20 results on '"Souquet, Louise"'
Search Results
2. The growth of the buccal mass in Sepia officinalis: functional changes throughout ontogeny
- Author
-
Souquet, Louise, Basuyaux, Olivier, Guichard, Gwendoline, Herrel, Anthony, Rouget, Isabelle, Evans, Susan, and moazen, Mehran
- Published
- 2023
- Full Text
- View/download PDF
3. Siphonodella leiosa (Conodonta), a new unornamented species from the Tournaisian (lower Carboniferous) of Puech de la Suque (Montagne Noire, France)
- Author
-
Souquet, Louise, Corradini, Carlo, and Girard, Catherine
- Published
- 2020
- Full Text
- View/download PDF
4. Exceptional basal-body preservation in some Early Triassic conodont elements from Oman
- Author
-
Souquet, Louise and Goudemand, Nicolas
- Published
- 2020
- Full Text
- View/download PDF
5. Evolving Teeth Within a Stable Masticatory Apparatus in Orkney Mice
- Author
-
Renaud, Sabrina, Ledevin, Ronan, Souquet, Louise, Gomes Rodrigues, Helder, Ginot, Samuel, Agret, Sylvie, Claude, Julien, Herrel, Anthony, and Hautier, Lionel
- Published
- 2018
- Full Text
- View/download PDF
6. Comparative anatomy and functional implications of variation in the buccal mass in coleoid cephalopods
- Author
-
Roscian, Marjorie, primary, Souquet, Louise, additional, Herrel, Anthony, additional, Uyeno, Theodore, additional, Adriaens, Dominique, additional, De Kegel, Barbara, additional, and Rouget, Isabelle, additional
- Published
- 2023
- Full Text
- View/download PDF
7. Corrigendum: The significance of cephalopod beaks as a research tool: An update
- Author
-
Xavier, José C., primary, Golikov, Alexey V., additional, Queirós, José P., additional, Perales-Raya, Catalina, additional, Rosas-Luis, Rigoberto, additional, Abreu, José, additional, Bello, Giambattista, additional, Bustamante, Paco, additional, Capaz, Juan C., additional, Dimkovikj, Valerie H., additional, González, Ángel F., additional, Guímaro, Hugo, additional, Guerra-Marrero, Airam, additional, Gomes-Pereira, José N., additional, Hernández-Urcera, Jorge, additional, Kubodera, Tsunemi, additional, Laptikhovsky, Vladimir, additional, Lefkaditou, Evgenia, additional, Lishchenko, Fedor, additional, Luna, Amanda, additional, Liu, Bilin, additional, Pierce, Graham J., additional, Pissarra, Vasco, additional, Reveillac, Elodie, additional, Romanov, Evgeny V., additional, Rosa, Rui, additional, Roscian, Marjorie, additional, Rose-Mann, Lisa, additional, Rouget, Isabelle, additional, Sánchez, Pilar, additional, Sánchez-Márquez, Antoni, additional, Seixas, Sónia, additional, Souquet, Louise, additional, Varela, Jaquelino, additional, Vidal, Erica A. G., additional, and Cherel, Yves, additional
- Published
- 2023
- Full Text
- View/download PDF
8. The significance of cephalopod beaks as a research tool: An update
- Author
-
Xavier, José C., primary, Golikov, Alexey V., additional, Queirós, José P., additional, Perales-Raya, Catalina, additional, Rosas-Luis, Rigoberto, additional, Abreu, José, additional, Bello, Giambattista, additional, Bustamante, Paco, additional, Capaz, Juan C., additional, Dimkovikj, Valerie H., additional, González, Angel F., additional, Guímaro, Hugo, additional, Guerra-Marrero, Airam, additional, Gomes-Pereira, José N., additional, Hernández-Urcera, Jorge, additional, Kubodera, Tsunemi, additional, Laptikhovsky, Vladimir, additional, Lefkaditou, Evgenia, additional, Lishchenko, Fedor, additional, Luna, Amanda, additional, Liu, Bilin, additional, Pierce, Graham J., additional, Pissarra, Vasco, additional, Reveillac, Elodie, additional, Romanov, Evgeny V., additional, Rosa, Rui, additional, Roscian, Marjorie, additional, Rose-Mann, Lisa, additional, Rouget, Isabelle, additional, Sánchez, Pilar, additional, Sánchez-Márquez, Antoni, additional, Seixas, Sónia, additional, Souquet, Louise, additional, Varela, Jaquelino, additional, Vidal, Erica A. G., additional, and Cherel, Yves, additional
