43 results on '"Sorochkina, T."'
Search Results
2. Identification of Impurities in Diborane by Gas Chromatography–Mass Spectrometry
- Author
-
Sozin, A. Yu., Chernova, O. Yu., and Sorochkina, T. G.
- Published
- 2024
- Full Text
- View/download PDF
3. Prospects for the Development of Methods for the Analysis of High-Purity Volatile Substances
- Author
-
Sozin, A. Yu., Krylov, V. A., Chernova, O. Yu., Sorochkina, T. G., Bulanov, A. D., and Kotkov, A. P.
- Subjects
Gas chromatography -- Usage -- Methods ,Mass spectrometry -- Usage -- Methods ,Inorganic compounds -- Identification and classification -- Structure -- Properties ,Chemistry - Abstract
This review is devoted to the consideration of prospects and directions for the development of methods and approaches to the analysis of high-purity industrial gases and volatile hydrides, chlorides, fluorides, and organoelement compounds with natural and isotopically enriched compositions. The currently known capabilities for the determination of impurities in them using mass spectrometry, IR spectroscopy, gas chromatography, and chromatography-mass spectrometry are analyzed., Author(s): A. Yu. Sozin [sup.1] , V. A. Krylov [sup.2] , O. Yu. Chernova [sup.1] , T. G. Sorochkina [sup.1] , A. D. Bulanov [sup.1] , A. P. Kotkov [sup.3] [...]
- Published
- 2023
- Full Text
- View/download PDF
4. Study of the Impurity Composition of Isotopically Enriched Germane 70GeH4 by Gas Chromatography–Mass Spectrometry
- Author
-
Sozin, A. Yu., Krylov, V. A., Chernova, O. Yu., Sorochkina, T. G., Bulanov, A. D., Troshin, O. Yu., Adamchik, S. A., and Lashkov, A. Yu.
- Published
- 2022
- Full Text
- View/download PDF
5. Gas Chromatography-Mass Spectrometry Analysis of High-Purity Volatile Inorganic Hydrides
- Author
-
Sozin, A. Yu., Krylov, V. A., Chernova, O. Yu., Sorochkina, T. G., Kotkov, A. P., Grishnova, N. D., and Skosyrev, A. I.
- Subjects
Analysis ,Gas chromatography -- Analysis ,Mass spectrometry -- Analysis ,Sulfur compounds -- Analysis ,Silicon compounds -- Analysis - Abstract
Author(s): A. Yu. Sozin [sup.1], V. A. Krylov [sup.2], O. Yu. Chernova [sup.1], T. G. Sorochkina [sup.1], A. P. Kotkov [sup.3], N. D. Grishnova [sup.3], A. I. Skosyrev [sup.3], G. [...], The review is devoted to the capabilities of gas chromatography-mass spectrometry in the analysis of high-purity volatile hydrides of naturally occurring and isotopically enriched compositions. Problems related to experimental techniques, chromatographic separation, identification, and quantitative determination of impurities are discussed. The application of this method has significantly expanded data coverage on the nature, number, and limiting possibilities of the determination of impurities in volatile inorganic hydrides. The identified impurities are compounds of various classes. Among them are atmospheric gases; saturated, unsaturated, and aromatic C.sub.1-C.sub.9 hydrocarbons; chlorine- and fluorine-containing C.sub.1-C.sub.4 hydrocarbons; homologues and alkyl derivatives of hydrides; Si.sub.2-Si.sub.4 siloxanes; fluorosiloxanes; oxygen-containing hydrocarbons; sulfur-containing substances; and hydrides of other elements. Gas chromatography-mass spectrometry analysis made it possible to detect the presence of impurities in isotopically enriched silicon and germanium hydrides, which are their molecular isobars. The use of gas chromatography-mass spectrometry in the analysis of high-purity inorganic hydrides makes it possible to reach the detection limits of impurities of 10.sup.-8-10.sup.-5 mol %.
- Published
- 2021
- Full Text
- View/download PDF
6. Determination of the Impurity Level of High-Purity Arsine by Chromatography-Mass-Spectrometry
- Author
-
Sozin, A. Yu., Sorochkina, T. G., Chernova, O. Yu., Kotkov, A. P., Grishnova, N. D., Polezhaev, D. M., and Pushkarev, G. V.
- Subjects
Spectroscopy ,Solar energy ,Arsenic compounds ,Chromatography ,Sulfur compounds ,Spectrum analysis - Abstract
Author(s): A. Yu. Sozin [sup.1], T. G. Sorochkina [sup.1], O. Yu. Chernova [sup.1], A. P. Kotkov [sup.2], N. D. Grishnova [sup.2], D. M. Polezhaev [sup.2], G. V. Pushkarev [sup.2], S. [...], The impurity composition of arsine is studied by gas chromatography-mass-spectrometry. Impu-rities of permanent gases; carbon dioxide; hydrides; saturated, unsaturated, and aromatic hydrocarbons C.sub.1-C.sub.6; halogenated hydrocarbons; sulfur compounds; and arsine and diarsine alkyl derivatives are determined. The impurity level of high-purity arsine is 10.sup.-6-10.sup.-5 vol %. Impurity concentrations in arsine after synthesis and in the fractions extracted in the course of its rectification are rather high and lie in the range 10.sup.-6-0.1 vol %. The limits of detection for impurities are 2 x 10.sup.-7-2 x 10.sup.-4 vol %.
- Published
- 2021
- Full Text
- View/download PDF
7. Analysis of High-Purity Silane of Natural and Isotopically Enriched Composition by Gas Chromatography-Mass-Spectrometry
- Author
-
Sozin, A. Yu., Krylov, V. A., Chernova, O. Yu., Sorochkina, T. G., Bulanov, A. D., Troshin, O. Yu., and Kotkov, A. P.
- Subjects
Analysis ,Spectroscopy -- Analysis ,Gas chromatography -- Analysis ,Atmospheric carbon dioxide -- Analysis ,Silicon compounds -- Analysis ,Magnesium compounds -- Analysis ,Spectrum analysis -- Analysis - Abstract
Author(s): A. Yu. Sozin [sup.1], V. A. Krylov [sup.2], O. Yu. Chernova [sup.1], T. G. Sorochkina [sup.1], A. D. Bulanov [sup.1], O. Yu. Troshin [sup.1], A. P. Kotkov [sup.3], N. [...], The impurity composition of natural and isotopically enriched silane obtained from magnesium silicide and silicon tetrafluoride is studied by gas chromatography-mass-spectrometry. The impurities characteristic of silane with natural and isotopically enriched composition are atmospheric gases; carbon dioxide; hydrides; saturated, unsaturated, and aromatic hydrocarbons; halogenated hydrocarbons; alkyl derivatives and silane homologues, siloxanes. The impurity content of high-purity silane does not exceed 10.sup.-7-10.sup.-5 mol % After synthesis, the concentrations of impurities in the silane and fractions isolated by its distillation purification lie in the range n x 10.sup.-6 - n x 10 mol % The limits of detection for impurities are 1 x 10.sup.-8-9 x 10.sup.-4 mol %
- Published
- 2020
- Full Text
- View/download PDF
8. Identification of Impurities in High-Pure Arsine by Chromatography-Mass-Spectrometry
- Author
-
Sozin, A. Yu., Chernova, O. Yu., Sorochkina, T. G., Kotkov, A. P., Grishnova, N. D., Polezhaev, D. M., and Pushkarev, G. V.
- Subjects
Usage ,Spectra ,Database industry ,Arsenic compounds -- Usage ,Dimethyl sulfide -- Usage ,Chromatography -- Usage ,Mass spectrometry -- Usage ,Database industry -- Usage ,Adsorption -- Usage ,Reagents -- Usage ,Chemical tests and reagents -- Usage - Abstract
Author(s): A. Yu. Sozin [sup.1], O. Yu. Chernova [sup.1], T. G. Sorochkina [sup.1], A. P. Kotkov [sup.1] [sup.2], N. D. Grishnova [sup.1] [sup.2], D. M. Polezhaev [sup.2], G. V. Pushkarev [...], A method of chromatography-mass spectrometry is used to study the impurity composition of arsine synthesized by the reaction of arsenic chloride with sodium borohydride. Capillary adsorption columns with adsorbents modified silica and polytrimethylsilylpropine is used for the separation of impurities. Impurities are identified by comparing their mass spectra with the NIST database, published data, as well as by reconstructing their structures from fragment ions. Impurities of permanent gases; saturated and unsaturated hydrocarbons C.sub.1-C.sub.6; chlorinated, oxygenated, and aromatic hydrocarbons; volatile inorganic hydrides; and alkyl derivatives of arsine, trimethyl fluorosilane, carbon sulfur dioxide, and dimethyl sulfide are identified in arsine. Mass spectra of C.sub.2H.sub.3AsH.sub.2, CH.sub.3AsHC.sub.2H.sub.5, and C.sub.2H.sub.5As.sub.2H.sub.3 impurities are obtained for the first time.
