34 results on '"Sklenář, F."'
Search Results
2. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins
- Author
-
Frisvad, J.C., Hubka, V., Ezekiel, C.N., Hong, S.-B., Nováková, A., Chen, A.J., Arzanlou, M., Larsen, T.O., Sklenář, F., Mahakarnchanakul, W., Samson, R.A., and Houbraken, J.
- Published
- 2019
- Full Text
- View/download PDF
3. Phylogeny of xerophilic aspergilli (subgenus Aspergillus) and taxonomic revision of section Restricti
- Author
-
Sklenář, F., Jurjević, Ž., Zalar, P., Frisvad, J.C., Visagie, C.M., Kolařík, M., Houbraken, J., Chen, A.J., Yilmaz, N., Seifert, K.A., Coton, M., Déniel, F., Gunde-Cimerman, N., Samson, R.A., Peterson, S.W., and Hubka, V.
- Published
- 2017
- Full Text
- View/download PDF
4. Polyphasic taxonomy of Aspergillus section Aspergillus (formerly Eurotium), and its occurrence in indoor environments and food
- Author
-
Chen, A.J., Hubka, V., Frisvad, J.C., Visagie, C.M., Houbraken, J., Meijer, M., Varga, J., Demirel, R., Jurjević, Ž., Kubátová, A., Sklenář, F., Zhou, Y.G., and Samson, R.A.
- Published
- 2017
- Full Text
- View/download PDF
5. Consolidation ofChloridium: new classification into eight sections with 37 species and reinstatement of the generaGongromeriza andPsilobotrys
- Author
-
Réblová, M., primary, Hernández-Restrepo, M., additional, Sklenář, F., additional, Nekvindová, J., additional, Réblová, K., additional, and Kolařík, M., additional
- Published
- 2022
- Full Text
- View/download PDF
6. Reducing the number of accepted species inAspergillusseriesNigri
- Author
-
Bian, C., primary, Kusuya, Y., additional, Sklenář, F., additional, D'hooge, E., additional, Yaguchi, T., additional, Ban, S., additional, Visagie, C.M., additional, Houbraken, J., additional, Takahashi, H., additional, and Hubka, V., additional
- Published
- 2022
- Full Text
- View/download PDF
7. A monograph of Aspergillus section Candidi
- Author
-
Glässnerová, K., primary, Sklenář, F., additional, Jurjević, Ž, additional, Houbraken, J., additional, Yaguchi, T., additional, Visagie, C.M., additional, Gené, J., additional, Siqueira, J.P.Z., additional, Kubátová, A., additional, Kolařík, M., additional, and Hubka, V., additional
- Published
- 2022
- Full Text
- View/download PDF
8. Taxonomy of AspergillusseriesVersicolores: species reduction and lessons learned about intraspecific variability
- Author
-
Sklenář, F., primary, Glässnerová, K., additional, Jurjević, Ž., additional, Houbraken, J., additional, Samson, R.A., additional, Visagie, C.M., additional, Yilmaz, N., additional, Gené, J., additional, Cano, J., additional, Chen, A.J., additional, Nováková, A., additional, Yaguchi, T., additional, Kolařík, M., additional, and Hubka, V., additional
- Published
- 2022
- Full Text
- View/download PDF
9. Reducing the number of accepted species in Aspergillus series Nigri
- Author
-
Bian, C., Sklenář, F, D'hooge, E., Yaguchi, T., Ban, S, Visagie, C.M., Houbraken, Jos, Takahashi, Hirokazu, Hubka, V., Bian, C., Sklenář, F, D'hooge, E., Yaguchi, T., Ban, S, Visagie, C.M., Houbraken, Jos, Takahashi, Hirokazu, and Hubka, V.
- Published
- 2022
10. A monograph of Aspergillus section Candidi
- Author
-
Glässnerová, K., Sklenář, F, Jurjević, Ž., Houbraken, Jos, Yaguchi, T., Visagie, C.M., Gené, J., Siqueira, J.P.Z., Kubatova, A., Kolarik, M, Hubka, V., Glässnerová, K., Sklenář, F, Jurjević, Ž., Houbraken, Jos, Yaguchi, T., Visagie, C.M., Gené, J., Siqueira, J.P.Z., Kubatova, A., Kolarik, M, and Hubka, V.
- Published
- 2022
11. Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability
- Author
-
Sklenář, F, Glässnerová, K., Jurjević, Ž., Houbraken, Jos, Samson, Robert A., Visagie, C.M., Yilmaz, N, Gené, Josepa, Cano, J., Chen, Amanda-Juan, Novakova, A, Yaguchi, T., Kolařík, Miroslav, Hubka, V., Sklenář, F, Glässnerová, K., Jurjević, Ž., Houbraken, Jos, Samson, Robert A., Visagie, C.M., Yilmaz, N, Gené, Josepa, Cano, J., Chen, Amanda-Juan, Novakova, A, Yaguchi, T., Kolařík, Miroslav, and Hubka, V.
- Published
- 2022
12. Fungal Planet 953 – 18 December 2019
- Author
-
Crous, P.W., Wingfield, M.J., Lombard, L., Roets, F., Swart, W.J., Alvarado, P., Carnegie, A.J., Moreno, G., Luangsaard, J., Thangavel, R., Alexandrova, A.V., Baseia, I.G., Bellanger, J.-M., Bessette, A.E., Bessette, A.R., De la Peña-Lastra, S., García, D., Gené, J., Pham, T.H.G., Heykoop, M., Malysheva, E., Malysheva, V., Martín, M.P., Morozova, O.V., Noisripoom, W., Overton, B.E., Rea, A.E., Sewall, B.J., Smith, M.E., Smyth, C.W., Tasanathai, K., Visagie, C.M., Adamčík, S., Alves, A., Andrade, J.P., Aninat, M.J., Araújo, R.V.B., Bordallo, J.J., Boufleur, T., Baroncelli, R., Barreto, R.W., Bolin, J., Cabero, J., Caboň, M., Cafà, G., Caffot, M.L.H., Cai, L., Carlavilla, J.R., Chávez, R., de Castro, R.R.L., Delgat, L., Deschuyteneer, D., Dios, M.M., Domínguez, L.S., Evans, H.C., Eyssartier, G., Ferreira, B.W., Figueiredo, C.N., Liu, F., Fournier, J., Galli-Terasawa, L.V., Gil-Durán, C., Glienke, C., Gonçalves, M.F.M., Gryta, H., Guarro, J., Himaman, W., Hywel-Jones, N., Iturrieta-González, I., Ivanushkina, N.E., Jargeat, P., Khalid, A.N., Khan, J., Kiran, M., Kiss, L., Kochkina, G.A., Kolařík, M., Kubátová, A., Lodge, D.J., Loizides, M., Luque, D., Manjón, J.L., Marbach, P.A.S., Massola, N.S., Mata, M., Miller, A.N., Mongkolsamrit, S., Moreau, P.-A., Morte, A., Mujic, A., Navarro-Ródenas, A., Németh, M.Z., Nóbrega, T.F., Nováková, A., Olariaga, I., Ozerskaya, S.M., Palma, M.A., Petters-Vandresen, D.A.L., Piontelli, E., Popov, E.S., Rodríguez, A., Requejo, Ó., Rodrigues, A.C.M., Rong, I.H., Roux, J., Seifert, K.A., Silva, B.D.B., Sklenář, F., Smith, J.A., Sousa, J.O., Souza, H.G., De Souza, J.T., Švec, K., Tanchaud, P., Tanney, J.B., Terasawa, F., Thanakitpipattana, D., Torres-Garcia, D., Vaca, I., Vaghefi, N., van Iperen, A.L., Vasilenko, O.V., Verbeken, A., Yilmaz, N., Zamora, J.C., Zapata, M., Jurjević, Ž., Groenewald, J.Z., Crous, Pedro W., van Iperen, Arien L., Groenewald, Johannes Z., Thangavel, Raja, Carnegie, Angus J., Wingfield, Michael J., Roux, Jolanda, Jurjević, Željko, Roets, Francois, Swart, Wijnand J., Smith, Jason A., Lombard, Lorenzo, Moreno, Gabriel, Carlavilla, Juan Ramón, Manjón, José Luis, Bellanger, Jean-Michel, Olariaga, Ibai, Giang, Pham Thi Ha, Alexandrova, Alina V., Morozova, Olga V., Rodrigues, Ana C.M., Baseia, Iuri G., Martín, María P., De la Peña-Lastra, Saúl, Alvarado, Pablo, Requejo, Óscar, Tanchaud, Patrice, Eyssartier, Guillaume, Jargeat, Patricia, Gryta, Hervé, Gil-Durán, Carlos, Chávez, Renato, Vaca, Inmaculada, Loizides, Michael, Moreau, Pierre-Arthur, Zapata, Mario, Palma, María Antonieta, Aninat, María José, Piontelli, Eduardo, Luangsa-ard, Jennifer, Tasanathai, Kanoksri, Noisripoom, Wasana, Hywel-Jones, Nigel, Mongkolsamrit, Suchada, Luangsa-ard, Janet Jennifer, Himaman, Winanda, Garcia, Daniel Torres, Guarro, Josep, Gené, Josepa, Petters-Vandresen, Desirrê Alexia Lourenço, Galli-Terasawa, Lygia Vitória, Terasawa, Francisco, Glienke, Chirlei, Araújo, Ruane V.B., Silva, Bianca D.B., Sousa, Julieth O., Zamora, Juan Carlos, Dios, Maria Martha, Caffot, María Luciana Hernández, Domínguez, Laura S., Kiss, Levente, Vaghefi, Niloofar, Németh, Márk Z., Miller, Andrew N., Fournier, Jacques, Nóbrega, Thaisa F., Ferreira, Bruno