Ning Wang,1,2 Shu Cong,1 Jing Fan,1 Heling Bao,1 Baohua Wang,1 Ting Yang,3 Yajing Feng,1 Yang Liu,4 Linhong Wang,1 Chen Wang,3,5 Wenbiao Hu,2 Liwen Fang1 1National Center for Chronic Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, People’s Republic of China; 2School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; 3Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing, People’s Republic of China; 4Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; 5Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of ChinaCorrespondence: Liwen FangNational Center for Chronic Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing 100050, People’s Republic of ChinaTel +86 135 5239 3376Fax +86 010 6304 2350Email fangliwen@ncncd.chinacdc.cnWenbiao HuSchool of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, AustraliaTel/Fax +61 7 3138 5724Email w2.hu@qut.edu.auPurpose: COPD prevalence has rapidly increased in China, but the geographical disparities in COPD prevalence remain largely unknown. This study aimed to assess city-level disparities in COPD prevalence and identify the relative importance of COPD related risk factors in mainland China.Patients and Methods: A nationwide cross-sectional study of COPD recruited 66,752 adults across the mainland China between 2014 and 2015. Patients with COPD were ascertained by a post-bronchodilator pulmonary function test. We estimated the city-specific prevalence of COPD by spatial kriging interpolation method. We detected spatial clusters with a significantly higher prevalence of COPD by spatial scan statistics. We determined the relative importance of COPD associated risk factors by a nonparametric and nonlinear classification and regression tree (CART) model.Results: The three spatial clusters with the highest prevalence of COPD were located in parts of Sichuan, Gansu, and Shaanxi, etc. (relative risks (RRs)) ranging from 1.55 (95% CI 1.55– 1.56) to 1.33 (95% CI 1.33– 1.33)). CART showed that advanced age (≥ 60 years) was the most important factor associated with COPD in the overall population, followed by smoking. We estimated that there were about 28.5 million potentially avoidable cases of COPD among people aged 40 or older if they never smoked. PM2.5 was an important associated risk factor for COPD in the north, northeast, and southwest of China. After adjusting for age and smoking, the spatial cluster with the highest prevalence shifted to most of Sichuan, Gansu, Qinghai, and Ningxia, etc. (RR 1.65 (95% CI 1.63– 1.67)).Conclusion: The spatial clusters of COPD at the city level and regionally varied important risk factors for COPD would help develop tailored interventions for COPD in China. After adjusting for the main risk factors, the spatial clusters of COPD shifted, indicating that there would be other potential risk factors for the remaining clusters which call for further studies.Keywords: COPD, spatial clusters, kriging, classification and regression tree