- Published
- 2022
- Full Text
- View/download PDF
9. Temperature-driven heterochrony as a main evolutionary response to climate changes in conodonts
- Author
-
Souquet, Louise, primary, Guenser, Pauline, additional, Girard, Catherine, additional, Mazza, Michele, additional, Rigo, Manuel, additional, and Goudemand, Nicolas, additional
- Published
- 2022
- Full Text
- View/download PDF
10. The significance of cephalopod beaks as a research tool: An update
- Author
-
Xavier, José C., Golikov, Alexey V., Queirós, José P., Perales-Raya, Catalina, Rosas-Luis, Rigoberto, Abreu, José, Bello, Giambattista, Bustamante, Paco, Capaz, Juan C., Dimkovikj, Valerie H., González, Angel F., Guímaro, Hugo, Guerra-Marrero, Airam, Gomes-Pereira, José N., Kubodera, Tsunemi, Laptikhovsky, Vladimir, Lefkaditou, Evgenia, Lishchenko, Fedor, Luna, Amanda, Liu, Bilin, Pierce, Graham J., Pissarra, Vasco, Reveillac, Elodie, Romanov, Evgeny V., Rosa, Rui, Roscian, Marjorie, Rose-Mann, Lisa, Rouget, Isabelle, Sánchez, Pilar, Sánchez-Márquez, Antoni, Seixas, Sónia, Souquet, Louise, Varela, Jaquelino, Vidal, Erica A. G., Cherel, Yves, Xavier, José C., Golikov, Alexey V., Queirós, José P., Perales-Raya, Catalina, Rosas-Luis, Rigoberto, Abreu, José, Bello, Giambattista, Bustamante, Paco, Capaz, Juan C., Dimkovikj, Valerie H., González, Angel F., Guímaro, Hugo, Guerra-Marrero, Airam, Gomes-Pereira, José N., Kubodera, Tsunemi, Laptikhovsky, Vladimir, Lefkaditou, Evgenia, Lishchenko, Fedor, Luna, Amanda, Liu, Bilin, Pierce, Graham J., Pissarra, Vasco, Reveillac, Elodie, Romanov, Evgeny V., Rosa, Rui, Roscian, Marjorie, Rose-Mann, Lisa, Rouget, Isabelle, Sánchez, Pilar, Sánchez-Márquez, Antoni, Seixas, Sónia, Souquet, Louise, Varela, Jaquelino, Vidal, Erica A. G., and Cherel, Yves
- Abstract
The use of cephalopod beaks in ecological and population dynamics studies has allowed major advances of our knowledge on the role of cephalopods in marine ecosystems in the last 60 years. Since the 1960’s, with the pioneering research by Malcolm Clarke and colleagues, cephalopod beaks (also named jaws or mandibles) have been described to species level and their measurements have been shown to be related to cephalopod body size and mass, which permitted important information to be obtained on numerous biological and ecological aspects of cephalopods in marine ecosystems. In the last decade, a range of new techniques has been applied to cephalopod beaks, permitting new kinds of insight into cephalopod biology and ecology. The workshop on cephalopod beaks of the Cephalopod International Advisory Council Conference (Sesimbra, Portugal) in 2022 aimed to review the most recent scientific developments in this field and to identify future challenges, particularly in relation to taxonomy, age, growth, chemical composition (i.e., DNA, proteomics, stable isotopes, trace elements) and physical (i.e., structural) analyses. In terms of taxonomy, new techniques (e.g., 3D geometric morphometrics) for identifying cephalopods from their beaks are being developed with promising results, although the need for experts and reference collections of cephalopod beaks will continue. The use of beak microstructure for age and growth studies has been validated. Stable isotope analyses on beaks have proven to be an excellent technique to get valuable information on the ecology of cephalopods (namely habitat and trophic position). Trace element analyses is also possible using beaks, where concentrations are significantly lower than in other tissues (e.g., muscle, digestive gland, gills). Extracting DNA from beaks was only possible in one study so far. Protein analyses can also be made using cephalopod beaks. Future challenges in research using cephalopod beaks are also discussed.