W., Barreto, Robert W., Evans, Harry C., Delgat, Lynn, Verbeken, Annemieke, Lodge, D. Jean, Thanakitpipattana, Donnaya, Visagie, Cobus M., Rong, Isabel H., Andrade, Jackeline Pereira, Marbach, Phellippe Arthur Santos, De Souza, Jorge Teodoro, Malysheva, Ekaterina, Malysheva, Vera, Deschuyteneer, Daniel, Heykoop, Michel, Mata, Milagro, Rea, Abigail E., Smyth, Christopher W., Overton, Barrie E., Sewall, Brent J., Smith, Matthew E., Mujic, Alija, Bolin, Jason, Bessette, Arleen, Bessette, Alan, Kiran, Munazza, Khalid, Abdul Nasir, Khan, Junaid, Adamčík, Slavomír, Caboň, Miroslav, Liu, Fang, Cai, Lei, Tanney, Joey B., Seifert, Keith A., Baroncelli, Riccardo, Cafà, Giovanni, de Castro, Renata Rebellato Linhares, Boufleur, Thais, Junior, Nelson Sidnei Massola, Yilmaz, Neriman, Nováková, Alena, Švec, Karel, Sklenář, František, Kolařík, Miroslav, Kubátová, Alena, Rodríguez, Antonio, Navarro-Ródenas, Alfonso, Morte, Asunción, Cabero, Julio, Luque, Diego, Gonçalves, Micael F.M., Alves, Artur, Bordallo, Juan Julián, Pham, Thi Ha Giang, Popov, Eugene S., Iturrieta-González, Isabel, García, Dania, Ivanushkina, Nataliya E., Kochkina, Galina A., Vasilenko, Oleg V., and Ozerskaya, Svetlana M.
- Subjects
ITS nrDNA barcodes ,LSU ,Fungal Planet description sheets ,systematics ,new taxa ,Research Article - Abstract
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina, Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna from carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood. Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracylla gen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum from saline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter of Eugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa, Harzia metrosideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamyces gen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosillia mayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam. nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicillium cuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpus falcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi, Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidium blechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomyces knysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood in goldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycina cortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensis on dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litter of Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris. Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis on leaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomyces juncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomyces melaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides × lanceolata, Pseudocamarosporium eucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascus turneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii on leaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological and culture characteristics are supported by DNA barcodes.
- Published
- 2019
13. Re-examination of species limits in Aspergillus section Flavipedes using advanced species delimitation methods and description of four new species
- Author
-
Jurjević, Ž., primary, Houbraken, J., additional, Sklenář, F., additional, Kolařík, M., additional, Arendrup, M.C., additional, Jørgensen, K.M., additional, Siqueira, J.P.Z., additional, Gené, J., additional, Yaguchi, T., additional, Ezekiel, C.N., additional, Silva Pereira, C., additional, and Hubka, V., additional
- Published
- 2021
- Full Text
- View/download PDF
14. Taxonomy of section and their production of aflatoxins, ochratoxins and other mycotoxins
- Author
-
Frisvad, J C, Hubka, V, Ezekiel, C N, Hong, S-B, Nováková, A, Chen, A J, Arzanlou, M, Larsen, T O, Sklenář, F, Mahakarnchanakul, W, Samson, R A, Houbraken, J, Westerdijk Fungal Biodiversity Institute - Food and Indoor Mycology, and Westerdijk Fungal Biodiversity Institute
- Abstract
Aflatoxins and ochratoxins are among the most important mycotoxins of all and producers of both types of mycotoxins are present in Aspergillus section Flavi, albeit never in the same species. Some of the most efficient producers of aflatoxins and ochratoxins have not been described yet. Using a polyphasic approach combining phenotype, physiology, sequence and extrolite data, we describe here eight new species in section Flavi. Phylogenetically, section Flavi is split in eight clades and the section currently contains 33 species. Two species only produce aflatoxin B1 and B2 (A. pseudotamarii and A. togoensis), and 14 species are able to produce aflatoxin B1, B2, G1 and G2: three newly described species A. aflatoxiformans, A. austwickii and A. cerealis in addition to A. arachidicola, A. minisclerotigenes, A. mottae, A. luteovirescens (formerly A. bombycis), A. nomius, A. novoparasiticus, A. parasiticus, A. pseudocaelatus, A. pseudonomius, A. sergii and A. transmontanensis. It is generally accepted that A. flavus is unable to produce type G aflatoxins, but here we report on Korean strains that also produce aflatoxin G1 and G2. One strain of A. bertholletius can produce the immediate aflatoxin precursor 3-O-methylsterigmatocystin, and one strain of Aspergillus sojae and two strains of Aspergillus alliaceus produced versicolorins. Strains of the domesticated forms of A. flavus and A. parasiticus, A. oryzae and A. sojae, respectively, lost their ability to produce aflatoxins, and from the remaining phylogenetically closely related species (belonging to the A. flavus-, A. tamarii-, A. bertholletius- and A. nomius-clades), only A. caelatus, A. subflavus and A. tamarii are unable to produce aflatoxins. With exception of A. togoensis in the A. coremiiformis-clade, all species in the phylogenetically more distant clades (A. alliaceus-, A. coremiiformis-, A. leporis- and A. avenaceus-clade) are unable to produce aflatoxins. Three out of the four species in the A. alliaceus-clade can produce the mycotoxin ochratoxin A: A. alliaceus s. str. and two new species described here as A. neoalliaceus and A. vandermerwei. Eight species produced the mycotoxin tenuazonic acid: A. bertholletius, A. caelatus, A. luteovirescens, A. nomius, A. pseudocaelatus, A. pseudonomius, A. pseudotamarii and A. tamarii while the related mycotoxin cyclopiazonic acid was produced by 13 species: A. aflatoxiformans, A. austwickii, A. bertholletius, A. cerealis, A. flavus, A. minisclerotigenes, A. mottae, A. oryzae, A. pipericola, A. pseudocaelatus, A. pseudotamarii, A. sergii and A. tamarii. Furthermore, A. hancockii produced speradine A, a compound related to cyclopiazonic acid. Selected A. aflatoxiformans, A. austwickii, A. cerealis, A. flavus, A. minisclerotigenes, A. pipericola and A. sergii strains produced small sclerotia containing the mycotoxin aflatrem. Kojic acid has been found in all species in section Flavi, except A. avenaceus and A. coremiiformis. Only six species in the section did not produce any known mycotoxins: A. aspearensis, A. coremiiformis, A. lanosus, A. leporis, A. sojae and A. subflavus. An overview of other small molecule extrolites produced in Aspergillus section Flavi is given.