- Published
- 2020
- Full Text
- View/download PDF
9. Study of the Composition of Impurities in High-Purity Monosilane Obtained from Magnesium Silicide Using the Method of Chromatography–Mass Spectrometry
- Author
-
Sozin, A. Yu., Kotkov, A. P., Grishnova, N. D., Anoshin, O. S., Skosyrev, A. I., Arhiptsev, D. F., Chernova, O. Yu., and Sorochkina, T. G.
- Published
- 2019
- Full Text
- View/download PDF
10. Study of the Stability of a Number of Molecular Impurities in Monosilane
- Author
-
Sozin, A. Yu., Krylov, V. A., Chernova, O. Yu., Sorochkina, T. G., Bulanov, A. D., Troshin, O. Yu., Kotkov, A. P., Grishnova, N. D., Skosyrev, A. I., and Matveeva, M. N.
- Published
- 2019
- Full Text
- View/download PDF
11. Sources of Carbon Impurities in the Preparation of High-Purity Monoisotopic 28Si by a Hydride Method
- Author
-
Bulanov, A. D., Gavva, V. A., Sozin, A. Yu., Churbanov, M. F., Kotereva, T. V., Kirillov, Yu. P., Lashkov, A. Yu., Troshin, O. Yu., Sorochkina, T. G., Chernova, O. Yu., Abrosimov, N. V., and Shabarova, L. V.
- Published
- 2018
- Full Text
- View/download PDF
12. Impurity composition of high-purity isotopically enriched monosilane and monogermane
- Author
-
Sozin, A. Yu., Bulanov, A. D., Churbanov, M. F., Chernova, O. Yu., Sorochkina, T. G., and Nushtaeva, L. B.
- Published
- 2017
- Full Text
- View/download PDF
13. Liquid-vapor equilibria in GeF4-A (A = C1-C4 alkane impurity) systems
- Author
-
Troshin, O. Yu., Bulanov, A. D., Sorochkina, T. G., and Kolesnikov, A. N.
- Published
- 2015
- Full Text
- View/download PDF
14. Determination of impurities in germanium tetrafluoride by IR spectroscopy and gas chromatography
- Author
-
Sennikov, P. G., Bulanov, A. D., Krylov, V. A., and Sorochkina, T. G.
- Published
- 2010
- Full Text
- View/download PDF
15. Determination of C1–C4 hydrocarbons and sulfur hexafluoride in high-purity germanium tetrafluoride of natural and isotopically enriched composition using gas chromatography
- Author
-
Krylov, V. A. and Sorochkina, T. G.
- Published
- 2009
- Full Text
- View/download PDF
16. Molecular analysis of isotopically enriched 28SiF4 and 28SiH4 prepared from it
- Author
-
Krylov, V. A., Sennikov, P. G., Chernova, O. Yu., Sorochkina, T. G., Sozin, A. Yu., Chuprov, L. A., Adamchik, S. A., and Kotkov, A. P.
- Published
- 2008
- Full Text
- View/download PDF
17. Study of the Impurity Composition of Isotopically Enriched Germane 70GeH4 by Gas Chromatography–Mass Spectrometry.
- Author
-
Sozin, A. Yu., Krylov, V. A., Chernova, O. Yu., Sorochkina, T. G., Bulanov, A. D., Troshin, O. Yu., Adamchik, S. A., and Lashkov, A. Yu.
- Abstract
The impurity composition of isotopically enriched germane
70 GeH4 was studied for the first time by gas chromatography–mass spectrometry. Impurities were separated using capillary adsorption columns: GS-GasPro (60 m × 0.32 mm) packed with silica gel, GS-CarbonPLOT (25 m × 0.32 mm × 0.25 μm) packed with a carbon sorbent, and a column packed with poly(trimethylsilylpropyne) (25 m × 0.26 mm, df = 0.25 μm)). The use of these columns is shown to provide a high resolution of chromatographed substances. Impurities were identified by comparing their mass spectra with the data of the NIST library. Gases forming a part of the atmosphere, C1 –C7 hydrocarbons, chlorine- and oxygen-containing hydrocarbons, sulfur-containing substances, and homologs and alkyl derivatives of germane were detected in germane. As a result of studying the composition of their mass spectra, the mass spectra of impurities70 GeC3 H10 and70 GeC4 H12 , which are absent in the published sources, were obtained and described for the first time. The concentrations of impurities in high-purity germane, as well as their distribution over fractions isolated during the rectification purification of germane, were determined. The limits of detection of the identified substances were 2 ×10–7 –1 × 10–4 mol %. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF
18. Hydrocarbon impurities in SiF4 and SiH4 prepared from it
- Author
-
Bulanov, A. D., Sennikov, P. G., Krylov, V. A., Sorochkina, T. G., Chuprov, L. A., Chernova, O. Yu., and Troshin, O. Yu.
- Published
- 2007
- Full Text
- View/download PDF
19. Gas-Chromatographic Determination of C1-C4 Hydrocarbon Trace Impurities in Silicon Tetrafluoride
- Author
-
Krylov, V. A. and Sorochkina, T. G.
- Published
- 2005
- Full Text
- View/download PDF
20. C1–C4 hydrocarbon release in the preparation of SiF4 through Na2SiF6 pyrolysis
- Author
-
Krylov, V. A., Sorochkina, T. G., Bulanov, A. D., and Lashkov, A. Yu.
- Published
- 2012
- Full Text
- View/download PDF
21. Study of the Impurity Composition of Isotopically Enriched Germane 70GeH4by Gas Chromatography–Mass Spectrometry
- Author
-
Sozin, A. Yu., Krylov, V. A., Chernova, O. Yu., Sorochkina, T. G., Bulanov, A. D., Troshin, O. Yu., Adamchik, S. A., and Lashkov, A. Yu.
- Abstract
Abstract: The impurity composition of isotopically enriched germane
70 GeH4 was studied for the first time by gas chromatography–mass spectrometry. Impurities were separated using capillary adsorption columns: GS-GasPro (60 m × 0.32 mm) packed with silica gel, GS-CarbonPLOT (25 m × 0.32 mm × 0.25 μm) packed with a carbon sorbent, and a column packed with poly(trimethylsilylpropyne) (25 m × 0.26 mm, df = 0.25 μm)). The use of these columns is shown to provide a high resolution of chromatographed substances. Impurities were identified by comparing their mass spectra with the data of the NIST library. Gases forming a part of the atmosphere, C1 –C7 hydrocarbons, chlorine- and oxygen-containing hydrocarbons, sulfur-containing substances, and homologs and alkyl derivatives of germane were detected in germane. As a result of studying the composition of their mass spectra, the mass spectra of impurities70 GeC3 H10 and70 GeC4 H12 , which are absent in the published sources, were obtained and described for the first time. The concentrations of impurities in high-purity germane, as well as their distribution over fractions isolated during the rectification purification of germane, were determined. The limits of detection of the identified substances were 2 ×10–7 –1 × 10–4 mol %.- Published
- 2022
- Full Text
- View/download PDF
22. IDENTIFICATION OF IMPURITIES IN SPECIAL PURITY SELENIUM USING THE GAS CHROMATOGRAPHY-MASS SPECTROMETRY METHOD
- Author
-
Sozin, А. Iu., Churbanov, M. F., Chernova, О. Iu., Sorochkina, T. G., Snopatin, G. E., Skripachev, I. V., Lesina, Iu. А., and Программа фундаментальных научных исследований государственных академий наук на 2018-2020 годы, № темы 0095-2018-0012.