- Published
- 2022
- Full Text
- View/download PDF
11. The significance of cephalopod beaks as a research tool: An update
- Author
-
European Commission, Ministerio de Ciencia e Innovación (España), Institut Universitaire de France, Universidad de Las Palmas de Gran Canaria, Agencia Estatal de Investigación (España), Fundação para a Ciência e a Tecnologia (Portugal), Xavier, José C., Golikov, Alexey, Queirós, José P., Perales-Raya, Catalina, Rosas-Luis, Rigoberto, Abreu, José, Bello, Giambattista, Bustamante, Paco, Capaz, Juan C., Dimkovikj, Valerie H., González, Ángel F., Guímaro, Hugo, Guerra-Marrero, Airam, Gomes-Pereira, José N., Kubodera, Tsunemi, Laptikhovsky, Vladimir, Lefkaditou, E., Lishchenko, Fedor, Luna, Amanda, Liu, Bilin, Pierce, Graham J., Pissarra, Vasco, Reveillac, Elodie, Romanov, Evgeny V., Rosa, Rui, Roscian, Marjorie, Rose-Mann, Lisa, Rouget, Isabelle, Sánchez Zalacaín, Pilar, Sánchez-Márquez, Antoni, Seixas, Sonia, Souquet, Louise, Varela, Jaquelino, Vidal, Erica A. G., Cherel, Yves, European Commission, Ministerio de Ciencia e Innovación (España), Institut Universitaire de France, Universidad de Las Palmas de Gran Canaria, Agencia Estatal de Investigación (España), Fundação para a Ciência e a Tecnologia (Portugal), Xavier, José C., Golikov, Alexey, Queirós, José P., Perales-Raya, Catalina, Rosas-Luis, Rigoberto, Abreu, José, Bello, Giambattista, Bustamante, Paco, Capaz, Juan C., Dimkovikj, Valerie H., González, Ángel F., Guímaro, Hugo, Guerra-Marrero, Airam, Gomes-Pereira, José N., Kubodera, Tsunemi, Laptikhovsky, Vladimir, Lefkaditou, E., Lishchenko, Fedor, Luna, Amanda, Liu, Bilin, Pierce, Graham J., Pissarra, Vasco, Reveillac, Elodie, Romanov, Evgeny V., Rosa, Rui, Roscian, Marjorie, Rose-Mann, Lisa, Rouget, Isabelle, Sánchez Zalacaín, Pilar, Sánchez-Márquez, Antoni, Seixas, Sonia, Souquet, Louise, Varela, Jaquelino, Vidal, Erica A. G., and Cherel, Yves
- Abstract
The use of cephalopod beaks in ecological and population dynamics studies has allowed major advances of our knowledge on the role of cephalopods in marine ecosystems in the last 60 years. Since the 1960’s, with the pioneering research by Malcolm Clarke and colleagues, cephalopod beaks (also named jaws or mandibles) have been described to species level and their measurements have been shown to be related to cephalopod body size and mass, which permitted important information to be obtained on numerous biological and ecological aspects of cephalopods in marine ecosystems. In the last decade, a range of new techniques has been applied to cephalopod beaks, permitting new kinds of insight into cephalopod biology and ecology. The workshop on cephalopod beaks of the Cephalopod International Advisory Council Conference (Sesimbra, Portugal) in 2022 aimed to review the most recent scientific developments in this field and to identify future challenges, particularly in relation to taxonomy, age, growth, chemical composition (i.e., DNA, proteomics, stable isotopes, trace elements) and physical (i.e., structural) analyses. In terms of taxonomy, new techniques (e.g., 3D geometric morphometrics) for identifying cephalopods from their beaks are being developed with promising results, although the need for experts and reference collections of cephalopod beaks will continue. The use of beak microstructure for age and growth studies has been validated. Stable isotope analyses on beaks have proven to be an excellent technique to get valuable information on the ecology of cephalopods (namely habitat and trophic position). Trace element analyses is also possible using beaks, where concentrations are significantly lower than in other tissues (e.g., muscle, digestive gland, gills). Extracting DNA from beaks was only possible in one study so far. Protein analyses can also be made using cephalopod beaks. Future challenges in research using cephalopod beaks are also discussed
- Published
- 2022
12. Supplementary File_Full Dataset.xlsx from Temperature-driven heterochrony as a main evolutionary response to climate changes in conodonts
- Author
-
Souquet, Louise, Guenser, Pauline, Girard, Catherine, Mazza, Michele, Rigo, Manuel, and Goudemand, Nicolas
- Abstract
This excel file contains all the morphometrical data used in this study. Each tab corresponds to a different analysis.
