoni, S., Blanchot, G., Garcia, O. Blanco, Bonnin, X. A., Brunner, O., Burkhardt, H., Calatroni, S., Campbell, M., Lasheras, N. Catalan, Bastos, M. Cerqueira, Cherif, A., Chevallay, E., Constance, B., Corsini, R., Cure, B., Curt, S., Dalena, B., Dannheim, D., Michele, G. De, Oliveira, L. De, Deelen, N., Delahaye, J. P., Dobers, T., Doebert, S., Draper, M., Ramos, F. Duarte, Dubrovskiy, A., Elsener, K., Esberg, J., Esposito, M., Fedosseev, V., Ferracin, P., Fiergolski, A., Foraz, K., Fowler, A., Friebel, F., Fuchs, J-F, Rojas, C. A. Fuentes, Gaddi, A., Fajardo, L. Garcia, Morales, H. Garcia, Garion, C., Gatignon, L., Gayde, J-C, Gerwig, H., Goldblatt, A. N., Grefe, C., Grudiev, A., Guillot-Vignot, F. G., Gutt-Mostowy, M. L., Hauschild, M., Hessler, C., Holma, J. K., Holzer, E., Hourican, M., Hynds, D., Levinsen, Y. Inntjore, Jeanneret, B., Jensen, E., Jonker, M., Kastriotou, M., Kemppinen, J. M. K., Kieffer, R. B., Klempt, W., Kononenko, O., Korsback, A., Platia, E. Koukovini, Kovermann, J. W., Kozsar, C-I, Kremastiotis, I., Kulis, S., Latina, A., Leaux, F., Lebrun, P., Lefevre, T., Linssen, L., Cudie, X. Llopart, Maier, A. A., Durand, H. Mainaud, Manosperti, E., Marelli, C., Lacoma, E. Marin, Martin, R., Mazzoni, S., Mcmonagle, G., Mete, O., Mether, L. M., Modena, M., Münker, R. M., Muranaka, T., Busto, E. Nebot Del, Nikiforou, N., Nisbet, D., Nonglaton, J-M, Nuiry, F. X., Nürnberg, A., Olvegard, M., Osborne, J., Papadopoulou, S., Papaphilippou, Y., Passarelli, A., Patecki, M., Pazdera, L., Pellegrini, D., Pepitone, K., Codina, E. Perez, Fontenla, A. Perez, Persson, T. H. B., Petrič, M., Pitters, F., Pittet, S., Plassard, F., Rajamak, R., Redford, S., Renier, Y., Rey, S. F., Riddone, G., Rinolfi, L., Castro, E. Rodriguez, Roloff, P., Rossi, C., Rude, V., Rumolo, G., Sailer, A., Santin, E., Schlatter, D., Schmickler, H., Schulte, D., Shipman, N., Sicking, E., Simoniello, R., Skowronski, P. K., Mompean, P. Sobrino, Soby, L., Sosin, M. P., Sroka, S., Stapnes, S., Sterbini, G., Ström, R., Syratchev, I., Tecker, F., Thonet, P. A., Timeo, L., Timko, H., Garcia, R. Tomas, Valerio, P., Vamvakas, A. L., Vivoli, A., Weber, M. A., Wegner, R., Wendt, M., Woolley, B., Wuensch, W., Uythoven, J., Zha, H., Zisopoulos, P., Benoit, M., Pinto, M. Vicente Barreto, Bopp, M., Braun, H. H., Divall, M. Csatari, Dehler, M., Garvey, T., Raguin, J. Y., Rivkin, L., Zennaro, R., Aksoy, A., Nergiz, Z., Pilicer, E., Tapan, I., Yavas, O., Baturin, V., Kholodov, R., Lebedynskyi, S., Miroshnichenko, V., Mordyk, S., Profatilova, I., Storizhko, V., Watson, N., Winter, A., Goldstein, J., Green, S., Marshall, J. S., Thomson, M. A., Xu, B., Gillespie, W. A., Pan, R., Tyrk, M. A, Protopopescu, D., Robson, A., Apsimon, R., Bailey, I., Burt, G., Constable, D., Dexter, A., Karimian, S., Lingwood, C., Buckland, M. D., Casse, G., Vossebeld, J., Bosco, A., Karataev, P., Kruchinin, K., Lekomtsev, K., Nevay, L., Snuverink, J., Yamakawa, E., Boisvert, V., Boogert, S., Boorman, G., Gibson, S., Lyapin, A., Shields, W., Teixeira-Dias, P., West, S., Jones, R., Joshi, N., Bodenstein, R., Burrows, P. N., Christian, G. B., Gamba, D., Perry, C., Roberts, J., Clarke, J. A., Collomb, N. A., Jamison, S. P., Shepherd, B. J. A., Walsh, D., Demarteau, M., Repond, J., Weerts, H., Xia, L., Wells, J. D., Adolphsen, C., Barklow, T., Breidenbach, M., Graf, N., Hewett, J., Markiewicz, T., McCormick, D., Moffeit, K., Nosochkov, Y., Oriunno, M., Phinney, N., Rizzo, T., Tantawi, S., Wang, F., Wang, J., White, G., Woodley, M., University of Helsinki, Helsinki Institute of Physics, University of Helsinki, Department