- Abstract
The molecular composition of impurities in special purity selenium was studied for the first time using the gas chromatography-mass spectrometry method. The concentrate of impurities with boiling points below that of the selenium was obtained by its vacuum distillation. The impurities were condensed and frozen from the vapor phase beyond the zone of the complete condensation of selenium vapors. The analysis of the obtained samples was performed using an Agilent 6890 / 5973N gas chromatography-mass spectrometer with a quadrupole mass analyzer. The samples’ input into the analytical device was carried out using a vacuum system made of stainless steel tubes. For the separation of impurities, GS-GasPro 60 m × 0.32 mm capillary adsorption columns with a silica gel sorbent and a 25 m × 0.26 mm polytrimethylsilylpropine (PTMSP) sorbent were used to separate the substances with low and quite high boiling temperatures. Their combined use made it possible to determine a wider range of impurities in selenium. The impurities were identified by comparing the experimental mass spectra with the data from the NIST database. In the absence of mass spectra of the detected substances in this library, their identification was carried out by restoring the composition with the fragment ions. Thus, the mass spectrum of the COSe impurity, which was not found in the literature, was decoded and described. In selenium, impurities of constant gases, carbon dioxide, C2 – C6 hydrocarbons, aromatic hydrocarbons, carbonyl sulphide, some chlorinated hydrocarbons, cyan, selenium compounds, and ethers were identified.Keywords: selenium of special purity, impurities, identification, gas chromatography-mass spectrometry, capillary column(Russian)DOI: http://dx.doi.org/10.15826/analitika.2019.23.1.007А.Iu. Sozin, M.F. Churbanov, О.Iu. Chernova, T.G. Sorochkina,G.E. Snopatin, I.V. Skripachev, Iu.А. Lesina G.G. Devyatykh Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences,Tropinina Str.,49, Nizhny Novgorod, 603950, Russian Federation, Впервые с использованием метода хромато-масс-спектрометрии исследован молекулярный состав примесей в селене особой чистоты. Концентрат нижекипящих по отношению к селену примесей был получен при его вакуумной дистилляции. Примеси конденсировали и перемораживали из паровой фазы за зоной полной конденсации паров селена. Анализ полученных проб проводили с использованием хромато-масс-спектрометра Agilent 6890/5973N. Их ввод в аналитический прибор осуществляли с помощью вакуумной системы. Для разделения примесей использовали капиллярные адсорбционные колонки GS-GasPro 60 м× 0.32 ммс сорбентом модифицированным силикагелем и с сорбентом политриметилсилилпропином (ПТМСП) 25 м × 0.26 мм, df = 0.25 мкм, позволяющие разделять вещества как с низкими, так и с достаточно высокими температурами кипения. Их совместное применение позволило определять в селене более широкий круг примесей. Идентификацию примесей выполняли по их масс-спектрам. Если масс-спектры определяемых веществ не соответствовали ни одному из библиотечных, то их идентификацию проводили восстановлением состава по фрагментным ионам. Таким образом был расшифрован и описан не найденный в литературных источниках масс-спектр примеси СOSe. В селене идентифицированы примеси постоянных газов, диоксида углерода, углеводородов С2–С6, ароматических углеводородов, карбонилсульфида, сероуглерода, некоторых хлорпроизводных углеводородов, циана, соединений селена, эфиров.Ключевые слова: селен особой чистоты, примеси, масс-спектр, идентификация, хромато-масс-спектрометрический анализ.DOI: http://dx.doi.org/10.15826/analitika.2019.23.1.007
- Published
- 2019
23. Identifi cation of impurities in special purity selenium using the gas chromatography-mass spectrometry method
- Author
-
Sozin, А. Iu., Churbanov, M. F., Chernova, О. Iu., Sorochkina, T. G., Snopatin, G. E., Skripachev, I. V., and Lesina, Iu. А.
- Subjects
МАСС-СПЕКТР ,ПРИМЕСИ ,IDENTIFICATION ,CAPILLARY COLUMN ,IMPURITIES ,ИДЕНТИФИКАЦИЯ ,SELENIUM OF SPECIAL PURITY ,GAS CHROMATOGRAPHY-MASS SPECTROMETRY ,СЕЛЕН ОСОБОЙ ЧИСТОТЫ ,ХРОМАТО-МАСС-СПЕКТРОМЕТРИЧЕСКИЙ АНАЛИЗ - Abstract
Submitted 20 October 2018, received in revised form 12 November 2018 Поступила в редакцию 20 октября 2018 г., после доработки 12 ноября 2018 г. The molecular composition of impurities in special purity selenium was studied for the first time using the gas chromatography-mass spectrometry method. The concentrate of impurities with boiling points below that of the selenium was obtained by its vacuum distillation. The impurities were condensed and frozen from the vapor phase beyond the zone of the complete condensation of selenium vapors. The analysis of the obtained samples was performed using an Agilent 6890 / 5973N gas chromatography-mass spectrometer with a quadrupole mass analyzer. The samples’ input into the analytical device was carried out using a vacuum system made of stainless steel tubes. For the separation of impurities, GS-GasPro 60 m . 0.32 mm capillary adsorption columns with a silica gel sorbent and a 25 m . 0.26 mm polytrimethylsilylpropine (PTMSP) sorbent were used to separate the substances with low and quite high boiling temperatures. Their combined use made it possible to determine a wider range of impurities in selenium. The impurities were identified by comparing the experimental mass spectra with the data from the NIST database. In the absence of mass spectra of the detected substances in this library, their identification was carried out by restoring the composition with the fragment ions. Thus, the mass spectrum of the COSe impurity, which was not found in the literature, was decoded and described. In selenium, impurities of constant gases, carbon dioxide, C2 – C6 hydrocarbons, aromatic hydrocarbons, carbonyl sulphide, some chlorinated hydrocarbons, cyan, selenium compounds, and ethers were identified. Впервые с использованием метода хромато-масс-спектрометрии исследован молекулярный состав примесей в селене особой чистоты. Концентрат нижекипящих по отношению к селену примесей был получен при его вакуумной дистилляции. Примеси конденсировали и перемораживали из паровой фазы за зоной полной конденсации паров селена. Анализ полученных проб проводили с использованием хромато-масс-спектрометра Agilent 6890/5973N. Их ввод в аналитический прибор осуществляли с помощью вакуумной системы. Для разделения примесей использовали капиллярные адсорбционные колонки GS-GasPro 60 м . 0.32 мм с сорбентом модифицированным силикагелем и с сорбентом политриметилсилилпропином (ПТМСП) 25 м . 0.26 мм, df = 0.25 мкм, позволяющие разделять вещества как с низкими, так и с достаточно высокими температурами кипения. Их совместное применение позволило определять в селене более широкий круг примесей. Идентификацию примесей выполняли по их масс-спектрам. Если масс-спектры определяемых веществ не соответствовали ни одному из библиотечных, то их идентификацию проводили восстановлением состава по фрагментным ионам. Таким образом был расшифрован и описан не найденный в литературных источниках масс-спектр примеси СOSe. В селене идентифицированы примеси постоянных газов, диоксида углерода, углеводородов С2–С6, ароматических углеводородов, карбонилсульфида, сероуглерода, некоторых хлорпроизводных углеводородов, циана, соединений селена, эфиров. The work was done according to the Program of Fundamental Scientific Research of Governmental Academy of Sciences for 2018-2020, topic No. 0095-2018-0012. Работа выполнена в соответствии с Программой фундаментальных научных исследований государственных академий наук на 2018-2020 годы, № темы 0095-2018-0012.
- Published
- 2019
24. Identification of impurities in tetrakis(trifluorophosphine) nickel using the gas chromatography-mass spectrometry method
- Author
-
Sozin, А. Iu., Chernova, О. Iu., Sorochkina, T. G., Troshin, О. Iu., and Bulanov, A. D.
- Subjects
ПРИМЕСИ ,TETRAKIS(TRIFLUOROPHOSPHINE) NIKEL ,IDENTIFICATION ,CAPILLARY COLUMN ,ИДЕНТИФИКАЦИЯ ,IMPURITIES ,ТЕТРАКИС(ТРИФТОРФОСФИН) НИКЕЛЯ ,ХРОМАТО-МАСС-СПЕКТРОМЕТРИЯ ,GAS CHROMATOGRAPHY-MASS SPECTROMETRY ,КАПИЛЛЯРНАЯ КОЛОНКА - Abstract
The impurity composition of the vapor and liquid phase of a commercial sample of tetrakis(trifluorophosphine) nickel (TTFN) obtained by the reaction of nickel and phosphorus (III) fluoride was carried out for the first time by the method of gas chromatography-mass spectrometry. The analysis was performed using Agilent 6890/5973N chromatograph-mass spectrometer with a quadrupole mass analyzer. A sampling system has been developed that allowed the analysis of the vapor and liquid phase of the substance. To separate the components of the mixture, a quartz capillary column DB-5MS 30 m × 0.32 mm × 0.25 μm with a fixed phase methylsiloxane, containing 5% phenyl groups, was used. It was shown that its use made it possible to separate the impurities in both the low and the high boiling point components with respect to the main component. The identification of impurities was carried out by comparing their experimental mass spectra, obtained in the mode of recording the total ion current in the 12-450 amu mass scanning range, with the NIST database. In the sample of TTFN, the impurities of phosphorus (III) fluoride, dichloromethane, benzene, and C6–C8 hydrocarbons were identified. The coefficients of similarity of the mass spectra of these substances with respect to the library materials were in the range of 0.85 – 0.98. The impurities of Ni(PF3)3(PF2C2H5) and Ni(PF3)3(PF2ОC2H5), whose mass spectra were absent from the NIST library, were also identified. The identification of these substances assumed that they were the products of the interaction of the substance - the base of the TTFN with the impurity components of the mixture. In this case, the mass spectra of these substances and TTFN were compared with the further reconstruction of their structure by the fragment ions. The mass spectra of Ni(PF3)4, Ni(PF3)3(PF2C2H5) and Ni(PF3)3(PF2ОC2H5) were first obtained and described.Keywords: tetrakis(trifluorophosphine) nikel, impurities, identification, gas chromatography-mass spectrometry, capillary column DOI: http://dx.doi.org/10.15826/analitika.2018.22.3.010(Russian)А.Iu. Sozin, О.Iu. Chernova, T.G. Sorochkina, О. Iu. Troshin, A.D. Bulanov G.G. Devyatykh Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences, Russian Federation, 603950, Nizhny Novgorod, Tropinina Str.,49, Методом хромато-масс-спектрометрии впервые проведено исследование примесного состава паровой и жидкой фазы коммерческого образца тетракис(трифторфосфина) никеля (ТТФН), полученного по реакции никеля и фторида фосфора (III). Анализ проводили с использованием хромато-масс-спектрометра Agilent 6890/5973N с квадрупольным масс-анализатором. Разработана система пробоотбора, позволяющая проводить анализ паровой и жидкой фазы вещества. Для разделения компонентов смеси использовали кварцевую капиллярную колонку DB-5MS 30 м × 0.32 мм × 0.25 мкм с неподвижной фазой метилсилоксаном, содержащем 5 % фенильных групп. Показано, что ее применение позволяет разделять примеси в ТТФН как с низкими, так и с достаточно высокими относительно основного компонента температуры кипения. Идентификацию примесей проводили сравнением их экспериментальных масс-спектров, полученных в режиме регистрации полного ионного тока в диапазоне сканирования масс 12–450 а.е.м. с данными базы NIST. В образце ТТФН идентифицированы примеси фторида фосфора (III), дихлорметана, бензола, углеводородов С6–С8. Коэффициенты подобия масс-спектров этих веществ относительно библиотечных составили 0.85–0.98. Идентифицированы примеси Ni(PF3)3(PF2C2H5) и Ni(PF3)3(PF2ОC2H5), масс-спектры которых отсутствует в библиотеке NIST. Идентификация этих веществ проведена, исходя из предположения, что они являются продуктами взаимодействия вещества – основы ТТФН с примесными компонентами смеси. Для этого сравнивали масс-спектры этих веществ и ТТФН с дальнейшим восстановлением их структуры по осколочным ионам. Впервые получены и описаны масс-спектры Ni(PF3)4, Ni(PF3)3(PF2C2H5) и Ni(PF3)3(PF2ОC2H5).Ключевые слова: тетракис(трифторфосфин) никеля, примеси, идентификация, хромато-масс-спектрометрия, капиллярная колонкаDOI: http://dx.doi.org/10.15826/analitika.2018.22.3.010
- Published
- 2018
25. Идентификация примесей в селене особой чистоты с использованием метода хромато-масс-спектрометрии
- Author
-
Sozin, А. Iu., Churbanov, M. F., Chernova, О. Iu., Sorochkina, T. G., Snopatin, G. E., Skripachev, I. V., Lesina, Iu. А., Созин, А. Ю., Чурбанов, М. Ф., Чернова, О. Ю., Сорочкина, Т. Г., Снопатин, Г. Е., Скрипачев, И. В., Лесина, Ю. А., Sozin, А. Iu., Churbanov, M. F., Chernova, О. Iu., Sorochkina, T. G., Snopatin, G. E., Skripachev, I. V., Lesina, Iu. А., Созин, А. Ю., Чурбанов, М. Ф., Чернова, О. Ю., Сорочкина, Т. Г., Снопатин, Г. Е., Скрипачев, И. В., and Лесина, Ю. А.
- Abstract
The molecular composition of impurities in special purity selenium was studied for the first time using the gas chromatography-mass spectrometry method. The concentrate of impurities with boiling points below that of the selenium was obtained by its vacuum distillation. The impurities were condensed and frozen from the vapor phase beyond the zone of the complete condensation of selenium vapors. The analysis of the obtained samples was performed using an Agilent 6890 / 5973N gas chromatography-mass spectrometer with a quadrupole mass analyzer. The samples’ input into the analytical device was carried out using a vacuum system made of stainless steel tubes. For the separation of impurities, GS-GasPro 60 m . 0.32 mm capillary adsorption columns with a silica gel sorbent and a 25 m . 0.26 mm polytrimethylsilylpropine (PTMSP) sorbent were used to separate the substances with low and quite high boiling temperatures. Their combined use made it possible to determine a wider range of impurities in selenium. The impurities were identified by comparing the experimental mass spectra with the data from the NIST database. In the absence of mass spectra of the detected substances in this library, their identification was carried out by restoring the composition with the fragment ions. Thus, the mass spectrum of the COSe impurity, which was not found in the literature, was decoded and described. In selenium, impurities of constant gases, carbon dioxide, C2 – C6 hydrocarbons, aromatic hydrocarbons, carbonyl sulphide, some chlorinated hydrocarbons, cyan, selenium compounds, and ethers were identified., Впервые с использованием метода хромато-масс-спектрометрии исследован молекулярный состав примесей в селене особой чистоты. Концентрат нижекипящих по отношению к селену примесей был получен при его вакуумной дистилляции. Примеси конденсировали и перемораживали из паровой фазы за зоной полной конденсации паров селена. Анализ полученных проб проводили с использованием хромато-масс-спектрометра Agilent 6890/5973N. Их ввод в аналитический прибор осуществляли с помощью вакуумной системы. Для разделения примесей использовали капиллярные адсорбционные колонки GS-GasPro 60 м . 0.32 мм с сорбентом модифицированным силикагелем и с сорбентом политриметилсилилпропином (ПТМСП) 25 м . 0.26 мм, df = 0.25 мкм, позволяющие разделять вещества как с низкими, так и с достаточно высокими температурами кипения. Их совместное применение позволило определять в селене более широкий круг примесей. Идентификацию примесей выполняли по их масс-спектрам. Если масс-спектры определяемых веществ не соответствовали ни одному из библиотечных, то их идентификацию проводили восстановлением состава по фрагментным ионам. Таким образом был расшифрован и описан не найденный в литературных источниках масс-спектр примеси СOSe. В селене идентифицированы примеси постоянных газов, диоксида углерода, углеводородов С2–С6, ароматических углеводородов, карбонилсульфида, сероуглерода, некоторых хлорпроизводных углеводородов, циана, соединений селена, эфиров.
- Published
- 2019
26. Determination of impurity composition of high-purity germane enriched with 74Ge isotope using gas chromatography-mass spectrometry method
- Author
-
Krylov, V. A., Sozin, А. Yu., Bulanov, A. D., Chernova, О. Yu., Sorochkina, T. G., and Nushtaeva, L. B.
- Subjects
ISOTOPICALLY ENRICHED GERMANE ,ПРИМЕСИ ,IDENTIFICATION ,GAS CHROMATOGRAPHYMASS SPECTROMETRY ,CAPILLARY COLUMN ,IMPURITIES ,ИДЕНТИФИКАЦИЯ ,ИЗОТОПНО-ОБОГАЩЕННЫЙ ГЕРМАН ,ХРОМАТО-МАСС-СПЕКТРОМЕТРИЯ ,КАПИЛЛЯРНАЯ КОЛОНКА - Abstract