- Published
- 2022
- Full Text
- View/download PDF
13. Supplements S1 to S12.pdf from Temperature-driven heterochrony as a main evolutionary response to climate changes in conodonts
- Author
-
Souquet, Louise, Guenser, Pauline, Girard, Catherine, Mazza, Michele, Rigo, Manuel, and Goudemand, Nicolas
- Abstract
Additional tables and figures as cited in the main text. In particular, S12 contains all the data used for the analysis of PC2 trends.
- Published
- 2022
- Full Text
- View/download PDF
14. 3D models related to the publication: Siphonodella leiosa (Conodonta), a new unornamented species from the Tournaisian (lower Carboniferous) of Puech de la Suque (Montagne Noire, France).
- Author
-
Souquet, Louise, primary, Corradini, Carlo, additional, and Girard, Catherine, additional
- Published
- 2020
- Full Text
- View/download PDF
15. Le nautile : évolution du bec d’un fossile vivant
- Author
-
Souquet, Louise, Herrel, Anthony, Kruta, Isabelle, Rouget, Isabelle, Centre de Recherche en Paléontologie - Paris (CR2P), and Muséum national d'Histoire naturelle (MNHN)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDE.BE]Environmental Sciences/Biodiversity and Ecology - Abstract
International audience; Les Nautiles sont connus dans le registre fossile à partir du Paléozoïque (Devonien). Ce groupe qui a connu des périodes de grande diversité n’est actuellement représenté que par sept espèces. A cause de cette faible diversité, et de la similarité de leurs coquilles avec celles des espèces fossiles, les nautiles sont souvent considérés comme des « fossiles vivants », suggérant que leur morphologie et leur écologie sont resté presque inchangés au cours du temps. Cette idée erronée est due à la morphologie relativement simple de la coquille, ne portant pas assez d’informations pour étudier toute la diversité des nautiles fossiles. Cela entrave la reconstruction de leurs relations phylogénétiques et toute interprétation de leur écologie passée. Les nautiles actuels sont des prédateurs et des charognards, qui détectent leurs proies grâce à un système chimiosensoriel très sensible situé dans les tentacules. Ils les ingèrent ensuite à l’aide de leur bec, capable de saisir de d’écraser des aliments solides, comme des crustacés. Ce bec est composé majoritairement de chitine et se divise en deux mâchoires, supérieure et inférieure, sur lesquelles s’insèrent les muscles masticateurs de la masse buccale, qui contrôle leurs mouvements. Au sein des céphalopodes actuels, les nautiles ont également la particularité de posséder un renforcement calcaire à l’extrémité antérieur de chaque mâchoire, le rhyncholite et le conchorhynche. Ces structures sont plus rigides que le reste du bec, et que la coquille en aragonite, et donc se fossilise bien mieux. Les rhyncholites sont particulièrement abondants dans le registre fossile à partir de la fin du Trias jusqu’à nos jours, et présentent une grande disparité, très utilisée en biostratigraphie. Cependant, le grand potentiel des rhyncholites pour la compréhension de la biologie et de l’écologie des nautiles fossiles a été jusqu’à présent négligé. En effet, seul quelques études ont tenté de relier la forme des rhyncholites à leur fonction masticatrice, et à un régime alimentaire, et seulement de manière qualitative ou à l’aide de mesures biométriques simples. Ainsi, la manière dont des différences de formes chez le rhyncholites peut entrainer des différences de fonction de l’appareil masticateur reste mal connue. Ce projet vise pour la première fois à quantifier la morphologie des rhyncholites par une approche de morphométrie géométrique, et à rechercher les liens potentiels avec leur fonction au cours des temps géologiques. Nous présentons ici les résultats préliminaires de cette étude.