- Published
- 2019
15. Increasing the species diversity in the Aspergillus section Nidulantes: Six novel species mainly from the indoor environment
- Author
-
Sklenář, F., primary, Jurjević, Ž., additional, Peterson, S. W., additional, Kolařík, M., additional, Nováková, A., additional, Flieger, M., additional, Stodůlková, E., additional, Kubátová, A., additional, and Hubka, V., additional
- Published
- 2020
- Full Text
- View/download PDF
16. Taxonomy ofAspergillussectionFlaviand their production of aflatoxins, ochratoxins and other mycotoxins
- Author
-
Frisvad, J.C., primary, Hubka, V., additional, Ezekiel, C.N., additional, Hong, S.-B., additional, Nováková, A., additional, Chen, A.J., additional, Arzanlou, M., additional, Larsen, T.O., additional, Sklenář, F., additional, Mahakarnchanakul, W., additional, Samson, R.A., additional, and Houbraken, J., additional
- Published
- 2019
- Full Text
- View/download PDF
17. Fungal Planet description sheets: 951-1041
- Author
-
Crous, P.W., Wingfield, M.J., Lombard, L., Roets, F., Swart, W.J., Alvarado, P., Carnegie, A.J., Moreno, G., Luangsa-ard, J., Thangavel, R., Alexandrova, A.V., Baseia, I.G., Bellanger, J.-M., Bessette, A.E., Bessette, A.R., De la Peña-Lastra, S., García, D., Gené, J., Pham, T.H.G., Heykoop, M., Malysheva, E., Malysheva, V., Martín, M.P., Morozova, O.V., Noisripoom, W., Overton, B.E., Rea, A.E., Sewall, B.J., Smith, M.E., Smyth, C.W., Tasanathai, K., Visagie, C.M., Adamčík, S., Alves, A., Andrade, J.P., Aninat, M.J., Araujo, R.V.B., Bordallo, J.J., Bonfleur, T., Baroncelli, R., Barreto, R.W., Bolin, J., Cabero, J., M. Caboň, M., Cafà, G., Caffot, M.L.H., Cai, L., Carlavilla, J.R., Chávez, R., de Castro, R.R.L., Delgat, L., Deschuyteneer, D., Dios, M.M., Domínguez, L.S., Evans, H.C., Eyssartier, G., Ferreira, B.W., Figueiredo, C.N., Liu, F., Fournier, J., Galli-Terasawa, L.V., Gil-Durán, C., Glienke, C., Gonçalves, M.F.M., Gryta, H., Guarro, J., Himaman, W., Hywel-Jones, N., Iturrieta-González, I., Ivanushkina, N.E., Jargeat, P., Khalid, A.N., Khan, J., Kiran, M., Kiss, L., Kochkina, G.A., Kolařík, M., Kubátová, A., Lodge, D.J., Loizides, M., Luque, D., Manjón, J.L., Marbach, P.A.S., Massola Jr, N.S., Mata, M., Miller, A.N., Mongkolsamrit, S., Moreau, P.-A., Morte, A., Mujic, A., Navarro-Ródenas, A., Németh, M.Z., Nóbrega, T.F., Nováková, A., Olariaga, I., Ozerskaya, S.M., Palma, M.A., Petters-Vandresen, D.A.L., Piontelli, E., Popov, E.S., Rodríguez, A., Requejo, Ó., Rodrigues, A.C.M., Rong, I.H., Roux, J., Seifert, K.A., Silva, B.D.B., Sklenář, F., Smith, J.A., Sousa, J.O., Souza, H.G., De Souza, J.T., Švec, K., Tanchaud, P., Tanney, J.B., Terasawa, F., Thanakitpipattana, D., Torres-Garcia, D., Vaca, I., Vaghefi, N., van Iperen, A.L., Vasilenko, O.V., Verbeken, A., Yilmaz, N., Zamora, J.C., Zapata, M., Jurjević, Ž., Groenewald, J.Z., Crous, P.W., Wingfield, M.J., Lombard, L., Roets, F., Swart, W.J., Alvarado, P., Carnegie, A.J., Moreno, G., Luangsa-ard, J., Thangavel, R., Alexandrova, A.V., Baseia, I.G., Bellanger, J.-M., Bessette, A.E., Bessette, A.R., De la Peña-Lastra, S., García, D., Gené, J., Pham, T.H.G., Heykoop, M., Malysheva, E., Malysheva, V., Martín, M.P., Morozova, O.V., Noisripoom, W., Overton, B.E., Rea, A.E., Sewall, B.J., Smith, M.E., Smyth, C.W., Tasanathai, K., Visagie, C.M., Adamčík, S., Alves, A., Andrade, J.P., Aninat, M.J., Araujo, R.V.B., Bordallo, J.J., Bonfleur, T., Baroncelli, R., Barreto, R.W., Bolin, J., Cabero, J., M. Caboň, M., Cafà, G., Caffot, M.L.H., Cai, L., Carlavilla, J.R., Chávez, R., de Castro, R.R.L., Delgat, L., Deschuyteneer, D., Dios, M.M., Domínguez, L.S., Evans, H.C., Eyssartier, G., Ferreira, B.W., Figueiredo, C.N., Liu, F., Fournier, J., Galli-Terasawa, L.V., Gil-Durán, C., Glienke, C., Gonçalves, M.F.M., Gryta, H., Guarro, J., Himaman, W., Hywel-Jones, N., Iturrieta-González, I., Ivanushkina, N.E., Jargeat, P., Khalid, A.N., Khan, J., Kiran, M., Kiss, L., Kochkina, G.A., Kolařík, M., Kubátová, A., Lodge, D.J., Loizides, M., Luque, D., Manjón, J.L., Marbach, P.A.S., Massola Jr, N.S., Mata, M., Miller, A.N., Mongkolsamrit, S., Moreau, P.-A., Morte, A., Mujic, A., Navarro-Ródenas, A., Németh, M.Z., Nóbrega, T.F., Nováková, A., Olariaga, I., Ozerskaya, S.M., Palma, M.A., Petters-Vandresen, D.A.L., Piontelli, E., Popov, E.S., Rodríguez, A., Requejo, Ó., Rodrigues, A.C.M., Rong, I.H., Roux, J., Seifert, K.A., Silva, B.D.B., Sklenář, F., Smith, J.A., Sousa, J.O., Souza, H.G., De Souza, J.T., Švec, K., Tanchaud, P., Tanney, J.B., Terasawa, F., Thanakitpipattana, D., Torres-Garcia, D., Vaca, I., Vaghefi, N., van Iperen, A.L., Vasilenko, O.V., Verbeken, A., Yilmaz, N., Zamora, J.C., Zapata, M., Jurjević, Ž., and Groenewald, J.Z.
- Abstract
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina, Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna from carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood. Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracylla gen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera
- Published
- 2019
18. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins
- Author
-
Frisvad, Jens Christian, Hubka, V., Ezekiel, C. N., Hong, S. B., Nováková, A., Chen, A. J., Arzanlou, M., Larsen, T. O., Sklenář, F., Mahakarnchanakul, W., Samson, R. A., Houbraken, J., Frisvad, Jens Christian, Hubka, V., Ezekiel, C. N., Hong, S. B., Nováková, A., Chen, A. J., Arzanlou, M., Larsen, T. O., Sklenář, F., Mahakarnchanakul, W., Samson, R. A., and Houbraken, J.