The method of gas chromatography-mass spectrometry was used for the first time for the determination of impurities in high-purity germane enriched with 74Ge isotope. In order to separate the impurities of permanent gases, C1–C4 hydrocarbons and digermane the capillary adsorption column GS-GasPro × 0.32 m 60 mm with modified silicagel was used. For the separation of impurities with higher molecular weights and boiling points the column of 25 mm × 0.26 m, df = 0.25 m with polytrimethylsililpropyne sorbent was used. The identification of impurities was performed by comparing their experimental mass spectra with NIST database. In the absence of data in the database for the mass spectra of identified impurities or if the similarity of coefficients compared to the experimental ones were low, the identification of impurities was performed by the recovery composition of the fragment ions as well as using the mass spectra and retention times of impurities in the published literature. The identified impurities included permanent gases, carbon dioxide, propene, C6–C7 hydrocarbons, aromatic hydrocarbons, homologs of germane, chlorogermane, carbon disulfide, and 2-chloropropane. The carbon disulfide, and 2-chloropropane impurities were identified for the first time. It was found that the impurities of homologs of germane and chlorogermane are isotopically enriched with 74Ge. It was shown that the impurities of benzene, carbon disulfide and 2-chloropropane had displaced isotopic composition of 12С6Н6, 12С3Н735Cl and 12C32S34S and are molecular isobars of 74GeH4. The quantitative determination of impurities was carried out in a selective ion detection mode for mass numbers having the maximum signal/noise ratio. The determination of impurity concentrations were conducted by the absolute calibration of peak areas. The concentrations of impurities, for which no reference samples were found, were determined using the sensitivity coefficients dependent on the value of their detection from the total ionization cross sections. Limits of detection of impurities were 1·10–5 – 5·10–8 % vol. The correctness of the analysis was confirmed by varying the value of the sample method.Keywords: isotopically enriched germane, impurities, capillary column, identification, gas chromatography-mass spectrometry(Russian)DOI: http://dx.doi.org/10.15826/analitika.2017.21.1.007V.A. Krylov1, А.Yu. Sozin2, A.D. Bulanov 1,2, О.Yu. Chernova2, T.G. Sorochkina2, L.B. Nushtaeva2 1N.I. Lobachevsky Nizhny Novgorod State University, chemical faculty, Russian Federation, 603950, Nizhny Novgorod, Gagarin pr., 232G.G. Devyatykh Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences, Russian Federation, 603950, Nizhny Novgorod, Tropinina Str.,49, Методом хромато-масс-спектрометрии впервые проведено определение примесей в германе высокой чистоты, обогащенном изотопом 74Ge. Для разделения примесей постоянных газов, углеводородов С1–С4, дигермана использовали капиллярную адсорбционную колонку GS-GasPro 60 м ´ 0.32 мм с модифицированным силикагелем. Для разделения примесей с более высокими молекулярными массами и температурами кипения использовали колонку 25 м × 0.26 мм, df = 0.25 мкм с сорбентом политриметилсилилпропином. Идентификацию примесей проводили сравнением их экспериментальных масс-спектров с данными базы NIST. В случае отсутствия в этой базе данных масс-спектров определяемых примесей или низких коэффициентов их подобия с экспериментальными, идентификацию примесей проводили восстановлением их состава по фрагментным ионам, а также с использованием масс-спектров и времен удерживания примесей, опубликованных в литературе. Идентифицированы примеси постоянных газов, диоксида углерода, пропена, углеводородов С6-С7, ароматических углеводородов, гомологов германа, хлоргермана, сероуглерода, 2-хлорпропана. Примеси сероуглерода и 2-хлорпропана идентифицированы впервые. Установлено, что примеси гомологов германа и хлоргерман обогащены изотопом 74Ge. Показано, что примеси бензола, 2-хлорпропана и сероуглерода имеют измененный изотопный состав 12С6Н6, 12С3Н735Cl и 12C32S34S и являются молекулярными изобарами к 74GeH4. Количественное определение примесей проводили в режиме селективного ионного детектирования по массовым числам, имеющим максимальное соотношение сигнал/шум. Определение концентраций примесей проводили методом абсолютной градуировки по площадям пиков. Концентрации примесей, для которых отсутствовали образцы сравнения, определяли с использованием зависимости коэффициентов чувствительности их детектирования от величины полных сечений ионизации. Пределы обнаружения примесей составили 1·10–5–5·10–8 % об. Правильность анализа подтверждали методом варьирования величины пробы.Ключевые слова: изотопно-обогащенный герман, примеси, капиллярная колонка, идентификация, хромато-масс-спектрометрияDOI: http://dx.doi.org/10.15826/analitika.2017.21.1.007
- Published
- 2017
27. CHROMATO-MASS-SPECTROMETRIC STUDY OF THE IMPURITY COMPOSITION OF HIGH-PURITY MONOSILANE OBTAINED FROM MAGNESIUM SILICIDE
- Author
-
Sozin, A. Yu., primary, Kotkov, A. P., additional, Grishnova, N. D., additional, Anoshin, O. S., additional, Skosyrev, A. I., additional, Arhiptsev, D. F., additional, Chernova, O. Yu., additional, and Sorochkina, T. G., additional
- Published
- 2018
- Full Text
- View/download PDF
28. Идентификация примесей в тетракис(трифторфосфине) никеля с использованием метода хромато-массспектрометрии
- Author
-
Sozin, А. Iu., Chernova, О. Iu., Sorochkina, T. G., Troshin, О. Iu., Bulanov, A. D., Созин, А. Ю., Чернова, О. Ю., Сорочкина, Т. Г., Трошин, О. Ю., Буланов, А. Д., Sozin, А. Iu., Chernova, О. Iu., Sorochkina, T. G., Troshin, О. Iu., Bulanov, A. D., Созин, А. Ю., Чернова, О. Ю., Сорочкина, Т. Г., Трошин, О. Ю., and Буланов, А. Д.
- Abstract
The impurity composition of the vapor and liquid phase of a commercial sample of tetrakis(trifluorophosphine) nickel (TTFN) obtained by the reaction of nickel and phosphorus (III) fluoride was carried out for the first time by the method of gas chromatography-mass spectrometry. The analysis was performed using Agilent 6890/5973N chromatograph-mass spectrometer with a quadrupole mass analyzer. A sampling system has been developed that allowed the analysis of the vapor and liquid phase of the substance. To separate the components of the mixture, a quartz capillary column DB-5MS 30 m ? 0.32 mm ? 0.25 ?m with a fixed phase methylsiloxane, containing 5% phenyl groups, was used. It was shown that its use made it possible to separate the impurities in both the low and the high boiling point components with respect to the main component. The identification of impurities was carried out by comparing their experimental mass spectra, obtained in the mode of recording the total ion current in the 12-450 amu mass scanning range, with the NIST database. In the sample of TTFN, the impurities of phosphorus (III) fluoride, dichloromethane, benzene, and C6-C8 hydrocarbons were identified. The coefficients of similarity of the mass spectra of these substances with respect to the library materials were in the range of 0.85 - 0.98. The impurities of Ni(PF3)3(PF2C2H5) and Ni(PF3)3(PF2ОC2H5), whose mass spectra were absent from the NIST library, were also identified. The identification of these substances assumed that they were the products of the interaction of the substance - the base of the TTFN with the impurity components of the mixture. In this case, the mass spectra of these substances and TTFN were compared with the further reconstruction of their structure by the fragment ions. The mass spectra of Ni(PF3)4, Ni(PF3)3(PF2C2H5) and Ni(PF3)3(PF2ОC2H5) were first obtained and described., Методом хромато-масс-спектрометрии впервые проведено исследование примесного состава паровой и жидкой фазы коммерческого образца тетракис(трифторфосфина) никеля (ТТФН), полученного по реакции никеля и фторида фосфора (III). Анализ проводили с использованием хромато-масс-спектрометра Agilent 6890/5973N с квадрупольным масс-анализатором. Разработана система пробоотбора, позволяющая проводить анализ паровой и жидкой фазы вещества. Для разделения компонентов смеси использовали кварцевую капиллярную колонку DB-5MS 30 м ? 0.32 мм ? 0.25 мкм с неподвижной фазой метилсилоксаном, содержащем 5 % фенильных групп. Показано, что ее применение позволяет разделять примеси в ТТФН как с низкими, так и с достаточно высокими относительно основного компонента температуры кипения. Идентификацию примесей проводили сравнением их экспериментальных масс-спектров, полученных в режиме регистрации полного ионного тока в диапазоне сканирования масс 12-450 а.е.м. с данными базы NIST. В образце ТТФН идентифицированы примеси фторида фосфора (III), дихлорметана, бензола, углеводородов С6-С8. Коэффициенты подобия масс-спектров этих веществ относительно библиотечных составили 0.85-0.98. Идентифицированы примеси Ni(PF3)3(PF2C2H5) и Ni(PF3)3(PF2ОC2H5), масс-спектры которых отсутствует в библиотеке NIST. Идентификация этих веществ проведена, исходя из предположения, что они являются продуктами взаимодействия вещества - основы ТТФН с примесными компонентами смеси. Для этого сравнивали масс-спектры этих веществ и ТТФН с дальнейшим восстановлением их структуры по осколочным ионам. Впервые получены и описаны масс-спектры Ni(PF3)4, Ni(PF3)3(PF2C2H5) и Ni(PF3)3(PF2ОC2H5).
- Published
- 2018
29. Identification of impurities in high-purity sulfur using gas chromatography-mass spectrometry method
- Author
-
Sozin, А. Iu., Churbanov, M. F., Chernova, О. Iu., Sorochkina, T. G., Skripachev, I. V., and Snopatin, G. E.