of Physics, University of Helsinki, Department of Physics (-2009), Boland, M. J., Felzmann, U., Giansiracusa, P. J., Lucas, T. G., Rassool, R. P., Balazs, C., Charles, T. K., Afanaciev, K., Emeliantchik, I., Ignatenko, A., Makarenko, V., Shumeiko, N., Patapenka, A., Zhuk, I., Hoffman, A. C. Abusleme, Gutierrez, M. A. Diaz, Gonzalez, M. Vogel, Chi, Y., He, X., Pei, G., Pei, S., Shu, G., Wang, X., Zhang, J., Zhao, F., Zhou, Z., Chen, H., Gao, Y., Huang, W., Kuang, Y. P., Li, B., Li, Y., Shao, J., Shi, J., Tang, C., Wu, X., Ma, L., Han, Y., Fang, W., Gu, Q., Huang, D., Huang, X., Tan, J., Wang, Z., Zhao, Z., Laštovička, T., Uggerhoj, U., Wistisen, T. N., Aabloo, A., Eimre, K., Kuppart, K., Vigonski, S., Zadin, V., Aicheler, M., Baibuz, E., Brücken, E., Djurabekova, F., Eerola, P., Garcia, F., Haeggström, E., Huitu, K., Jansson, V., Karimaki, V., Kassamakov, I., Kyritsakis, A., Lehti, S., Meriläinen, A., Montonen, R., Niinikoski, T., Nordlund, K., Österberg, K., Parekh, M., Törnqvist, N. A., Väinölä, J., Veske, M., Farabolini, W., Mollard, A., Napoly, O., Peauger, F., Plouin, J., Bambade, P., Chaikovska, I., Chehab, R., Davier, M., Kaabi, W., Kou, E., LeDiberder, F., Pöschl, R., Zerwas, D., Aimard, B., Balik, G., Baud, J. -P., Blaising, J. -J., Brunetti, L., Chefdeville, M., Drancourt, C., Geoffroy, N., Jacquemier, J., Jeremie, A., Karyotakis, Y., Nappa, J. M., Vilalte, S., Vouters, G., Bernard, A., Peric, I., Gabriel, M., Simon, F., Szalay, M., Kolk, N. van der, Alexopoulos, T., Gazis, E. N., Gazis, N., Ikarios, E., Kostopoulos, V., Kourkoulis, S., Gupta, P. D., Shrivastava, P., Arfaei, H., Dayyani, M. K., Ghasem, H., Hajari, S. S., Shaker, H., Ashkenazy, Y., Abramowicz, H., Benhammou, Y., Borysov, O., Kananov, S., Levy, A., Levy, I., Rosenblat, O., D'Auria, G., Mitri, S. Di, Abe, T., Aryshev, A., Higo, T., Makida, Y., Matsumoto, S., Shidara, T., Takatomi, T., Takubo, Y., Tauchi, T., Toge, N., Ueno, K., Urakawa, J., Yamamoto, A., Yamanaka, M., Raboanary, R., Hart, R., Graaf, H. van der, Eigen, G., Zalieckas, J., Adli, E., Lillestøl, R., Malina, L., Pfingstner, J., Sjobak, K. N., Ahmed, W., Asghar, M. I., Hoorani, H., Bugiel, S., Dasgupta, R., Firlej, M., Fiutowski, T. A., Idzik, M., Kopec, M., Kuczynska, M., Moron, J., Swientek, K. P., Daniluk, W., Krupa, B., Kucharczyk, M., Lesiak, T., Moszczynski, A., Pawlik, B., Sopicki, P., Wojtoń, T., Zawiejski, L., Kalinowski, J., Krawczyk, M., Żarnecki, A. F., Firu, E., Ghenescu, V., Neagu, A. T., Preda, T., Zgura, I-S, Aloev, A., Azaryan, N., Budagov, J., Chizhov, M., Filippova, M., Glagolev, V., Gongadze, A., Grigoryan, S., Gudkov, D., Karjavine, V., Lyablin, M., Olyunin, A., Samochkine, A., Sapronov, A., Shirkov, G., Soldatov, V., Solodko, A., Solodko, E., Trubnikov, G., Tyapkin, I., Uzhinsky, V., Vorozhtov, A., Levichev, E., Mezentsev, N., Piminov, P., Shatilov, D., Vobly, P., Zolotarev, K., Jelisavcic, I. Bozovic, Kacarevic, G., Lukic, S., Milutinovic-Dumbelovic, G., Pandurovic, M., Iriso, U., Perez, F., Pont, M., Trenado, J., Aguilar-Benitez, M., Calero, J., Garcia-Tabares, L., Gavela, D., Gutierrez, J. L., Lopez, D., Toral, F., Moya, D., Jimeno, A. Ruiz, Vila, I., Argyropoulos, T., Gutierrez, C. Blanch, Boronat, M., Esperante, D., Faus-Golfe, A., Fuster, J., Martinez, N. Fuster, Muñoz, N. Galindo, García, I., Navarro, J. Giner, Ros, E., Vos, M., Brenner, R., Ekelöf, T., Jacewicz, M., Ögren, J., Olvegård, M., Ruber, R., Ziemann, V., Aguglia, D., Tehrani, N. Alipour, Andersson, A., Andrianala, F., Antoniou, F., Artoos, K., Atieh, S., Sune, R. Ballabriga, Barnes, M. J., Garcia, J. Barranco, Bartosik, H., Belver-Aguilar, C., Morell, A. Benot, Bett, D. R., Bettoni, S., Blanchot, G., Garcia, O. Blanco, Bonnin, X. A., Brunner, O., Burkhardt, H., Calatroni, S., Campbell, M., Lasheras, N. Catalan, Bastos, M. Cerqueira, Cherif, A., Chevallay, E., Constance, B., Corsini, R., Cure, B., Curt, S., Dalena, B., Dannheim, D., Michele, G. De, Oliveira, L. De, Deelen, N., Delahaye, J. P., Dobers, T., Doebert, S., Draper, M., Ramos, F. Duarte, Dubrovskiy, A., Elsener, K., Esberg, J., Esposito, M., Fedosseev, V., Ferracin, P., Fiergolski, A., Foraz, K., Fowler, A., Friebel, F., Fuchs, J-F, Rojas, C. A. Fuentes, Gaddi, A., Fajardo, L. Garcia, Morales, H. Garcia, Garion, C., Gatignon, L., Gayde, J-C, Gerwig, H., Goldblatt, A. N., Grefe, C., Grudiev, A., Guillot-Vignot, F. G., Gutt-Mostowy, M. L., Hauschild, M., Hessler, C., Holma, J. K., Holzer, E., Hourican, M., Hynds, D., Levinsen, Y. Inntjore, Jeanneret, B., Jensen, E., Jonker, M., Kastriotou, M., Kemppinen, J. M. K., Kieffer, R. B., Klempt, W., Kononenko, O., Korsback, A., Platia, E. Koukovini, Kovermann, J. W., Kozsar, C-I, Kremastiotis, I., Kulis, S., Latina, A., Leaux, F., Lebrun, P., Lefevre, T., Linssen, L., Cudie, X. Llopart, Maier, A. A., Durand, H. Mainaud, Manosperti, E., Marelli, C., Lacoma, E. Marin, Martin, R., Mazzoni, S., Mcmonagle, G., Mete, O., Mether, L. M., Modena, M., Münker, R. M., Muranaka, T., Busto, E. Nebot Del, Nikiforou, N., Nisbet, D., Nonglaton, J-M, Nuiry, F. X., Nürnberg, A., Olvegard, M., Osborne, J., Papadopoulou, S., Papaphilippou, Y., Passarelli, A., Patecki, M., Pazdera, L., Pellegrini, D., Pepitone, K., Codina, E. Perez, Fontenla, A. Perez, Persson, T. H. B., Petrič, M., Pitters, F., Pittet, S., Plassard, F., Rajamak, R., Redford, S., Renier, Y., Rey, S. F., Riddone, G., Rinolfi, L., Castro, E. Rodriguez, Roloff, P., Rossi, C., Rude, V., Rumolo, G., Sailer, A., Santin, E., Schlatter, D., Schmickler, H., Schulte, D., Shipman, N., Sicking, E., Simoniello, R., Skowronski, P. K., Mompean, P. Sobrino, Soby, L., Sosin, M. P., Sroka, S., Stapnes, S., Sterbini, G., Ström, R., Syratchev, I., Tecker, F., Thonet, P. A., Timeo, L., Timko, H., Garcia, R. Tomas, Valerio, P., Vamvakas, A. L., Vivoli, A., Weber, M. A., Wegner, R., Wendt, M., Woolley, B., Wuensch, W., Uythoven, J., Zha, H., Zisopoulos, P., Benoit, M., Pinto, M. Vicente Barreto, Bopp, M., Braun, H. H., Divall, M. Csatari, Dehler, M., Garvey, T., Raguin, J. Y., Rivkin, L., Zennaro, R., Aksoy, A., Nergiz, Z., Pilicer, E., Tapan, I., Yavas, O., Baturin, V., Kholodov, R., Lebedynskyi, S., Miroshnichenko, V., Mordyk, S., Profatilova, I., Storizhko, V., Watson, N., Winter, A., Goldstein, J., Green, S., Marshall, J. S., Thomson, M. A., Xu, B., Gillespie, W. A., Pan, R., Tyrk, M. A, Protopopescu, D., Robson, A., Apsimon, R., Bailey, I., Burt, G., Constable, D., Dexter, A., Karimian, S., Lingwood, C., Buckland, M. D., Casse, G., Vossebeld, J., Bosco, A., Karataev, P., Kruchinin, K., Lekomtsev, K., Nevay, L., Snuverink, J., Yamakawa, E., Boisvert, V., Boogert, S., Boorman, G., Gibson, S., Lyapin, A., Shields, W., Teixeira-Dias, P., West, S., Jones, R., Joshi, N., Bodenstein, R., Burrows, P. N., Christian, G. B., Gamba, D., Perry, C., Roberts, J., Clarke, J. A., Collomb, N. A., Jamison, S. P., Shepherd, B. J. A., Walsh, D., Demarteau, M., Repond, J., Weerts, H., Xia, L., Wells, J. D., Adolphsen, C., Barklow, T., Breidenbach, M., Graf, N., Hewett, J., Markiewicz, T., McCormick, D., Moffeit, K., Nosochkov, Y., Oriunno, M., Phinney, N., Rizzo, T., Tantawi, S., Wang, F., Wang, J., White, G., and Woodley, M.