- Published
- 2019
16. Etude des patrons de variation intraspécifique et de covariation chez les éléments conodontes
- Author
-
Souquet, Louise, Institut de Génomique Fonctionnelle de Lyon (IGFL), École normale supérieure de Lyon (ENS de Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Université de Lyon, Nicolas Goudemand, and École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
Paleo-environments ,Morphométrie géométrique ,Evolution ,Temps profond ,Paléo-environnements ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Évolution ,Development ,Geometric morphometric ,Deep time ,Développement - Abstract
Evolution is the result of two main factors: the environment and the development. In this context, untangling the impact of these two forces on the morphological evolution of a structure is of major importance. To do so, studying evolution in deep time is useful, as it is the only way to observe the mechanisms in action over a long time interval and the responses to major environmental variations. In this thesis, we aim to better understand the evolution of a fossil species: the conodont. These marine jawless vertebrates possess a feeding apparatus composed of mineralized structures comparable to teeth, called conodont elements. Their high evolutionary rate, their long and sub-continuous fossil record, and their large populations made them a relevant model to conduct evolutionary studies in deep time. In the literature, only a few studies attempt to quantify the shape of conodont elements, and never in a developmental framework. With the discovery of new exceptionally preserved fossils, and the establishment of a methodology to quantify the patterns of morphological variation and covariations in these elements, the morphological evolution of conodont elements have been studied from different angles. We have established the existence of covariations between some morphological characters, illustrating the constraints on possible morphologies. Some constraints are considered developmental, while others are potentially mechanical. Evolutionary directions are highlighted, channelled by developmental constraints. At the inter-genera scale, we demonstrated a relationship between environmental changes (especially temperature variations) and these evolutionary directions. The results revealed a combined effect of the developmental forces (that constrain the initial possible morphologies) and the evolutionary forces (selecting the fittest morphologies depending on conditions) in the conodont elements evolution. We proposed heterochrony as underlying mechanism for these patterns, potentially driven by oceanic temperature. Shape quantification is also used in an attempt to clarify the neogondolellids taxonomy of the early Triassic. This work demonstrates the conodont's potential as model organism to study evolution in deep time.; L'évolution est le produit de deux grands facteurs: l'environnement et le développement. Il est donc important de déterminer l'impact de ces deux forces lorsque l'on s'intéresse à l'évolution morphologique d'un organe. Pour cela, il est utile d'étudier l'évolution en temps profond, seul moyen d'observer les mécanismes en action sur de longs intervalles de temps et les réponses à des variations environnementales majeures. Le but de ce travail de thèse est de mieux comprendre l'évolution d'une espèce fossile: le conodonte. Ce vertébré marin dépourvus de mâchoire possède un appareil buccal composé de structures minéralisées semblables à des dents, appelées éléments conodontes. Leur fort taux d’évolution, leur enregistrement fossile long et sub-continu, et la taille importante de leurs populations font de ces éléments conodontes un modèle de choix pour répondre aux questions évolutives en temps profond. Dans la littérature, peu d'études ont tentées de quantifier la forme de ces éléments, et aucune dans un cadre développemental. Grâce à la découverte de fossiles exceptionnellement préservés, ainsi qu'à l'établissement d'une méthodologie pour quantifier les patrons de variation morphologique et de covariation de ces éléments, plusieurs facettes de l'évolution de la forme chez ces éléments ont pu être étudiées. Nous avons entre autre établis l'existence de covariations entre certains traits morphologiques, illustrant les contraintes faisant pression sur ceux-ci. Certaines contraintes sont considérées comme développementales et d'autres potentiellement mécaniques. Des directions évolutives sont également mises en évidence, contraintes par le développement qui canalise ainsi l'évolution. A l'échelle inter-genre, nous avons démontré un lien entre les changements environnementaux (notamment des variations de température) et ces directions évolutives. Ces résultats démontrent un effet croisé des forces développementales (contraignant les morphologies possible) et les forces environnementales (sélectionnant les morphologies en fonction des changements de conditions) dans l'évolution des éléments conodontes. Nous proposons des évènements d'hétérochronie comme mécanisme sous-jacent à cette évolution, potentiellement contrôlés par la température océanique. La quantification de la forme est également utilisée pour tenter de clarifier la taxonomie des neogondolellides au Trias inférieur. Ces travaux démontrent le potentiel du conodonte en tant qu'organisme modèle pour étudier l'évolution en temps profond.