- Subjects
ПРИМЕСИ ,IDENTIFICATION ,ВЫСОКОЧИСТАЯ СЕРА ,HIGH-PURITY SULFUR ,CAPILLARY COLUMN ,IMPURITIES ,ИДЕНТИФИКАЦИЯ ,ХРОМАТО-МАСС-СПЕКТРОМЕТРИЯ ,GAS CHROMATOGRAPHY-MASS SPECTROMETRY ,КАПИЛЛЯРНАЯ КОЛОНКА - Abstract
For the first time the molecular impurity composition of high-purity sulfur was investigated using gas chromatography-mass spectrometry method. The sample preparation consisted of extracting the impurities from the sulfur samples during their vacuum distillation. The sample mass of sulfur, which was used for the extraction, was up to 1 kg. Impurities were condensed in glass ampoules which then carried them to the inlet in the dosing system of gas chromatography-mass spectrometer. For their separation, GS-GasPro capillary adsorption columns with a modified silica gel sorbent and with polytrimethylsilylpropyne were used. The joint application of these columns made it possible to determine a wide range of impurity substances in sulfur. Identification of impurities was carried out by comparing their experimental mass spectra with the data from the NIST database. In the case of overlapping chromatographic peaks of impurities their identification was carried out according to the characteristic ions and subtracting the peaks of ions that belong to the adjacent component. It was found that, when using the column with polytrimethylsilylpropyne, oxygen and nitrogen containing organic substances elute in asymmetric peaks with a steep front and a diffused rear. In high purity sulfur the impurities of permanent gases, carbon dioxide, hydrogen sulfide, sulfur dioxide, сarbonyl sulphide, saturated and unsaturated hydrocarbons C2-C8, aromatic hydrocarbons, oxygen-, nitrogen-, sulfur-containing hydrocarbons were identified. The total number of identified impurities equaled to 51. Впервые с использованием метода хромато-масс-спектрометрии исследован молекулярный примесный состав высокочистой серы. Для пробоподготовки образцов использовали извлечение примесей из серы при ее вакуумной перегонке. Масса пробы серы, из которой проводили извлечение, составляла до 1 кг. Примеси конденсировали в стеклянных ампулах, из которых затем осуществляли их напуск в систему дозирования хромато-масс-спектрометра. Для их разделения использовали капиллярные адсорбционные колонки GS-GasPro с модифицированным силикагелем в качестве сорбента и с политриметилсилилпропином (ПТМСП). Совместное применение этих колонок позволяет определять в сере широкий круг примесных веществ. Идентификацию примесей проводили сравнением их экспериментальных масс-спектров с данными базы NIST. В случае наложения хроматографических пиков примесей их идентификацию проводили по характеристическим ионам и с использованием вычитания пиков ионов, принадлежащих соседнему компоненту. Установлено, что при использовании колонки с политриметилсилилпропином кислород- и азотсодержащие органические вещества элюируются в виде ассиметричных пиков с крутым фронтом и размытым тылом. В высокочистой сере идентифицированы примеси постоянных газов, диоксида углерода, сероводорода, диоксида серы, сероокиси углерода, предельных и непредельных углеводородов С2–С8, ароматических углеводородов, кислород-, азот-, серосодержащих веществ. Общее их число составило 51.
- Published
- 2017
30. Impurity composition of monoisotopic 28SiF4 silicon tetrafluoride
- Author
-
Sorochkina, T. G., primary, Bulanov, A. D., additional, Sozin, A. Yu., additional, and Chernova, O. Yu., additional
- Published
- 2017
- Full Text
- View/download PDF
31. Идентификация примесей в высокочистой сере с использованием метода хромато-масс-спектрометрии
- Author
-
Sozin, А. Iu., Churbanov, M. F., Chernova, О. Iu., Sorochkina, T. G., Skripachev, I. V., Snopatin, G. E., Созин, А. Ю., Чурбанов, М. Ф., Чернова, О. Ю., Сорочкина, Т. Г., Скрипачев, И. В., Снопатин, Г. Е., Sozin, А. Iu., Churbanov, M. F., Chernova, О. Iu., Sorochkina, T. G., Skripachev, I. V., Snopatin, G. E., Созин, А. Ю., Чурбанов, М. Ф., Чернова, О. Ю., Сорочкина, Т. Г., Скрипачев, И. В., and Снопатин, Г. Е.
- Abstract
For the first time the molecular impurity composition of high-purity sulfur was investigated using gas chromatography-mass spectrometry method. The sample preparation consisted of extracting the impurities from the sulfur samples during their vacuum distillation. The sample mass of sulfur, which was used for the extraction, was up to 1 kg. Impurities were condensed in glass ampoules which then carried them to the inlet in the dosing system of gas chromatography-mass spectrometer. For their separation, GS-GasPro capillary adsorption columns with a modified silica gel sorbent and with polytrimethylsilylpropyne were used. The joint application of these columns made it possible to determine a wide range of impurity substances in sulfur. Identification of impurities was carried out by comparing their experimental mass spectra with the data from the NIST database. In the case of overlapping chromatographic peaks of impurities their identification was carried out according to the characteristic ions and subtracting the peaks of ions that belong to the adjacent component. It was found that, when using the column with polytrimethylsilylpropyne, oxygen and nitrogen containing organic substances elute in asymmetric peaks with a steep front and a diffused rear. In high purity sulfur the impurities of permanent gases, carbon dioxide, hydrogen sulfide, sulfur dioxide, сarbonyl sulphide, saturated and unsaturated hydrocarbons C2-C8, aromatic hydrocarbons, oxygen-, nitrogen-, sulfur-containing hydrocarbons were identified. The total number of identified impurities equaled to 51., Впервые с использованием метода хромато-масс-спектрометрии исследован молекулярный примесный состав высокочистой серы. Для пробоподготовки образцов использовали извлечение примесей из серы при ее вакуумной перегонке. Масса пробы серы, из которой проводили извлечение, составляла до 1 кг. Примеси конденсировали в стеклянных ампулах, из которых затем осуществляли их напуск в систему дозирования хромато-масс-спектрометра. Для их разделения использовали капиллярные адсорбционные колонки GS-GasPro с модифицированным силикагелем в качестве сорбента и с политриметилсилилпропином (ПТМСП). Совместное применение этих колонок позволяет определять в сере широкий круг примесных веществ. Идентификацию примесей проводили сравнением их экспериментальных масс-спектров с данными базы NIST. В случае наложения хроматографических пиков примесей их идентификацию проводили по характеристическим ионам и с использованием вычитания пиков ионов, принадлежащих соседнему компоненту. Установлено, что при использовании колонки с политриметилсилилпропином кислород- и азотсодержащие органические вещества элюируются в виде ассиметричных пиков с крутым фронтом и размытым тылом. В высокочистой сере идентифицированы примеси постоянных газов, диоксида углерода, сероводорода, диоксида серы, сероокиси углерода, предельных и непредельных углеводородов С2–С8, ароматических углеводородов, кислород-, азот-, серосодержащих веществ. Общее их число составило 51.
- Published
- 2017
32. Хромато-масс-спектрометрическое определение примесного состава германа высокой чистоты, обогащенного изотопом 74Ge
- Author
-
Krylov, V. A., Sozin, А. Yu., Bulanov, A. D., Chernova, О. Yu., Sorochkina, T. G., Nushtaeva, L. B., Крылов, В. А., Созин, А. Ю., Буланов, А. Д., Чернова, О. Ю., Сорочкина, Т. Г., Нуштаева, Л. Б., Krylov, V. A., Sozin, А. Yu., Bulanov, A. D., Chernova, О. Yu., Sorochkina, T. G., Nushtaeva, L. B., Крылов, В. А., Созин, А. Ю., Буланов, А. Д., Чернова, О. Ю., Сорочкина, Т. Г., and Нуштаева, Л. Б.
- Abstract
The method of gas chromatography-mass spectrometry was used for the first time for the determination of impurities in high-purity germane enriched with 74Ge isotope. In order to separate the impurities of permanent gases, C1–C4 hydrocarbons and digermane the capillary adsorption column GS-GasPro × 0.32 m 60 mm with modified silicagel was used. For the separation of impurities with higher molecular weights and boiling points the column of 25 mm × 0.26 m, df = 0.25 m with polytrimethylsililpropyne sorbent was used. The identification of impurities was performed by comparing their experimental mass spectra with NIST database. In the absence of data in the database for the mass spectra of identified impurities or if the similarity of coefficients compared to the experimental ones were low, the identification of impurities was performed by the recovery composition of the fragment ions as well as using the mass spectra and retention times of impurities in the published literature. The identified impurities included permanent gases, carbon dioxide, propene, C6–C7 hydrocarbons, aromatic hydrocarbons, homologs of germane, chlorogermane, carbon disulfide, and 2-chloropropane. The carbon disulfide, and 2-chloropropane impurities were identified for the first time. It was found that the impurities of homologs of germane and chlorogermane are isotopically enriched with 74Ge. It was shown that the impurities of benzene, carbon disulfide and 2-chloropropane had displaced isotopic composition of 12С6Н6, 12С3Н7 35Cl and 12C32S34S and are molecular isobars of 74GeH4. The quantitative determination of impurities was carried out in a selective ion detection mode for mass numbers having the maximum signal/noise ratio. The determination of impurity concentrations were conducted by the absolute calibration of peak areas. The concentrations of impurities, for which no reference samples were found, were determined using the sensitivity coefficients dependent on the value of their detection, Методом хромато-масс-спектрометрии впервые проведено определение примесей в германе высокой чистоты, обогащенном изотопом 74Ge. Для разделения примесей постоянных газов, углеводородов С1–С4, дигермана использовали капиллярную адсорбционную колонку GS-GasPro 60 м × 0.32 мм с модифицированным силикагелем. Для разделения примесей с более высокими молекулярными массами и температурами кипения использовали колонку 25 м × 0.26 мм, df = 0.25 мкм с сорбентом политриметилсилилпропином. Идентификацию примесей проводили сравнением их экспериментальных масс-спектров с данными базы NIST. В случае отсутствия в этой базе данных масс-спектров определяемых примесей или низких коэффициентов их подобия с экспериментальными, идентификацию примесей проводили восстановлением их состава по фрагментным ионам, а также с использованием масс-спектров и времен удерживания примесей, опубликованных в литературе. Идентифицированы примеси постоянных газов, диоксида углерода, пропена, углеводородов С6-С7, ароматических углеводородов, гомологов германа, хлоргермана, сероуглерода, 2-хлорпропана. Примеси сероуглерода и 2-хлорпропана идентифицированы впервые. Установлено, что примеси гомологов германа и хлоргерман обогащены изотопом 74Ge. Показано, что примеси бензола, 2-хлорпропана и сероуглерода имеют измененный изотопный состав 12С6Н6, 12С3Н7 35Cl и 12C32S34S и являются молекулярными изобарами к 74GeH4. Количественное определение примесей проводили в режиме селективного ионного детектирования по массовым числам, имеющим максимальное соотношение сигнал/шум. Определение концентраций примесей проводили методом абсолютной градуировки по площадям пиков. Концентрации примесей, для которых отсутствовали образцы сравнения, определяли с использованием зависимости коэффициентов чувствительности их детектирования от величины полных сечений ионизации. Пределы обнаружения примесей составили 1·10–5–5·10–8 % об. Правильность анализа подтверждали методом варьирования величины пробы.