- Abstract
The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Subsequent stages will focus on measurements of rare Higgs processes, as well as searches for new physics processes and precision measurements of new states, e.g. states previously discovered at LHC or at CLIC itself. In the 2012 CLIC Conceptual Design Report, a fully optimised 3 TeV collider was presented, while the proposed lower energy stages were not studied to the same level of detail. This report presents an updated baseline staging scenario for CLIC. The scenario is the result of a comprehensive study addressing the performance, cost and power of the CLIC accelerator complex as a function of centre-of-mass energy and it targets optimal physics output based on the current physics landscape. The optimised staging scenario foresees three main centre-of-mass energy stages at 380 GeV, 1.5 TeV and 3 TeV for a full CLIC programme spanning 22 years. For the first stage, an alternative to the CLIC drive beam scheme is presented in which the main linac power is produced using X-band klystrons.
- Published
- 2016
25. Longitudinal Space Charge Effects in the CLIC Drive Beam
- Author
-
Lillestol, R L, Doebert, S, Latina, A, Schulte, D, Adli, E, and Sjobak, K N
- Subjects
Physics::Accelerator Physics ,Accelerators and Storage Rings - Abstract
The CLIC main beam is accelerated by rf power generated from a high-intensity, low-energy electron drive beam. The accelerating fields are produced in Power Extraction and Transfer Structures, and are strongly dependent on the drive beam bunch distribution, as well as other parameters. We investigate how longitudinal space charge affects the bunch distribution and the corresponding power production, and discuss how the bunch length evolution can affect the main beam. We also describe the development of a Particle-in-Cell space charge solver which was used for the study.
- Published
- 2013
26. Surface Field Optimization of Accelerating Structures for CLIC Using ACE3P on Remote Computing Facility
- Author
-
Sjobak, K N, Adli, EA, and Grudiev, A
- Subjects
Accelerators and Storage Rings - Abstract
This paper presents a computer program for searching for the optimum shape of an accelerating structure cell by scanning a multidimensional geometry parameter space. For each geometry, RF parameters and peak surface fields are calculated using ACE3P on a remote high-performance computational system. Parameter point selection, mesh generation, result storage and post-analysis are handled by a GUI program running on the user’s workstation. This paper describes the program, AcdOptiGui. AcdOptiGui also includes some capability for automatically selecting scan points based on results from earlier simulations, which enables rapid optimization of a given parameterized geometry. The software has previously been used as a part of the design process for accelerating structures for a 500 GeV CLIC.
- Published
- 2013
27. Design of an Accelerating Structure for a 500 GeV CLIC using ACE3P
- Author
-
Sjobak, K N, Adli, E, Grudiev, A, and Wuensch, W
- Subjects
Physics::Accelerator Physics ,Accelerators and Storage Rings - Abstract
An optimized design of the main linac accelerating structure for a 500 GeV first stage of CLIC is presented. A similar long-range wakefield suppression scheme as for 3 TeV CLIC based on heavy waveguide damping is adopted. The accelerating gradient for the lower energy machine is 80 MV/m. The 500 GeV design has larger aperture radius in order to increase the maximum bunch charge and length which is limited by the short-range wakefields. The cell geometries have been optimized using a new parametric optimizer for Ace3P and details of the RF cell design are described. Field parameters for the full structure are calculated using a power flow equation.
- Published
- 2012
28. From Field Emission to Vacuum Arc Ignition: A New Tool for Simulating Copper Vacuum Arcs
- Author
-
Timko, H., primary, Ness Sjobak, K., additional, Mether, L., additional, Calatroni, S., additional, Djurabekova, F., additional, Matyash, K., additional, Nordlund, K., additional, Schneider, R., additional, and Wuensch, W., additional
- Published
- 2015
- Full Text
- View/download PDF
29. SixTrack V and runtime environment
- Author
-
De Maria, R., Andersson, J., Olsen, V. K. Berglyd, Field, L., Giovannozzi, M., Hermes, P. D., Hoimyr, N., Kostoglou, S., Iadarola, G., Mcintosh, E., Mereghetti, A., Molson, J., Pellegrini, D., Persson, T., Schwinzerl, M., Maclean, E. H., Sjobak, K. N., Zacharov, I, and Singh, S.