- Published
- 2018
17. Deciphering the roles of environment and development in the evolution of a Late Triassic assemblage of conodont elements
- Author
-
Guenser, Pauline, primary, Souquet, Louise, additional, Dolédec, Sylvain, additional, Mazza, Michele, additional, Rigo, Manuel, additional, and Goudemand, Nicolas, additional
- Published
- 2019
- Full Text
- View/download PDF
18. Back to the wild: does feralization affect the mandible of non-commensal house mice (Mus musculus domesticus)?
- Author
-
Souquet, Louise, primary, Chevret, Pascale, additional, Ganem, Guila, additional, Auffray, Jean-Christophe, additional, Ledevin, Ronan, additional, Agret, Sylvie, additional, Hautier, Lionel, additional, and Renaud, Sabrina, additional
- Published
- 2019
- Full Text
- View/download PDF
19. 3D models related to the publication: Siphonodella leiosa (Conodonta), a new unornamented species from the Tournaisian (lower Carboniferous) of Puech de la Suque (Montagne Noire, France)
- Author
-
Louise Souquet, Catherine Girard, Carlo Corradini, Centre de Recherche en Paléontologie - Paris (CR2P), Muséum national d'Histoire naturelle (MNHN)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Matematica e Geoscienze [Trieste], Università degli studi di Trieste, Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UR226, Università degli studi di Trieste = University of Trieste, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Souquet, Louise, Corradini, Carlo, and Girard, Catherine
- Subjects
010506 paleontology ,Holotype ,Conodonts ,3d model ,010502 geochemistry & geophysics ,01 natural sciences ,Carboniferous, Conodonts, Holotype, Montagne Noire, Siphonodella ,Paleontology ,Tournaisian ,Carboniferous ,Geography ,Montagne Noire ,Siphonodella ,[SDU.STU.PG]Sciences of the Universe [physics]/Earth Sciences/Paleontology ,0105 earth and related environmental sciences - Abstract
The present 3D Dataset contains the 3D models of the holotype and the paratypes of the new species Siphonodella leiosa described and analyzed in the following publication: L. Souquet, C. Corradini, C. Girard: Siphonodella leiosa (Conodonta), a new unornamented species from the Tournaisian (lower Carboniferous) of Puech de la Suque (Montagne Noire, France). Geobios, https://doi.org/10.1016/j.geobios.2020.06.004.
- Published
- 2020
- Full Text
- View/download PDF
20. Temperature-driven heterochrony as a main evolutionary response to climate changes in conodonts.
- Author
-
Souquet L, Guenser P, Girard C, Mazza M, Rigo M, and Goudemand N
- Subjects
- Temperature, Ecosystem, Phenotype, Biological Evolution, Climate Change
- Abstract
Can we predict the evolutionary response of organisms to climate changes? The direction of greatest intraspecific phenotypic variance is thought to correspond to an ' evolutionary line of least resistance ', i.e. a taxon's phenotype is expected to evolve along that general direction, if not constrained otherwise. In particular, heterochrony, whereby the timing or rate of developmental processes are modified, has often been invoked to describe evolutionary trajectories and it may be advantageous to organisms when rapid adaptation is critical. Yet, to date, little is known empirically as to which covariation patterns, whether static allometry, as measured in adult forms only, or ontogenetic allometry, the basis for heterochrony, may be prevalent in what circumstances. Here, we quantify the morphology of segminiplanate conodont elements during two distinct time intervals separated by more than 130 Myr: the Devonian-Carboniferous boundary and the Carnian-Norian boundary (Late Triassic). We evidence that the corresponding species share similar patterns of intraspecific static allometry. Yet, during both crises, conodont evolution was decoupled from this common evolutionary line of least resistance. Instead, it followed heterochrony-like trajectories that furthermore appear as driven by ocean temperature. This may have implications for our interpretation of conodonts' and past marine ecosystems' response to environmental perturbations.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.