- Published
- 2017
33. The determination of organic substances impurities in sodium nitrate by the methods of gas chromatography and gas chromatography - mass-spectrometry
- Author
-
Krylov, V. A. and Sorochkina, T. G.
- Subjects
SODIUM NITRATE ,CHROMATO-MASS-SPECTROMETRY ,ПРИМЕСНЫЙ СОСТАВ ,УГЛЕВОДОРОДЫ ,GAS CHROMATOGRAPHY ,ХРОМАТО-МАСС-СПЕКТРОМЕТРИЯ ,ГАЗОВАЯ ХРОМАТОГРАФИЯ ,HYDROCARBONS ,НИТРАТ НАТРИЯ ,IMPURITY COMPOSITION - Abstract
В настоящее время в нитрате натрия нормируются примеси металлов и неорганических солей. Сведения о содержании примесей органических веществ, являющихся источником углерода в получаемых на основе нитрата натрия оптических материалах, отсутствуют. В данной работе проведены идентификация и количественное определение примесей углеводородов в нитрате натрия с использованием высокочувствительных и экспрессных методов газовой хроматографии и хромато-масс-спектрометрии. Для концентрирования примесей применены методы парофазной макроэкстракции и жидкофазной микроэкстракции. Применение метода парофазной макроэкстракции показало присутствие примесей легких углеводородов С₁-С₄, метод жидкофазной микроэкстракции позволил выявить примеси труднолетучих веществ - высокомолекулярных углеводородов С₁₅-С₁₇. Установлено, что в процессе парофазной макроэкстракции происходит разложение примесей углеводородов С₁₅-С₁₇. Поэтому надежное определение углеводородного примесного состава нитрата натрия возможно с применением жидкофазной микроэкстракции. Показано, что концентрация углеводородов С₁₅-С₁₇ в нитрате натрия составляет 2×10⁻⁶ - 2×10⁻⁵ % мас. Источники примесей высокомолекулярных углеводородов С₁₅-С₁₇ в нитрате натрия связаны скорее всего с причинами технологического характера, т.к. эти углеводороды являются основными составляющими масел, применяемых для герметизации аппаратуры, используемой при синтезе NaNO₃. At the present time the impurities of metals and inorganic salts are normalized in sodium nitrate. The data on the content of organic substances impurities, which are the source of carbon in the prepared based on sodium nitrate optical materials, are not available. In this work, the identification and determination of hydrocarbon impurities in sodium nitrate was carried out with the use of highly sensitive and express methods of gas chromatography and gas chromatography-mass-spectrometry. For the pre-concentration of the impurities the methods of vapor-phase macro-extraction and of liquid phase micro-extraction were investigated. The use of the method of vapor-phase macro-extraction indicated the presence of the impurities of light С1-С4 hydrocarbons; the method of liquid phase micro-extraction made it possible to identify the impurities of semi-volatile С15-С17 hydrocarbons. It was found that in the process of vapor-phase macro-extraction, the decomposition of С15-С17 hydrocarbons takes place. That is why the reliable determination of hydrocarbon impurity composition is possible with the use of liquid phase micro-extraction. It was shown that the concentration of С15-С17 hydrocarbons in sodium nitrate is 2·10⁻⁶ - 2·10⁻⁵ mas. %. Accounting for the possible sources of hydrocarbon impurities in sodium nitrate, it is possible to state that the presence of the impurities of high molecular С15-С17 hydrocarbons is of the technological nature since these hydrocarbons are the main constituents of oils applied for pressurization of apparatus used for synthesis of NaNO3.
- Published
- 2015
34. Identification of impurities in high-purity sulfur using gas chromatography-mass spectrometry method
- Author
-
Sozin, А. Iu., primary, Churbanov, M. F., additional, Chernova, О. Iu., additional, Sorochkina, T. G., additional, Skripachev, I. V., additional, and Snopatin, G. E., additional
- Published
- 2017
- Full Text
- View/download PDF
35. Sources of Carbon Impurities in the Preparation of High-Purity Monoisotopic 28Si by a Hydride Method.
- Author
-
Bulanov, A. D., Gavva, V. A., Sozin, A. Yu., Churbanov, M. F., Kotereva, T. V., Kirillov, Yu. P., Lashkov, A. Yu., Troshin, O. Yu., Sorochkina, T. G., Chernova, O. Yu., Abrosimov, N. V., and Shabarova, L. V.
- Subjects
SILICON compounds ,HYDROCARBONS ,HYDRIDES ,POLYCRYSTALS ,PYROLYSIS - Abstract
This paper examines sources of carbon impurities in polycrystalline monoisotopic
28 Si prepared by a hydride method. Analytical data on the concentrations of carbon-containing impurities in volatile silicon compounds (28 SiH4 and28 SiH4 ), process gases (Ar and H2 ), and polycrystalline28 Si are used to identify the major sources of carbon in the polycrystalline28 Si prepared by the hydride method. These are the starting28 SiH4 and calcium hydride used in28 SiH4 conversion into28 SiH4 . The rate of carbon intake into polycrystalline silicon from the apparatus material during the monosilane pyrolysis process does not exceed 9 × 1011 cm-2 h-1 . Polycrystalline silicon has been precipitated from monosilane with different concentrations of hydrocarbon impurities. At hydrocarbon concentrations in the range 10-4 to 10-3 mol %, the carbon concentration in the monosilane correlates with that in the silicon obtained from it. High-purity monosilane has been used to prepare polycrystalline28 Si samples with concentrations of carbon impurities in the range (0.8-2.3) × 1015 cm-3 . Based on calculations of the carbon impurity distribution along the length of a zone-refined ingot, we examine the effect of the initial carbon concentration in the starting polycrystal on the yield of single-crystal monoisotopic28 Si. Requirements are formulated for the carbon concentration in polycrystalline28 Si which ensure a high yield of single crystals with parameters suitable for metrological applications. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
36. Определение примесей органических веществ в нитрате натрия методами газовой хроматографии и хромато-масс-спектрометрии
- Author
-
Крылов, В. А., Сорочкина, Т. Г., Krylov, V. A., Sorochkina, T. G., Крылов, В. А., Сорочкина, Т. Г., Krylov, V. A., and Sorochkina, T. G.
- Abstract
В настоящее время в нитрате натрия нормируются примеси металлов и неорганических солей. Сведения о содержании примесей органических веществ, являющихся источником углерода в получаемых на основе нитрата натрия оптических материалах, отсутствуют. В данной работе проведены идентификация и количественное определение примесей углеводородов в нитрате натрия с использованием высокочувствительных и экспрессных методов газовой хроматографии и хромато-масс-спектрометрии. Для концентрирования примесей применены методы парофазной макроэкстракции и жидкофазной микроэкстракции. Применение метода парофазной макроэкстракции показало присутствие примесей легких углеводородов С₁-С₄, метод жидкофазной микроэкстракции позволил выявить примеси труднолетучих веществ - высокомолекулярных углеводородов С₁₅-С₁₇. Установлено, что в процессе парофазной макроэкстракции происходит разложение примесей углеводородов С₁₅-С₁₇. Поэтому надежное определение углеводородного примесного состава нитрата натрия возможно с применением жидкофазной микроэкстракции. Показано, что концентрация углеводородов С₁₅-С₁₇ в нитрате натрия составляет 2×10⁻⁶ - 2×10⁻⁵ % мас. Источники примесей высокомолекулярных углеводородов С₁₅-С₁₇ в нитрате натрия связаны скорее всего с причинами технологического характера, т.к. эти углеводороды являются основными составляющими масел, применяемых для герметизации аппаратуры, используемой при синтезе NaNO₃., At the present time the impurities of metals and inorganic salts are normalized in sodium nitrate. The data on the content of organic substances impurities, which are the source of carbon in the prepared based on sodium nitrate optical materials, are not available. In this work, the identification and determination of hydrocarbon impurities in sodium nitrate was carried out with the use of highly sensitive and express methods of gas chromatography and gas chromatography-mass-spectrometry. For the pre-concentration of the impurities the methods of vapor-phase macro-extraction and of liquid phase micro-extraction were investigated. The use of the method of vapor-phase macro-extraction indicated the presence of the impurities of light С1-С4 hydrocarbons; the method of liquid phase micro-extraction made it possible to identify the impurities of semi-volatile С15-С17 hydrocarbons. It was found that in the process of vapor-phase macro-extraction, the decomposition of С15-С17 hydrocarbons takes place. That is why the reliable determination of hydrocarbon impurity composition is possible with the use of liquid phase micro-extraction. It was shown that the concentration of С15-С17 hydrocarbons in sodium nitrate is 2·10⁻⁶ - 2·10⁻⁵ mas. %. Accounting for the possible sources of hydrocarbon impurities in sodium nitrate, it is possible to state that the presence of the impurities of high molecular С15-С17 hydrocarbons is of the technological nature since these hydrocarbons are the main constituents of oils applied for pressurization of apparatus used for synthesis of NaNO3.