- Abstract
Aflatoxins and ochratoxins are among the most important mycotoxins of all and producers of both types of mycotoxins are present in Aspergillus section Flavi, albeit never in the same species. Some of the most efficient producers of aflatoxins and ochratoxins have not been described yet. Using a polyphasic approach combining phenotype, physiology, sequence and extrolite data, we describe here eight new species in section Flavi. Phylogenetically, section Flavi is split in eight clades and the section currently contains 33 species. Two species only produce aflatoxin B1 and B2 (A. pseudotamarii and A. togoensis), and 14 species are able to produce aflatoxin B1, B2, G1 and G2: three newly described species A. aflatoxiformans, A. austwickii and A. cerealis in addition to A. arachidicola, A. minisclerotigenes, A. mottae, A. luteovirescens (formerly A. bombycis), A. nomius, A. novoparasiticus, A. parasiticus, A. pseudocaelatus, A. pseudonomius, A. sergii and A. transmontanensis. It is generally accepted that A. flavus is unable to produce type G aflatoxins, but here we report on Korean strains that also produce aflatoxin G1 and G2. One strain of A. bertholletius can produce the immediate aflatoxin precursor 3-O-methylsterigmatocystin, and one strain of Aspergillus sojae and two strains of Aspergillus alliaceus produced versicolorins. Strains of the domesticated forms of A. flavus and A. parasiticus, A. oryzae and A. sojae, respectively, lost their ability to produce aflatoxins, and from the remaining phylogenetically closely related species (belonging to the A. flavus-, A. tamarii-, A. bertholletius- and A. nomius-clades), only A. caelatus, A. subflavus and A. tamarii are unable to produce aflatoxins. With exception of A. t
- Published
- 2019
19. Unravelling species boundaries in theAspergillus viridinutans complex (sectionFumigati): opportunistic human and animal pathogens capable of interspecific hybridization
- Author
-
Hubka, V., primary, Barrs, V., additional, Dudová, Z., additional, Sklenář, F., additional, Kubátová, A., additional, Matsuzawa, T., additional, Yaguchi, T., additional, Horie, Y., additional, Nováková, A., additional, Frisvad, J.C., additional, Talbot, J.J., additional, and Kolařík, M., additional
- Published
- 2018
- Full Text
- View/download PDF
20. Unravelling species boundaries in the Aspergillus viridinutans complex (section Fumigati): opportunistic human and animal pathogens capable of interspecific hybridization
- Author
-
Hubka, V., Barrs, V., Dudová, Z., Sklenář, F., Kubátová, A., Matsuzawa, T., Yaguchi, T., Horie, Y., Nováková, A., Frisvad, J.C., Talbot, J.J., Kolařík, M., Hubka, V., Barrs, V., Dudová, Z., Sklenář, F., Kubátová, A., Matsuzawa, T., Yaguchi, T., Horie, Y., Nováková, A., Frisvad, J.C., Talbot, J.J., and Kolařík, M.
- Abstract
Although Aspergillus fumigatus is the major agent of invasive aspergillosis, an increasing number of infections are caused by its cryptic species, especially A. lentulus and the A. viridinutans species complex (AVSC). Their identification is clinically relevant because of antifungal drug resistance and refractory infections. Species boundaries in the AVSC are unresolved since most species have uniform morphology and produce interspecific hybrids in vitro. Clinical and environmental strains from six continents (n = 110) were characterized by DNA sequencing of four to six loci. Biological compatibilities were tested within and between major phylogenetic clades, and ascospore morphology was characterised. Species delimitation methods based on the multispecies coalescent model (MSC) supported recognition of ten species including one new species. Four species are confirmed opportunistic pathogens; A. udagawae followed by A. felis and A. pseudoviridinutans are known from opportunistic human infections, while A. felis followed by A. udagawae and A. wyomingensis are agents of feline sino-orbital aspergillosis. Recently described human-pathogenic species A. parafelis and A. pseudofelis are synonymized with A. felis and an epitype is designated for A. udagawae. Intraspecific mating assay showed that only a few of the heterothallic species can readily generate sexual morphs in vitro. Interspecific mating assays revealed that five different species combinations were biologically compatible. Hybrid ascospores had atypical surface ornamentation and significantly different dimensions compared to parental species. This suggests that species limits in the AVSC are maintained by both pre- and post-zygotic barriers and these species display a great potential for rapid adaptation and modulation of virulence. This study highlights that a sufficient number of strains representing genetic diversity within a species is essential for meaningful species boundaries delimitation in cryptic spe
- Published
- 2018
- Full Text
- View/download PDF
21. Polyphasic data support the splitting of Aspergillus candidus into two species; proposal of Aspergillus dobrogensis sp. nov.
- Author
-
Universitat Rovira i Virgili, Hubka V, Nováková A, Jurjević Z, Sklenář F, Frisvad JC, Houbraken J, Arendrup MC, Jørgensen KM, Siqueira JPZ, Gené J, Kolařík M, Universitat Rovira i Virgili, and Hubka V, Nováková A, Jurjević Z, Sklenář F, Frisvad JC, Houbraken J, Arendrup MC, Jørgensen KM, Siqueira JPZ, Gené J, Kolařík M
- Abstract
Aspergillus candidus is a species frequently isolated from stored grain, food, indoor environments, soil and occasionally also from clinical material. Recent bioprospecting studies highlighted the potential of using A. candidus and its relatives in various industrial sectors as a result of their significant production of enzymes and bioactive compounds. A high genetic variability was observed among A. candidus isolates originating from various European countries and the USA, that were mostly isolated from indoor environments, caves and clinical material. The A. candidus sensu lato isolates were characterized by DNA sequencing of four genetic loci, and agreement between molecular species delimitation results, morphological characters and exometabolite spectra were studied. Classical phylogenetic methods (maximum likelihood, Bayesian inference) and species delimitation methods based on the multispecies coalescent model supported recognition of up to three species in A. candidus sensu lato. After evaluation of phenotypic data, a broader species concept was adopted, and only one new species, Aspergillus dobrogensis, was proposed. This species is represented by 22 strains originating from seven countries (ex-type strain CCF 4651T=NRRL 62821T=IBT 32697T=CBS 143370T) and its differentiation from A. candidus is relevant for bioprospecting studies because these species have different exometabolite profiles. Evaluation of the antifungal susceptibility of section Candidi members to six antifungals using the reference EUCAST method showed that all species have low minimum inhibitory concentrations for all tested antifungals. These results suggest applicability of a wide spectrum of antifungal agents for treatment of infections caused by species from section Candidi.
- Published
- 2018
22. Increasing the species diversity in the Aspergillussection Nidulantes: Six novel species mainly from the indoor environment
- Author
-
Sklenář, F., Jurjević, Ž., Peterson, S. W., Kolařík, M., Nováková, A., Flieger, M., Stodůlková, E., Kubátová, A., and Hubka, V.
- Abstract
ABSTRACTAspergillussection Nidulantesencompasses almost 80 homothallic and anamorphic species, mostly isolated from soil, plant material, or the indoor environment. Some species are clinically relevant or produce mycotoxins. This study reevaluated the species boundaries within several clades of section Nidulantes. Five data sets were assembled, each containing presumptive new species and their closest relatives, and phylogenetic and phenotypic analyses were performed. We tested the hypotheses that the newly isolated or reexamined strains constitute separate species (splitting approach) or should be treated as part of broadly defined species (lumping approach). Four DNA sequence loci were amplified, internal transcribed spacer (ITS) and large subunit (LSU) regions of the rDNA and partial sequences of the β-tubulin (benA), calmodulin (CaM), and RNA polymerase II second largest subunit (RPB2) genes. The latter three loci were used for the phylogenetic analysis and served as input for single-locus (GMYC, bGMYC, PTP, and bPTP) and multilocus (STACEY and BP&P) species delimitation analyses. The phenotypic analysis comprised macro- and micromorphology (including scanning electron microscopy) and comparison of cardinal growth temperatures. The phylogenetic analysis supported the splitting hypothesis in all cases, and based on the combined approach, we propose six new species, four that are homothallic and two anamorphic. Four new species were isolated from the indoor environment (Jamaica, Trinidad and Tobago, USA), one originated from soil (Australia), and one from a kangaroo rat cheek pouch (USA).
- Published
- 2020
- Full Text
- View/download PDF
23. Taxonomy of Aspergillussection Flaviand their production of aflatoxins, ochratoxins and other mycotoxins
- Author
-
Frisvad, J.C., Hubka, V., Ezekiel, C.N., Hong, S.-B., Nováková, A., Chen, A.J., Arzanlou, M., Larsen, T.O., Sklenář, F., Mahakarnchanakul, W., Samson, R.A., and Houbraken, J.