- Subjects
beam dynamics ,interaction particles matter - Abstract
SixTrack is a single-particle tracking code for high-energy circular accelerators routinely used at CERN for the Large Hadron Collider (LHC), its luminosity upgrade (HL-LHC), the Future Circular Collider (FCC) and the Super Proton Synchrotron (SPS) simulations. The code is based on a 6D symplectic tracking engine, which is optimized for long-term tracking simulations and delivers fully reproducible results on several platforms. It also includes multiple scattering engines for beam{matter interaction studies, as well as facilities to run the integrated simulations with external particle matter interaction codes. These features differentiate SixTrack from general-purpose, optics-design software. The code recently underwent a major restructuring to merge the advanced features into a single branch, such as multiple ion species, interface with external codes and high-performance input/output. This restructuring also removed a large number of compilation flags, instead enabling/disabling the functionality with runtime options. In the process, the code was moved from Fortran 77 to Fortran 2018 standard, also allowing and achieving a better modularization. Physics models (beam-beam effects, Radio-Frequency (RF) multipoles, current carrying wires, solenoid and electron lenses) and methods (symplecticity check) have also been reviewed and refined to offer more accurate results. The SixDesk runtime environment allows the user to manage the large batches of simulations required for accurate predictions of the dynamic aperture. SixDesk supports several cluster environments available at CERN as well as submitting jobs to the LHC@Home volunteering computing project, which enables volunteers contributing with their hardware to CERN simulation. SixTrackLib is a new library aimed at providing a portable and flexible tracking engine for single- and multi-particle problems using the models and formalism of SixTrack. The library is able to run in CPUs as well as graphical processing units (GPUs). This contribution presents the status of the code, summarizes the main existing features and provides details about the main development lines SixTrack, SixDesk and SixTrackLib.
30. The Compact Linear Collider (CLIC) - 2018 Summary Report
- Author
-
CLICdp collaborations, The CLIC, Charles, T. K., Giansiracusa, P. J., Lucas, T. G., Rassool, R. P., Volpi, M., Balazs, C., Afanaciev, K., Makarenko, V., Patapenka, A., Zhuk, I., Collette, C., Boland, M. J., Hoffman, A. C. Abusleme, Diaz, M. A., Garay, F., Chi, Y., He, X., Pei, G., Pei, S., Shu, G., Wang, X., Zhang, J., Zhao, F., Zhou, Z., Chen, H., Gao, Y., Huang, W., Kuang, Y. P., Li, B., Li, Y., Meng, X., Shao, J., Shi, J., Tang, C., Wang, P., Wu, X., Zha, H., Ma, L., Han, Y., Fang, W., Gu, Q., Huang, D., Huang, X., Tan, J., Wang, Z., Zhao, Z., Uggerhøj, U. I., Wistisen, T. N., Aabloo, A., Aare, R., Kuppart, K., Vigonski, S., Zadin, V., Aicheler, M., Baibuz, E., Brücken, E., Djurabekova, F., Eerola, P., Garcia, F., Haeggström, E., Huitu, K., Jansson, V., Kassamakov, I., Kimari, J., Kyritsakis, A., Lehti, S., Meriläinen, A., Montonen, R., Nordlund, K., Österberg, K., Saressalo, A., Väinölä, J., Veske, M., Farabolini, W., Mollard, A., Peauger, F., Plouin, J., Bambade, P., Chaikovska, I., Chehab, R., Delerue, N., Davier, M., Faus-Golfe, A., Irles, A., Kaabi, W., LeDiberder, F., Pöschl, R., Zerwas, D., Aimard, B., Balik, G., J. -J. Blaising, Brunetti, L., Chefdeville, M., Dominjon, A., Drancourt, C., Geoffroy, N., Jacquemier, J., Jeremie, A., Karyotakis, Y., Nappa, J. M., Serluca, M., Vilalte, S., Vouters, G., Bernhard, A., Bründermann, E., Casalbuoni, S., Hillenbrand, S., Gethmann, J., Grau, A., Huttel, E., Müller, A.