- Published
- 2015
37. Impurity composition of monoisotopic SiF silicon tetrafluoride.
- Author
-
Sorochkina, T., Bulanov, A., Sozin, A., and Chernova, O.
- Subjects
- *
LOW temperature engineering , *SULFUR hexafluoride , *FLUORIDES , *SULFUR compounds , *MASS spectrometry - Abstract
The impurity composition of SiF has been studied for the first time by gas chromatography/mass spectrometry using gas-adsorption capillary columns. For identification and determination of impurity substances by gas chromatography/mass spectrometry, we have proposed using cryogenic preconcentration of the impurities from SiF. The presence of C-C hydrocarbon impurities and sulfur hexafluoride has been confirmed. We have identified 35 impurity substances in SiF, including linear and branched C-C saturated hydrocarbons, aromatic hydrocarbons, chlorine- and fluorine-containing hydrocarbons, and silicon- and sulfur-containing substances, of which 28 have been detected for the first time. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
38. Impurities determination in silicon tetrafluoride using high-resolution FTIR, FTMW, and gas-chromatography methods
- Author
-
Sennikov, Peter, Chuprov, L., Krylov, V., Sorochkina, T., Vaks, V., Schrems, Otto, Sennikov, Peter, Chuprov, L., Krylov, V., Sorochkina, T., Vaks, V., and Schrems, Otto
- Abstract
Silicon tetrafluoride, SiF4, is a precursor of amorphous Si-F-H semiconductors, and Si-O-F thin solid films. It is used also for preparation of films and bulk samples of silicon isotopes 28Si, 29Si, 30Si. In this study we apply both spectroscopic and gas-chromatography methods for determination of some molecular impurities in SiF4.FTIR spectroscopy. The experimental setup included a vacuum FTIR spectrometer Bruker-120HR equipped with a 20 cm cell. The spectra in the range 4500-550 cm-1 have been recorded with a resolution of 10-2 cm-1. The following impurities were detected in SiF4 gas: HF (4150-3900 cm-1), H2O (3900-3600 cm-1 and 1650-1550 cm-1), SiF3OH (3800-3700 cm-1), CH4 and C2H6 (3000-2900 cm-1), CO2 (2380-2320 cm-1), SiH3F, SiF3H, and SiF2H2 (2200-2150 cm-1), Si2F6O (870-810 cm-1). The detection limit of these impurities is within the range 0,9 ppm (CO2) 10 ppm (Si2F6O).FTMW spectroscopy. The home-made phase-switching microwave spectrometer on coherence spontaneous radiation effect was applied, operating in the spectral region 115 - 183 GHz with a resolution of 10-6 cm-1. The analytic cell was a quartz tube with a length of 1 m. The absorption lines of impurities CHF3, CH2F2, and CH3F were detected. The detection limit of these Freon impurities is 10-1-10-2 ppm.Gas-chromatography. A home-made high-vacuum gas handling system as well as extra purification of commercial high-pure carrier gas was used. To avoid SiF4 in the flame-ionization detector chamber, it was eliminated by reaction with NaF. This method allowed to detect hydrocarbons C1-C4 (methane, ethane, ethylene, propane, propylene, iso-butane, butane) in SiF4 with detection limit (2-6)10-2 ppm.
- Published
- 2006
39. C1–C4 hydrocarbon release in the preparation of SiF4 through Na2SiF6 pyrolysis
- Author
-
Krylov, V. A., primary, Sorochkina, T. G., additional, Bulanov, A. D., additional, and Lashkov, A. Yu., additional
- Published
- 2011
- Full Text
- View/download PDF
40. Determination of C1–C4 hydrocarbons and sulfur hexafluoride in high-purity germanium tetrafluoride of natural and isotopically enriched composition using gas chromatography.
- Author
-
Krylov, V. A. and Sorochkina, T. G.
- Subjects
- *
HYDROCARBONS , *ORGANIC compounds , *GERMANIUM , *GROUP 14 elements , *GAS chromatography , *CHROMATOGRAPHIC analysis , *CONSTITUTION of matter - Abstract
The procedure for gas-chromatographic determination of hydrocarbons and sulfur tetrafluoride in germanium tetrafluoride of natural and isotopically enriched composition was characterized. For improving the efficiency of the chromatographic determination of impurities, it was proposed that the major compound be removed from the test sample with the subsequent cryofocusing of impurity hydrocarbons. The detection limits of C1–C4 and sulfur hexafluoride content were achieved with a plasma ionization detector and electron-capture detector, respectively. They amounted to (2–6) × 106 vol % and 8 × 106 vol %, respectively. The sensitivity of the electron-capture detector is no less than 5 × 105 times higher toward SF6 than that toward hydrocarbons, while the plasma ionization detector is 104 times more sensitive toward hydrocarbons than toward SF6. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
41. Molecular analysis of isotopically enriched 28SiF4 and 28SiH4 prepared from it.
- Author
-
Krylov, V. A., Sennikov, P. G., Chernova, O. Yu., Sorochkina, T. G., Sozin, A. Yu., Chuprov, L. A., Adamchik, S. A., and Kotkov, A. P.
- Subjects
INFRARED spectroscopy ,GAS chromatography ,MASS spectrometry ,HYDROCARBONS ,HYDROGEN fluoride - Abstract
We have developed analytical techniques for the determination of impurities in isotopically enriched
28 SiH4 and28 SiF4 . The impurities in SiF4 were first determined by IR spectroscopy, and those in SiH4 , by gas chromatography/mass spectrometry. High-sensitivity determination of organic impurities in SiH4 and SiF4 was performed by gas chromatography. SiF4 was found to contain C1 –C4 hydrocarbons, hexafluorodisiloxane (Si2 F6 O), hydrogen fluoride, trifluorosilanol (SiF3 OH), fluorosilanes, water, and carbon oxides. The impurities identified in SiH4 include C1 –C4 hydrocarbons, disilane (Si2 H6 ), inorganic hydrides, Si2 H6 O, alkylsilanes, and fluorinated and chlorinated organics. The detection limits of IR spectroscopy were 3 × 10−3 to 5 × 10−5 mol %, those of gas chromatography/mass spectrometry were 8 × 10−6 to 10−8 mol %, and those of gas chromatography were 6 × 10-6 to 2 × 10−7 mol %. [ABSTRACT FROM AUTHOR]- Published
- 2008
- Full Text
- View/download PDF
42. Hydrocarbon impurities in SiF4 and SiH4 prepared from it.
- Author
-
Bulanov, A., Sennikov, P., Krylov, V., Sorochkina, T., Chuprov, L., Chernova, O., and Troshin, O.
- Subjects
CHROMATOGRAPHIC analysis ,FOURIER transform infrared spectroscopy ,SILICON ,SILANE ,HYDROCARBONS ,NANOTUBES - Abstract
Using gas chromatography and high-resolution Fourier-transform IR spectroscopy, we have determined the concentrations of C
1 –C4 hydrocarbon impurities in isotopically unmodified silicon tetrafluoride before and after fine purification and in28 Si-enriched SiF4 . The concentrations of C1 –C4 hydrocarbon impurities in silicon tetrafluoride for SiH4 synthesis have been shown to correlate with those in the synthesized silane. [ABSTRACT FROM AUTHOR]- Published
- 2007
- Full Text
- View/download PDF
43. Gas-Chromatographic Determination of C1-C4 Hydrocarbon Trace Impurities in Silicon Tetrafluoride.
- Author
-
Krylov, V. and Sorochkina, T.
- Subjects
GAS chromatography ,CHROMATOGRAPHIC analysis ,HYDROCARBONS ,SILICON isotopes ,SILICON ,QUANTITATIVE chemical analysis - Abstract
A procedure was developed for the gas-chromatographic determination of hydrocarbons in silicon tetrafluoride of natural and isotopically enriched compositions. For improving the efficiency of the chromatographic determination of impurities, it was proposed that the major compound be removed from the test sample with the subsequent cryofocusing of impurity hydrocarbons. The detection limits of C
1 -C4 hydrocarbons were 2 × 10−6 −6 × 10−6 vol %. [ABSTRACT FROM AUTHOR]- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.