- Abstract
Aflatoxins and ochratoxins are among the most important mycotoxins of all and producers of both types of mycotoxins are present in Aspergillussection Flavi, albeit never in the same species. Some of the most efficient producers of aflatoxins and ochratoxins have not been described yet. Using a polyphasic approach combining phenotype, physiology, sequence and extrolite data, we describe here eight new species in section Flavi. Phylogenetically, section Flaviis split in eight clades and the section currently contains 33 species. Two species only produce aflatoxin B1and B2(A. pseudotamariiand A. togoensis), and 14 species are able to produce aflatoxin B1, B2, G1and G2: three newly described species A. aflatoxiformans, A. austwickiiand A. cerealisin addition to A. arachidicola, A. minisclerotigenes, A. mottae, A. luteovirescens(formerly A. bombycis), A. nomius, A. novoparasiticus, A. parasiticus, A. pseudocaelatus, A. pseudonomius, A. sergiiand A. transmontanensis. It is generally accepted that A. flavusis unable to produce type G aflatoxins, but here we report on Korean strains that also produce aflatoxin G1and G2. One strain of A. bertholletiuscan produce the immediate aflatoxin precursor 3-O-methylsterigmatocystin, and one strain of Aspergillus sojaeand two strains of Aspergillus alliaceusproduced versicolorins. Strains of the domesticated forms of A. flavusand A. parasiticus, A. oryzaeand A. sojae, respectively, lost their ability to produce aflatoxins, and from the remaining phylogenetically closely related species (belonging to the A. flavus-, A. tamarii-, A. bertholletius- and A. nomius-clades), only A. caelatus, A. subflavusand A. tamariiare unable to produce aflatoxins. With exception of A. togoensisin the A. coremiiformis-clade, all species in the phylogenetically more distant clades (A. alliaceus-, A. coremiiformis-, A. leporis- and A. avenaceus-clade) are unable to produce aflatoxins. Three out of the four species in the A. alliaceus-clade can produce the mycotoxin ochratoxin A: A. alliaceus s. str. and two new species described here as A. neoalliaceusand A. vandermerwei. Eight species produced the mycotoxin tenuazonic acid: A. bertholletius, A. caelatus, A. luteovirescens, A. nomius, A. pseudocaelatus, A. pseudonomius, A. pseudotamariiand A. tamariiwhile the related mycotoxin cyclopiazonic acid was produced by 13 species: A. aflatoxiformans, A. austwickii, A. bertholletius, A. cerealis, A. flavus, A. minisclerotigenes, A. mottae, A. oryzae, A. pipericola, A. pseudocaelatus, A. pseudotamarii, A. sergiiand A. tamarii. Furthermore, A. hancockiiproduced speradine A, a compound related to cyclopiazonic acid. Selected A. aflatoxiformans, A. austwickii, A. cerealis, A. flavus, A. minisclerotigenes, A. pipericolaand A. sergiistrains produced small sclerotia containing the mycotoxin aflatrem. Kojic acid has been found in all species in section Flavi, except A. avenaceusand A. coremiiformis. Only six species in the section did not produce any known mycotoxins: A. aspearensis, A. coremiiformis, A. lanosus, A. leporis, A. sojaeand A. subflavus. An overview of other small molecule extrolites produced in Aspergillussection Flaviis given.
- Published
- 2019
- Full Text
- View/download PDF
24. Polyphasic taxonomy of Aspergillussection Aspergillus(formerly Eurotium), and its occurrence in indoor environments and food
- Author
-
Chen, A.J., Hubka, V., Frisvad, J.C., Visagie, C.M., Houbraken, J., Meijer, M., Varga, J., Demirel, R., Jurjević, Ž., Kubátová, A., Sklenář, F., Zhou, Y.G., and Samson, R.A.
- Abstract
Aspergillussection Aspergillus(formerly the genus Eurotium) includes xerophilic species with uniseriate conidiophores, globose to subglobose vesicles, green conidia and yellow, thin walled eurotium-like ascomata with hyaline, lenticular ascospores. In the present study, a polyphasic approach using morphological characters, extrolites, physiological characters and phylogeny was applied to investigate the taxonomy of this section. Over 500 strains from various culture collections and new isolates obtained from indoor environments and a wide range of substrates all over the world were identified using calmodulin gene sequencing. Of these, 163 isolates were subjected to molecular phylogenetic analyses using sequences of ITS rDNA, partial β-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) genes. Colony characteristics were documented on eight cultivation media, growth parameters at three incubation temperatures were recorded and micromorphology was examined using light microscopy as well as scanning electron microscopy to illustrate and characterize each species. Many specific extrolites were extracted and identified from cultures, including echinulins, epiheveadrides, auroglaucins and anthraquinone bisanthrons, and to be consistent in strains of nearly all species. Other extrolites are species-specific, and thus valuable for identification. Several extrolites show antioxidant effects, which may be nutritionally beneficial in food and beverages. Important mycotoxins in the strict sense, such as sterigmatocystin, aflatoxins, ochratoxins, citrinin were not detected despite previous reports on their production in this section. Adopting a polyphasic approach, 31 species are recognized, including nine new species. ITS is highly conserved in this section and does not distinguish species. All species can be differentiated using CaMor RPB2sequences. For BenA, Aspergillus brunneusand A. niveoglaucusshare identical sequences. Ascospores and conidia morphology, growth rates at different temperatures are most useful characters for phenotypic species identification.
- Published
- 2017
- Full Text
- View/download PDF
25. Re-examination of species limits in Aspergillussection Flavipedesusing advanced species delimitation methods and description of four new species
- Author
-
Sklenář, F., Jurjević, Ž., Houbraken, J., Kolařík, M., Arendrup, M.C., Jørgensen, K.M., Siqueira, J.P.Z., Gené, J., Yaguchi, T., Ezekiel, C.N., Silva Pereira, C., and Hubka, V.
- Abstract
Since the last revision in 2015, the taxonomy of section Flavipedesevolved rapidly along with the availability of new species delimitation techniques. This study aims to re-evaluate the species boundaries of section Flavipedesmembers using modern delimitation methods applied to an extended set of strains (n = 90) collected from various environments. The analysis used DNA sequences of three house-keeping genes (benA, CaM, RPB2) and consisted of two steps: application of several single-locus (GMYC, bGMYC, PTP, bPTP) and multi-locus (STACEY) species delimitation methods to sort the isolates into putative species, which were subsequently validated using DELINEATE software that was applied for the first time in fungal taxonomy. As a result, four new species are introduced, i.e. A. alboluteus, A. alboviridis, A. inusitatusand A. lanuginosus, and A. capensisis synonymized with A. iizukae. Phenotypic analyses were performed for the new species and their relatives and the results showed that the growth parameters at different temperatures and colonies characteristics were useful for differentiation of these taxa. The revised section harbors 18 species, most of them are known from soil. However, the most common species from the section are ecologically diverse, occurring in the indoor environment (6 species), clinical samples (5 species), food and feed (4 species), droppings (4 species) and other less common substrates/environments. Due to the occurrence of section Flavipedesspecies in the clinical material/hospital environment, we also evaluated the susceptibility of 67 strains to six antifungals (amphotericin B, itraconazole, posaconazole, voriconazole, isavuconazole, terbinafine) using the reference EUCAST method. These results showed some potentially clinically relevant differences in susceptibility between species. For example, MICs higher than those observed for A. fumigatuswild-type were found for both triazoles and amphotericin B for A. ardalensis, A. iizukae,and A. spelaeuswhereas A. lanuginosus, A. luppiae, A. movilensis, A. neoflavipes, A. olivimuriaeand A. suttoniaewere comparable to or more susceptible as A. fumigatus. Finally, terbinafine was in vitroactive against all species except A. alboviridis.