-S., Peiffer, P., Perić, I., Jauregui, D. Saez de, Emberger, L., Graf, C., Simon, F., Szalay, M., Kolk, N. van der, Brass, S., Kilian, W., Alexopoulos, T., Apostolopoulos, T., Gazis, E. N., Gazis, N., Kostopoulos, V., Kourkoulis, S., Heilig, B., Lichtenberger, J., Shrivastava, P., Dayyani, M. K., Ghasem, H., Hajari, S. S., Shaker, H., Ashkenazy, Y., Popov, I., Engelberg, E., Yashar, A., Abramowicz, H., Benhammou, Y., Borysov, O., Borysova, M., Levy, A., Levy, I., Alesini, D., Bellaveglia, M., Buonomo, B., Cardelli, A., Diomede, M., Ferrario, M., Gallo, A., Ghigo, A., Giribono, A., Piersanti, L., Stella, A., Vaccarezza, C., Blas, J. de, Franceschini, R., D’Auria, G., Mitri, S. Di, Abe, T., Aryshev, A., Fukuda, M., Furukawa, K., Hayano, H., Higashi, Y., Higo, T., Kubo, K., Kuroda, S., Matsumoto, S., Michizono, S., Naito, T., Okugi, T., Shidara, T., Tauchi, T., Terunuma, N., Urakawa, J., Yamamoto, A., Raboanary, R., Luiten, O. J., Stragier, X. F. D., Hart, R., Graaf, H. van der, Eigen, G., Adli, E., Lindstrøm, C. A., Lillestøl, R., Malina, L., Pfingstner, J., Sjobak, K. N., Ahmad, A., Hoorani, H., Khan, W. A., Bugiel, S., Bugiel, R., Firlej, M., Fiutowski, T. A., Idzik, M., Moroń, J., Świentek, K. P., Renstrom, P. Brückman de, Krupa, B., Kucharczyk, M., Lesiak, T., Pawlik, B., Sopicki, P., Turbiarz, B., Wojtoń, T., Zawiejski, L. K., Kalinowski, J., Nowak, K., Żarnecki, A. F., Firu, E., Ghenescu, V., Neagu, A. T., Preda, T., Zgura, I. S., Aloev, A., Azaryan, N., Boyko, I., Budagov, J., Chizhov, M., Filippova, M., Glagolev, V., Gongadze, A., Grigoryan, S., Gudkov, D., Karjavine, V., Lyablin, M., Nefedov, Yu, Olyunin, A., Rymbekova, A., Samochkine, A., Sapronov, A., Shelkov, G., Shirkov, G., Soldatov, V., Solodko, E., Trubnikov, G., Tyapkin, I., Uzhinsky, V., Vorozhtov, A., Zhemchugov, A., Levichev, E., Mezentsev, N., Piminov, P., Shatilov, D., Vobly, P., Zolotarev, K., Jelisavčić, I. Božović, Kačarević, G., Dumbelović, G. Milutinović, Pandurović, M., Radulović, M., Stevanović, J., Vukasinović, N., D. -H. Lee, Ayala, N., Benedetti, G., Guenzel, T., Iriso, U., Marti, Z., Perez, F., Pont, M., Trenado, J., Ruiz-Jimeno, A., Vila, I., Calero, J., Dominguez, M., Garcia-Tabares, L., Gavela, D., Lopez, D., Toral, F., Gutierrez, C. Blanch, Boronat, M., Esperante, D., Fullana, E., Fuster, J., García, I., Gimeno, B., Lopez, P. Gomis, González, D., Perelló, M., Ros, E., Villarejo, M. A., Vnuchenko, A., Vos, M., Borgmann, Ch, Brenner, R., Ekelöf, T., Jacewicz, M., Olvegård, M., Ruber, R., Ziemann, V., Aguglia, D., Gonzalvo, J. Alabau, Leon, M. Alcaide, Tehrani, N. Alipour, Anastasopoulos, M., Andersson, A., Andrianala, F., Antoniou, F., Apyan, A., Arominski, D., Artoos, K., Assly, S., Atieh, S., Baccigalupi, C., Sune, R. Ballabriga, Caballero, D. Banon, Barnes, M. J., Garcia, J. Barranco, Bartalesi, A., Bauche, J., Bayar, C., Belver-Aguilar, C., Morell, A. Benot, Bernardini, M., Bett, D. R., Bettoni, S., Bettencourt, M., Bielawski, B., Garcia, O. Blanco, Kraljevic, N. Blaskovic, Bolzon, B., Bonnin, X. A., Bozzini, D., Branger, E., Brondolin, E., Brunner, O., Buckland, M., Bursali, H., Burkhardt, H., Caiazza, D., Calatroni, S., Campbell, M., Lasheras, N. Catalan, Cassany, B., Castro, E., Soares, R. H. Cavaleiro, Bastos, M. Cerqueira, Cherif, A., Chevallay, E., Cilento, V., Corsini, R., Costa, R., Cure, B., Curt, S., Gobbo, A. Dal, Dannheim, D., Daskalaki, E., Deacon, L., Degiovanni, A., Michele, G. De, Oliveira, L. De, Romano, V. Del Pozo, Delahaye, J. P., Delikaris, D., Almeida, P. G. Dias de, Dobers, T., Doebert, S., Doytchinov, I., Draper, M., Ramos, F. Duarte, Duquenne, M., Plaja, N. Egidos, Elsener, K., Esberg, J., Esposito, M., Evans, L., Fedosseev, V., Ferracin, P., Fiergolski, A., Foraz, K., Fowler, A., Friebel, F., Fuchs, J.-F., Gaddi, A., Gamba, D., Fajardo, L. Garcia, Morales, H. Garcia, Garion, C., Gasior, M., Gatignon, L., Gayde, J.-C., Gerbershagen, A., Gerwig, H., Giambelli, G., Gilardi, A., Goldblatt, A. N., Anton, S. Gonzalez, Grefe, C., Grudiev, A., Guerin, H., Guillot-Vignot, F. G., Gutt-Mostowy, M. L., Lutz, M. Hein, Hessler, C., Holma, J. K., Holzer, E. B., Hourican, M., Hynds, D., Ikarios, E., Levinsen, Y. Inntjore, Janssens, S., Jeff, A., Jensen, E., Jonker, M., Kamugasa, S. W., Kastriotou, M., Kemppinen, J. M. K., Khan, V., Kieffer, R. B., Klempt, W., Kokkinis, N., Kossyvakis, I., Kostka, Z., Korsback, A., Platia, E. Koukovini, Kovermann, J. W., Kozsar, C.