- Published
- 2021
- Full Text
- View/download PDF
26. Taxonomy of Aspergillus series Versicolores : species reduction and lessons learned about intraspecific variability.
- Author
-
Sklenář F, Glässnerová K, Jurjević Ž, Houbraken J, Samson RA, Visagie CM, Yilmaz N, Gené J, Cano J, Chen AJ, Nováková A, Yaguchi T, Kolařík M, and Hubka V
- Abstract
Aspergillus series Versicolores members occur in a wide range of environments and substrates such as indoor environments, food, clinical materials, soil, caves, marine or hypersaline ecosystems. The taxonomy of the series has undergone numerous re-arrangements including a drastic reduction in the number of species and subsequent recovery to 17 species in the last decade. The identification to species level is however problematic or impossible in some isolates even using DNA sequencing or MALDI-TOF mass spectrometry indicating a problem in the definition of species boundaries. To revise the species limits, we assembled a large dataset of 518 strains. From these, a total of 213 strains were selected for the final analysis according to their calmodulin ( CaM ) genotype, substrate and geography. This set was used for phylogenetic analysis based on five loci ( benA , CaM , RPB2 , Mcm7 , Tsr1 ). Apart from the classical phylogenetic methods, we used multispecies coalescence (MSC) model-based methods, including one multilocus method (STACEY) and five single-locus methods (GMYC, bGMYC, PTP, bPTP, ABGD). Almost all species delimitation methods suggested a broad species concept with only four species consistently supported. We also demonstrated that the currently applied concept of species is not sustainable as there are incongruences between single-gene phylogenies resulting in different species identifications when using different gene regions. Morphological and physiological data showed overall lack of good, taxonomically informative characters, which could be used for identification of such a large number of existing species. The characters expressed either low variability across species or significant intraspecific variability exceeding interspecific variability. Based on the above-mentioned results, we reduce series Versicolores to four species, namely A. versicolor, A. creber , A. sydowii and A. subversicolor , and the remaining species are synonymized with either A. versicolor or A. creber . The revised descriptions of the four accepted species are provided. They can all be identified by any of the five genes used in this study. Despite the large reduction in species number, identification based on phenotypic characters remains challenging, because the variation in phenotypic characters is high and overlapping among species, especially between A. versicolor and A. creber . Similar to the 17 narrowly defined species, the four broadly defined species do not have a specific ecology and are distributed worldwide. We expect that the application of comparable methodology with extensive sampling could lead to a similar reduction in the number of cryptic species in other extensively studied Aspergillus Sklenář F, Glässnerová K, Jurjević Ž, Houbraken J, Samson RA, Visagie CM, Yilmaz N, Gené J, Cano J, Chen AJ, Nováková A, Yaguchi T, Kolařík M, Hubka V (2022). Taxonomy of Citation: Sklenář F, Glässnerová K, Jurjević Ž, Houbraken J, Samson RA, Visagie CM, Yilmaz N, Gené J, Cano J, Chen AJ, Nováková A, Yaguchi T, Kolařík M, Hubka V (2022). Taxonomy of Aspergillus series Versicolores : species reduction and lessons learned about intraspecific variability. Studies in Mycology 102 : 53-93. doi: 10.3114/sim.2022.102.02., Competing Interests: The authors declare that there is no conflict of interest., (© 2022 Westerdijk Fungal Biodiversity Institute.)
- Published
- 2022
- Full Text
- View/download PDF
27. Endophytic fungi from kale ( Brassica oleracea var. acephala ) modify roots-glucosinolate profile and promote plant growth in cultivated Brassica species. First description of Pyrenophora gallaeciana .
- Author
-
Poveda J, Rodríguez VM, Díaz-Urbano M, Sklenář F, Saati-Santamaría Z, Menéndez E, and Velasco P
- Abstract
Endophytic fungi of crops can promote plant growth through various mechanisms of action (i.e., improve nutrient uptake and nutrient use efficiency, and produce and modulate plant hormones). The genus Brassica includes important horticultural crops, which have been little studied in their interaction with endophytic fungi. Previously, four endophytic fungi were isolated from kale roots ( Brassica oleracea var. acephala ), with different benefits for their host, including plant growth promotion, cold tolerance, and induction of resistance to pathogens ( Xanthomonas campestris ) and pests ( Mamestra brassicae ). In the present work, the molecular and morphological identification of the four different isolates were carried out, describing them as the species Acrocalymma vagum , Setophoma terrestris, Fusarium oxysporum , and the new species Pyrenophora gallaeciana . In addition, using a representative crop of each Brassica U's triangle species and various in vitro biochemical tests, the ability of these fungi to promote plant growth was described. In this sense, the four fungi used promoted the growth of B. rapa , B. napus , B. nigra, B. juncea, and B. carinata , possibly due to the production of auxins, siderophores, P solubilization or cellulase, xylanase or amylase activity. Finally, the differences in root colonization between the four endophytic fungi and two pathogens ( Leptosphaeria maculans and Sclerotinia sclerotiorum ) and the root glucosinolate profile were studied, at different times. In this way, how the presence of progoitrin in the roots reduces their colonization by endophytic and pathogenic fungi was determined, while the possible hydrolysis of sinigrin to fungicidal products controls the colonization of endophytic fungi, but not of pathogens., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Poveda, Rodríguez, Díaz-Urbano, Sklenář, Saati-Santamaría, Menéndez and Velasco.)
- Published
- 2022
- Full Text
- View/download PDF
28. Consolidation of Chloridium : new classification into eight sections with 37 species and reinstatement of the genera Gongromeriza and Psilobotrys .
- Author
-
Réblová M, Hernández-Restrepo M, Sklenář F, Nekvindová J, Réblová K, and Kolařík M
- Abstract
Chloridium is a little-studied group of soil- and wood-inhabiting dematiaceous hyphomycetes that share a rare mode of phialidic conidiogenesis on multiple loci. The genus has historically been divided into three morphological sections, i.e. Chloridium , Gongromeriza , and Psilobotrys . Sexual morphs have been placed in the widely perceived genus Chaetosphaeria , but unlike their asexual counterparts, they show little or no morphological variation. Recent molecular studies have expanded the generic concept to include species defined by a new set of morphological characters, such as the collar-like hyphae, setae, discrete phialides, and penicillately branched conidiophores. The study is based on the consilience of molecular species delimitation methods, phylogenetic analyses, ancestral state reconstruction, morphological hypotheses, and global biogeographic analyses. The multilocus phylogeny demonstrated that the classic concept of Chloridium is polyphyletic, and the original sections are not congeneric. Therefore, we abolish the existing classification and propose to restore the generic status of Gongromeriza and Psilobotrys . We present a new generic concept and define Chloridium as a monophyletic, polythetic genus comprising 37 species distributed in eight sections. In addition, of the taxa earlier referred to Gongromeriza , two have been redisposed to the new genus Gongromerizella . Analysis of published metabarcoding data showed that Chloridium is a common soil fungus representing a significant (0.3 %) proportion of sequence reads in environmental samples deposited in the GlobalFungi database. The analysis also showed that they are typically associated with forest habitats, and their distribution is strongly influenced by climate, which is confirmed by our data on their ability to grow at different temperatures. We demonstrated that Chloridium forms species-specific ranges of distribution, which is rarely documented for microscopic soil fungi. Our study shows the feasibility of using the GlobalFungi database to study the biogeography and ecology of fungi. Taxonomic novelties: New genus: Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Gongromerizella Réblová; New sections: Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Cryptogonytrichum Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Gonytrichopsis Réblová, Hern.-Restr., M. Kolařík & F. Sklenar; Chloridium section Metachloridium Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Volubilia Réblová, Hern.-Restr., M. Kolařík & F. Sklenar; New species: Chloridium bellum Réblová & Hern.-Restr., Chloridium biforme Réblová & Hern.-Restr., Chloridium detriticola Réblová & Hern.-Restr., Chloridium gamsii Réblová & Hern.-Restr., Chloridium guttiferum Réblová & Hern.-Restr., Chloridium moratum Réblová & Hern.-Restr., Chloridium peruense Réblová & Hern.-Restr., Chloridium novae-zelandiae Réblová & Hern.-Restr., Chloridium elongatum Réblová & Hern.-Restr., Chloridium volubile (Nees & T. Nees) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, New varieties: Chloridium bellum (Sacc.) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, luteum Réblová & Hern.-Restr., Chloridium detriticola ) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, var . effusum Réblová & Hern.-Restr., Chloridium chloridioides var . convolutum Réblová & Hern.-Restr.; New combinations: Chloridium section Gonytrichum (Nees & T. Nees) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Mesobotrys (Sacc.) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Pseudophialocephala (M.S. Calabon et al. (F. Mangenot) Réblová, Chloridium simile (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium chloridioides (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium subglobosum (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium fuscum (Corda) Réblová & Hern.-Restr., Chloridium ypsilosporum (Hol.-Jech.) Réblová & Hern.-Restr., Chloridium costaricense (G. Weber et al. Réblová M, Hernández-Restrepo M, Sklenář F, Nekvindová J, Réblová K, Kolařík M (2022). Consolidation of Chloridium cuneatum (N.G. Liu et al. ) Réblová & Hern.-Restr., Fusichloridium cylindrosporum (W. Gams & Hol.-Jech.) Réblová, Gongromeriza myriocarpa (Fr.) Réblová, Gongromeriza pygmaea (P. Karst.) Réblová, Gongromerizella lignicola (F. Mangenot) Réblová, Gongromerizella pachytrachela (W. Gams & Hol.-Jech) Réblová, Gongromerizella pini (Crous & Akulov) Réblová; New name: Chloridium pellucidum Réblová & Hern.-Restr.; Epitypifications (basionyms): Chaetopsis fusca Corda , Gonytrichum caesium var . subglobosum W. Gams & Hol.-Jech.; Lectotypification (basionym): Gonytrichum caesium Nees & T. Nees. Citation: Réblová M, Hernández-Restrepo M, Sklenář F, Nekvindová J, Réblová K, Kolařík M (2022). Consolidation of Chloridium : new classification into eight sections with 37 species and reinstatement of the genera Gongromeriza and Psilobotrys . Studies in Mycology 103 : 87-212. doi: 10.3114/sim.2022.103.04., Competing Interests: The authors declare that there is no conflict of interest., (© 2022 Westerdijk Fungal Biodiversity Institute.)
- Published
- 2022
- Full Text
- View/download PDF
29. Phylogenetic Reassessment, Taxonomy, and Biogeography of Codinaea and Similar Fungi.
- Author
-
Réblová M, Kolařík M, Nekvindová J, Réblová K, Sklenář F, Miller AN, and Hernández-Restrepo M
- Abstract
The genus Codinaea is a phialidic, dematiaceous hyphomycete known for its intriguing morphology and turbulent taxonomic history. This polyphasic study represents a new, comprehensive view on the taxonomy, systematics, and biogeography of Codinaea and its relatives. Phylogenetic analyses of three nuclear loci confirmed that Codinaea is polyphyletic. The generic concept was emended; it includes four morphotypes that contribute to its morphological complexity. Ancestral inference showed that the evolution of some traits is correlated and that these traits previously used to delimit taxa at the generic level occur in species that were shown to be congeneric. Five lineages of Codinaea -like fungi were recognized and introduced as new genera: Codinaeella , Nimesporella , Stilbochaeta , Tainosphaeriella, and Xyladelphia . Dual DNA barcoding facilitated identification at the species level. Codinaea and its segregates thrive on decaying plants, rarely occurring as endophytes or plant pathogens. Environmental ITS sequences indicate that they are common in bulk soil. The geographic distribution found using GlobalFungi database was consistent with known data. Most species are distributed in either the Holarctic realm or tropical geographic regions. The ancestral climatic zone was temperate, followed by transitions to the tropics; these fungi evolved primarily in Eurasia and Americas, with subsequent transitions to Africa and Australasia.
- Published
- 2021
- Full Text
- View/download PDF
30. Overexpression of native IF1 downregulates glucose-stimulated insulin secretion by pancreatic INS-1E cells.
- Author
-
Kahancová A, Sklenář F, Ježek P, and Dlasková A
- Subjects
- Adenosine Triphosphate metabolism, Animals, Cell Line, Cyclic AMP-Dependent Protein Kinases metabolism, Cyclic CMP analogs & derivatives, Cyclic CMP metabolism, Down-Regulation, Glucose metabolism, Proteins genetics, RNA, Small Interfering genetics, Rats, Signal Transduction, Up-Regulation, ATPase Inhibitory Protein, Insulin Secretion, Insulin-Secreting Cells metabolism, Proteins metabolism
- Abstract
We have previously reported that transient knock-down of ATPase inhibitory factor 1 (IF1) by siRNA upregulates ATP levels and subsequently augments insulin secretion in model pancreatic β-cells INS-1E. Here we investigated how long-term IF1-overexpression impacts pancreatic β-cell bioenergetics and insulin secretion. We generated INS-1E cell line stably overexpressing native IF1. We revealed that IF1 overexpression leads to a substantial decrease in ATP levels and reduced glucose-stimulated insulin secretion. A decrease in total cellular ATP content was also reflected in decreased free ATP cytosolic and mitochondrial levels, as monitored with ATeam biosensor. Consistently, cellular respiration of IF1-overexpressing cells was decreased. 3D structured illumination microscopy (SIM) revealed a higher amount of insulin granules with higher volume in IF1-overexpressing cells. Similar effects occurred when cells were incubated at low glucose concentrations. Noteworthy, activation of PKA by dibutyryl cAMP entirely abolished the inhibitory effect of IF1 overexpression on ATP production and insulin secretion. Mitochondrial network morphology and cristae ultrastructure in INS-1E overexpressing IF1 remained mostly unchanged. Finally, we show that INS-1E cells decrease their IF1 protein levels relative to ATP synthase α-subunit in response to increased glucose. In conclusion, IF1 actively downregulates INS-1E cellular metabolism and reduces their ability to secrete insulin.