-I., Kremastiotis, I., Kröger, J., Kulis, S., Latina, A., Leaux, F., Lebrun, P., Lefevre, T., Leogrande, E., Linssen, L., Liu, X., Cudie, X. Llopart, Magnoni, S., Maidana, C., Maier, A. A., Durand, H. Mainaud, Mallows, S., Manosperti, E., Marelli, C., Lacoma, E. Marin, Marsh, S., Martin, R., Martini, I., Martyanov, M., Mazzoni, S., Mcmonagle, G., Mether, L. M., Meynier, C., Modena, M., Moilanen, A., Mondello, R., Cabral, P. B. Moniz, Irazabal, N. Mouriz, Munker, M., Muranaka, T., Nadenau, J., Navarro, J. G., Quirante, J. L. Navarro, Busto, E. Nebo Del, Nikiforou, N., Ninin, P., Nonis, M., Nisbet, D., Nuiry, F. X., Nürnberg, A., Ögren, J., Osborne, J., Ouniche, A. C., Pan, R., Papadopoulou, S., Papaphilippou, Y., Paraskaki, G., Pastushenko, A., Passarelli, A., Patecki, M., Pazdera, L., Pellegrini, D., Pepitone, K., Codina, E. Perez, Fontenla, A. Perez, Persson, T. H. B., Petrič, M., Pitman, S., Pitters, F., Pittet, S., Plassard, F., Popescu, D., Quast, T., Rajamak, R., Redford, S., Remandet, L., Renier, Y., Rey, S. F., Orozco, O. Rey, Riddone, G., Castro, E. Rodriguez, Roloff, P., Rossi, C., Rossi, F., Rude, V., Ruehl, I., Rumolo, G., Sailer, A., Sandomierski, J., Santin, E., Sanz, C., Bedolla, J. Sauza, Schnoor, U., Schmickler, H., Schulte, D., Senes, E., Serpico, C., Severino, G., Shipman, N., Sicking, E., Simoniello, R., Skowronski, P. K., Mompean, P. Sobrino, Soby, L., Sollander, P., Solodko, A., Sosin, M. P., Spannagel, S., Sroka, S., Stapnes, S., Sterbini, G., Stern, G., Ström, R., Stuart, M. J., Syratchev, I., Szypula, K., Tecker, F., Thonet, P. A., Thrane, P., Timeo, L., Tiirakari, M., Garcia, R. Tomas, Tomoiaga, C. I., Valerio, P., Vaňát, T., Vamvakas, A. L., Hoorne, J. Van, Viazlo, O., Pinto, M. Vicente Barreto, Vitoratou, N., Vlachakis, V., Weber, M. A., Wegner, R., Wendt, M., Widorski, M., Williams, O. E., Williams, M., Woolley, B., Wuensch, W., Wulzer, A., Uythoven, J., Xydou, A., Yang, R., Zelios, A., Zhao, Y., Zisopoulos, P., Benoit, M., Sultan, D. M. S., Riva, F., Bopp, M., Braun, H. H., Craievich, P., Dehler, M., Garvey, T., Pedrozzi, M., Raguin, J. Y., Rivkin, L., Zennaro, R., Guillaume, S., Rothacher, M., Aksoy, A., Nergiz, Z., Yavas, Ö., Denizli, H., Keskin, U., Oyulmaz, K. Y., Senol, A., Ciftci, A. K., Baturin, V., Karpenko, O., Kholodov, R., Lebed, O., Lebedynskyi, S., Mordyk, S., Musienko, I., Profatilova, Ia, Storizhko, V., Bosley, R. R., Price, T., Watson, M. F., Watson, N. K., Winter, A. G., Goldstein, J., Green, S., Marshall, J. S., Thomson, M. A., Xu, B., You, T., Gillespie, W. A., Spannowsky, M., Beggan, C., Martin, V., Zhang, Y., Protopopescu, D., Robson, A., Apsimon, R. J., Bailey, I., Burt, G. C., Dexter, A. C., Edwards, A. V., Hill, V., Jamison, S., Millar, W. L., Papke, K., Casse, G., Vossebeld, J., Aumeyr, T., Bergamaschi, M., Bobb, L., Bosco, A., Boogert, S., Boorman, G., Cullinan, F., Gibson, S., Karataev, P., Kruchinin, K., Lekomtsev, K., Lyapin, A., Nevay, L., Shields, W., Snuverink, J., Towler, J., Yamakawa, E., Boisvert, V., West, S., Jones, R., Joshi, N., Bett, D., Bodenstein, R. M., Bromwich, T., Burrows, P. N., Christian, G. B., Gohil, C., Korysko, P., Paszkiewicz, J., Perry, C., Ramjiawan, R., Roberts, J., Coates, T., Salvatore, F., Bainbridge, A., Clarke, J. A., Krumpa, N., Shepherd, B. J. A., Walsh, D., Chekanov, S., Demarteau, M., Gai, W., Liu, W., Metcalfe, J., Power, J., Repond, J., Weerts, H., Xia, L., Zupan, J., Wells, J. D., Zhang, Z., Adolphsen, C., Barklow, T., Dolgashev, V., Franzi, M., Graf, N., Hewett, J., Kemp, M., Kononenko, O., Markiewicz, T., Moffeit, K., Neilson, J., Nosochkov, Y., Oriunno, M., Phinney, N., Rizzo, T., Tantawi, S., Wang, J., Weatherford, B., White, G., and Woodley, M.
- Subjects
Technology ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,ddc:600 ,Accelerators and Storage Rings ,physics.acc-ph - Abstract
The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^-$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years.