- Published
- 2020
- Full Text
- View/download PDF
31. Fungal Planet description sheets: 951-1041.
- Author
-
Crous PW, Wingfield MJ, Lombard L, Roets F, Swart WJ, Alvarado P, Carnegie AJ, Moreno G, Luangsaard J, Thangavel R, Alexandrova AV, Baseia IG, Bellanger JM, Bessette AE, Bessette AR, De la Peña-Lastra S, García D, Gené J, Pham THG, Heykoop M, Malysheva E, Malysheva V, Martín MP, Morozova OV, Noisripoom W, Overton BE, Rea AE, Sewall BJ, Smith ME, Smyth CW, Tasanathai K, Visagie CM, Adamčík S, Alves A, Andrade JP, Aninat MJ, Araújo RVB, Bordallo JJ, Boufleur T, Baroncelli R, Barreto RW, Bolin J, Cabero J, Caboň M, Cafà G, Caffot MLH, Cai L, Carlavilla JR, Chávez R, de Castro RRL, Delgat L, Deschuyteneer D, Dios MM, Domínguez LS, Evans HC, Eyssartier G, Ferreira BW, Figueiredo CN, Liu F, Fournier J, Galli-Terasawa LV, Gil-Durán C, Glienke C, Gonçalves MFM, Gryta H, Guarro J, Himaman W, Hywel-Jones N, Iturrieta-González I, Ivanushkina NE, Jargeat P, Khalid AN, Khan J, Kiran M, Kiss L, Kochkina GA, Kolařík M, Kubátová A, Lodge DJ, Loizides M, Luque D, Manjón JL, Marbach PAS, Massola NS Jr, Mata M, Miller AN, Mongkolsamrit S, Moreau PA, Morte A, Mujic A, Navarro-Ródenas A, Németh MZ, Nóbrega TF, Nováková A, Olariaga I, Ozerskaya SM, Palma MA, Petters-Vandresen DAL, Piontelli E, Popov ES, Rodríguez A, Requejo Ó, Rodrigues ACM, Rong IH, Roux J, Seifert KA, Silva BDB, Sklenář F, Smith JA, Sousa JO, Souza HG, De Souza JT, Švec K, Tanchaud P, Tanney JB, Terasawa F, Thanakitpipattana D, Torres-Garcia D, Vaca I, Vaghefi N, van Iperen AL, Vasilenko OV, Verbeken A, Yilmaz N, Zamora JC, Zapata M, Jurjević Ž, and Groenewald JZ
- Abstract
Novel species of fungi described in this study include those from various countries as follows: Antarctica , Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina , Geastrum wrightii on humus in mixed forest. Australia , Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil , Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles , Lactifluus guanensis on soil. Canada , Sorocybe oblongispora on resin of Picea rubens. Chile , Colletotrichum roseum on leaves of Lapageria rosea. China , Setophoma caverna from carbonatite in Karst cave. Colombia , Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica , Psathyrella pivae on wood. Cyprus , Clavulina iris on calcareous substrate. France , Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies , Helminthosphaeria hispidissima on dead wood. Guatemala , Talaromyces guatemalensis in soil. Malaysia , Neotracylla pini (incl. Tracyllales ord. nov. and Neotracylla gen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand , Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan , Russula quercus-floribundae on forest floor. Portugal , Trichoderma aestuarinum from saline water. Russia , Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa , Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme , Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter of Eugenia capensis , Cyphellophora goniomatis on leaves of Gonioma kamassi , Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata , Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa , Harzia metrosideri on leaf litter of Metrosideros sp., Hippo pota myces phragmitis (incl. Hippo pota myces gen. nov.) on leaves of Phragmites australis , Lectera philenopterae on Philenoptera violacea , Leptosillia mayteni on leaves of Maytenus heterophylla , Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata , Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai , Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam. nov.) on leaves of Persea americana , Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicillium cuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpus falcatus , Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis , Pseudopenidiella podocarpi, Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius , Scolecobasidium blechni on leaves of Blechnum capense , Stomiopeltis syzygii on leaves of Syzygium chordatum , Strelitziomyces knysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba , Talaromyces clemensii from rotting wood in goldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain , Boletopsis mediterraneensis on soil, Calycina cortegadensisi on a living twig of Castanea sativa , Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensis on dead attached twig of Quercus robur , Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litter of Laurus azorica , Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris. Thailand , Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis on leaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA , Cytosporella juncicola and Davidiellomyces juncicola on culms of Juncus effusus , Monochaetia massachusettsianum from air sample, Neohelicomyces melaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides × lanceolata , Pseudocamarosporium eucalypti on leaves of Eucalyptus sp . , Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascus turneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii on leaf of Serenoa repens. Vietnam , Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological and culture characteristics are supported by DNA barcodes., (© 2019 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute.)
- Published
- 2019
- Full Text
- View/download PDF
32. Polyphasic data support the splitting of Aspergillus candidus into two species; proposal of Aspergillus dobrogensis sp. nov.
- Author
-
Hubka V, Nováková A, Jurjević Ž, Sklenář F, Frisvad JC, Houbraken J, Arendrup MC, Jørgensen KM, Siqueira JPZ, Gené J, and Kolařík M
- Subjects
- Antifungal Agents pharmacology, Aspergillus drug effects, Bayes Theorem, DNA, Fungal genetics, Microbial Sensitivity Tests, Mycological Typing Techniques, Phenotype, Sequence Analysis, DNA, Aspergillus classification, Phylogeny
- Abstract
Aspergillus candidus is a species frequently isolated from stored grain, food, indoor environments, soil and occasionally also from clinical material. Recent bioprospecting studies highlighted the potential of using A. candidus and its relatives in various industrial sectors as a result of their significant production of enzymes and bioactive compounds. A high genetic variability was observed among A. candidus isolates originating from various European countries and the USA, that were mostly isolated from indoor environments, caves and clinical material. The A. candidus sensu lato isolates were characterized by DNA sequencing of four genetic loci, and agreement between molecular species delimitation results, morphological characters and exometabolite spectra were studied. Classical phylogenetic methods (maximum likelihood, Bayesian inference) and species delimitation methods based on the multispecies coalescent model supported recognition of up to three species in A. candidus sensu lato. After evaluation of phenotypic data, a broader species concept was adopted, and only one new species, Aspergillus dobrogensis, was proposed. This species is represented by 22 strains originating from seven countries (ex-type strain CCF 4651
T =NRRL 62821T =IBT 32697T =CBS 143370T ) and its differentiation from A. candidus is relevant for bioprospecting studies because these species have different exometabolite profiles. Evaluation of the antifungal susceptibility of section Candidi members to six antifungals using the reference EUCAST method showed that all species have low minimum inhibitory concentrations for all tested antifungals. These results suggest applicability of a wide spectrum of antifungal agents for treatment of infections caused by species from section Candidi.- Published
- 2018
- Full Text
- View/download PDF
33. Regulation of glucose-stimulated insulin secretion by ATPase Inhibitory Factor 1 (IF1).
- Author
-
Kahancová A, Sklenář F, Ježek P, and Dlasková A
- Subjects
- Animals, Cell Line, Tumor, Insulin-Secreting Cells cytology, Rats, Rats, Wistar, ATPase Inhibitory Protein, Glucose metabolism, Insulin metabolism, Insulin-Secreting Cells metabolism, Oxygen Consumption physiology, Proteins metabolism
- Abstract
ATPase Inhibitory factor 1 (IF1) is an endogenous regulator of mitochondrial ATP synthase, which is involved in cellular metabolism. Although great progress has been made, biological roles of IF1 and molecular mechanisms of its action are still to be elucidated. Here, we show that IF1 is present in pancreatic β-cells, bound to the ATP synthase also under normal physiological conditions. IF1 silencing in model pancreatic β-cells (INS-1E) increases insulin secretion over a range of glucose concentrations. The left-shifted dose-response curve reveals excessive insulin secretion even under low glucose, corresponding to fasting conditions. A parallel increase in cellular respiration and ATP levels is observed. To conclude, our results indicate that IF1 is a negative regulator of insulin secretion involved in pancreatic β-cell glucose sensing., (© 2018 Federation of European Biochemical Societies.)
- Published
- 2018
- Full Text
- View/download PDF
34. Taxonomic annotation of public fungal ITS sequences from the built environment - a report from an April 10-11, 2017 workshop (Aberdeen, UK).
- Author
-
Nilsson RH, Taylor AFS, Adams RI, Baschien C, Johan Bengtsson-Palme, Cangren P, Coleine C, Heide-Marie Daniel, Glassman SI, Hirooka Y, Irinyi L, Reda Iršėnaitė, Pedro M Martin-Sanchez, Meyer W, Seung-Yoon Oh, Jose Paulo Sampaio, Seifert KA, Sklenář F, Dirk Stubbe, Suh SO, Summerbell R, Svantesson S, Martin Unterseher, Cobus M Visagie, Weiss M, Woudenberg JH, Christian Wurzbacher, den Wyngaert SV, Yilmaz N, Andrey Yurkov, Kõljalg U, and Abarenkov K
- Abstract
Recent DNA-based studies have shown that the built environment is surprisingly rich in fungi. These indoor fungi - whether transient visitors or more persistent residents - may hold clues to the rising levels of human allergies and other medical and building-related health problems observed globally. The taxonomic identity of these fungi is crucial in such pursuits. Molecular identification of the built mycobiome is no trivial undertaking, however, given the large number of unidentified, misidentified, and technically compromised fungal sequences in public sequence databases. In addition, the sequence metadata required to make informed taxonomic decisions - such as country and host/substrate of collection - are often lacking even from reference and ex-type sequences. Here we report on a taxonomic annotation workshop (April 10-11, 2017) organized at the James Hutton Institute/University of Aberdeen (UK) to facilitate reproducible studies of the built mycobiome. The 32 participants went through public fungal ITS barcode sequences related to the built mycobiome for taxonomic and nomenclatural correctness, technical quality, and metadata availability. A total of 19,508 changes - including 4,783 name changes, 14,121 metadata annotations, and the removal of 99 technically compromised sequences - were implemented in the UNITE database for molecular identification of fungi (https://unite.ut.ee/) and shared with a range of other databases and downstream resources. Among the genera that saw the largest number of changes were Penicillium , Talaromyces , Cladosporium, Acremonium , and Alternaria , all of them of significant importance in both culture-based and culture-independent surveys of the built environment.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.