31. Preliminary results of 3D-DDTC pixel detectors for the ATLAS upgrade
- Author
-
La Rosa, A., Maurizio Boscardin, Dalla Betta, Gian Franco, Darbo, G., Gemme, C., Pernegger, H., Claudio Piemonte, Povoli, Marco, Sabina Ronchin, Zoboli, A., Nicola Zorzi, Bolle, E., Borri, M., Da Via, C., Dong, S., Fazio, S., Grenier, P., Grinstein, S., Gjersdal, H., Hansson, P., Huegging, F., Jackson, P., Kocian, M., Rivero, F., Rohne, O., Sandaker, H., Sjobak, K., Slavicek, T., Tsung, W., Tsybychev, D., Wermes, N., and Young, C.
- Subjects
Physics - Instrumentation and Detectors ,Pixel ,Atlas upgrade ,Computer science ,Detector ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Detectors and Experimental Techniques ,Remote sensing - Abstract
3D Silicon sensors fabricated at FBK-irst with the Double-side Double Type Column (DDTC) approach and columnar electrodes only partially etched through p-type substrates were tested in laboratory and in a 1.35 Tesla magnetic field with a 180GeV pion beam at CERN SPS. The substrate thickness of the sensors is about 200um, and different column depths are available, with overlaps between junction columns (etched from the front side) and ohmic columns (etched from the back side) in the range from 110um to 150um. The devices under test were bump bonded to the ATLAS Pixel readout chip (FEI3) at SELEX SI (Rome, Italy). We report leakage current and noise measurements, results of functional tests with Am241 gamma-ray sources, charge collection tests with Sr90 beta-source and an overview of preliminary results from the CERN beam test., Comment: 8 pages, 8 figures, presented at RD09 - 9th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors, 30 September - 2 October 2009, Florence, Italy
32. Enhancing particle bunch-length measurements based on Radio Frequency Deflector by the use of focusing elements
- Author
-
Roberto Corsini, Antonio Gilardi, Andrea Mostacci, Luca Sabato, Kyrre Sjobak, Pasquale Arpaia, Arpaia, P., Corsini, R., Gilardi, A., Mostacci, A., Sabato, L., and Sjobak, K. N.
- Subjects
0301 basic medicine ,lcsh:Medicine ,Tracking (particle physics) ,01 natural sciences ,Article ,Techniques and instrumentation ,law.invention ,03 medical and health sciences ,Length measurement ,Optics ,law ,0103 physical sciences ,Free Electron Lasers, Wigglers, X-Ray Laser ,lcsh:Science ,010306 general physics ,Physics ,Multidisciplinary ,business.industry ,Dynamic range ,System of measurement ,lcsh:R ,Particle physics ,Particle accelerator ,Accelerators and Storage Rings ,Electrical and electronic engineering ,Transverse plane ,030104 developmental biology ,Physics::Accelerator Physics ,lcsh:Q ,Radio frequency ,business ,Beam (structure) - Abstract
A method to monitor the length of a particle bunch, based on the combination of a Radio Frequency Deflector (RFD) with magnetic focusing elements, is presented. With respect to state-of-the-art bunch length measurement, the additional focusing element allows to measure also the correlations between the longitudinal and transverse planes in terms of both position and divergence. Furthermore, the quadrupole-based focusing increases the input dynamic range of the measurement system (i.e. allows for a larger range of beam Twiss parameters at the entrance of the RFD). Thus, measurement resolution and precision are enhanced, by simultaneously preserving the accuracy. In this paper, the method is first introduced analytically, and then validated in simulation, by the reference tool ELEctron Generation ANd Tracking, ELEGANT. Finally, a preliminary experimental validation at CLEAR (CERN Linear Electron Accelerator for Research) is reported.
- Published
- 2020
33. Beam-based alignment of the CLIC high-gradient X-Band accelerating structure using beam-screen
- Author
-
Kyrre Sjobak, Pasquale Arpaia, Antonio Gilardi, Roberto Corsini, Arpaia, P., Corsini, R., Gilardi, A., and Sjobak, K. N.
- Subjects
Luminosity (scattering theory) ,Large Hadron Collider ,Compact Linear Collider ,010308 nuclear & particles physics ,business.industry ,Order (ring theory) ,Particle accelerator ,01 natural sciences ,law.invention ,Nuclear physics ,law ,0103 physical sciences ,Physics::Accelerator Physics ,Medicine ,010306 general physics ,Collider ,business ,Energy (signal processing) ,Beam (structure) - Abstract
An experimental campaign has been carried out at the European Organization for Nuclear Research (CERN) in order to estimate the wakefield kick in the X-Band accelerating structure of the future Compact LInear Collider (CLIC). The CLIC Project, currently under study, is an electron-positron collider with centre of mass energy of 3TeV and an instantaneous luminosity of $2 \times 10^{34}\ {\mathrm {cm}}^{-2} \mathrm{s}^{-1}$. The X-Band accelerating structures are able to sustain an accelerating gradient of 100MV /m. The wakefield kick is an electromagnetic field perturbing the particle bunch. This campaign is carried out at the CERN Linear Electron Accelerator for Research (CLEAR). A beam-based method to align the accelerating structure to the beam trajectory with the use of a beam-screen is proposed in order to estimate the transverse wakefield kick. Aligning such a structure to the beam trajectory, with an accuracy of $3.5\ \mu \mathrm{m}$, is a key point to achieve the above luminosity.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.