515 results on '"Speed, J"'
Search Results
2. Global plant trait relationships extend to the climatic extremes of the tundra biome.
- Author
-
Thomas, H, Bjorkman, A, Myers-Smith, I, Elmendorf, S, Kattge, J, Diaz, S, Vellend, M, Blok, D, Cornelissen, J, Forbes, B, Henry, G, Hollister, R, Normand, S, Prevéy, J, Rixen, C, Schaepman-Strub, G, Wilmking, M, Wipf, S, Cornwell, W, Beck, P, Georges, D, Goetz, S, Guay, K, Rüger, N, Soudzilovskaia, N, Spasojevic, Marko, Alatalo, J, Alexander, H, Anadon-Rosell, A, Angers-Blondin, S, Te Beest, M, Berner, L, Björk, R, Buchwal, A, Buras, A, Carbognani, M, Christie, K, Collier, L, Cooper, E, Elberling, B, Eskelinen, A, Frei, E, Grau, O, Grogan, P, Hallinger, M, Heijmans, M, Hermanutz, L, Hudson, J, Johnstone, J, Hülber, K, Iturrate-Garcia, M, Iversen, C, Jaroszynska, F, Kaarlejarvi, E, Kulonen, A, Lamarque, L, Lantz, T, Lévesque, E, Little, C, Michelsen, A, Milbau, A, Nabe-Nielsen, J, Nielsen, S, Ninot, J, Oberbauer, S, Olofsson, J, Onipchenko, V, Petraglia, A, Rumpf, S, Shetti, R, Speed, J, Suding, K, Tape, K, Tomaselli, M, Trant, A, Treier, U, Tremblay, M, Venn, S, Vowles, T, Weijers, S, Wookey, P, Zamin, T, Bahn, M, Blonder, Benjamin, van Bodegom, P, Bond-Lamberty, B, Campetella, G, Cerabolini, B, Chapin, F, Craine, J, Dainese, M, Green, W, Jansen, S, Kleyer, M, Manning, P, Niinemets, Ü, Onoda, Y, Ozinga, W, Peñuelas, J, and Poschlod, P
- Subjects
Climate ,Ecosystem ,Plant Development ,Plants ,Tundra - Abstract
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
- Published
- 2020
3. Ecological factors influencing invasive predator survival and movement: insights from a continental-scale study of feral cats in Australia
- Author
-
Menon, V, McGregor, H, Giljohann, K, Wintle, B, Pascoe, J, Robley, A, Johnston, M, Fancourt, B, Bengsen, A, Buckmaster, T, Comer, S, Hamer, R, Friend, T, Jansen, J, Zewe, F, Fleming, P, Ballard, G, Moseby, K, Gentle, M, Scomparin, C, Speed, J, Clausen, L, Le Pla, M, Hradsky, B, Menon, V, McGregor, H, Giljohann, K, Wintle, B, Pascoe, J, Robley, A, Johnston, M, Fancourt, B, Bengsen, A, Buckmaster, T, Comer, S, Hamer, R, Friend, T, Jansen, J, Zewe, F, Fleming, P, Ballard, G, Moseby, K, Gentle, M, Scomparin, C, Speed, J, Clausen, L, Le Pla, M, and Hradsky, B
- Abstract
Feral cats (Felis catus) pose a significant global threat to biodiversity, primarily through predation, disease and competition. A key gap in parameterizing models for improving management decisions for feral cat control relates to factors that drive feral cat survival and movement in the wild. Our study objective was to conduct the first continental-scale analysis of survival rates and displacement distances for feral cats. We collated data on 528 feral cats from telemetry studies in naturally-vegetated landscapes across Australia. Using Cox-proportional hazards models, we investigated the effects of sex, presence of larger predators (dingoes, Canis familiaris and introduced foxes, Vulpes vulpes), presence of introduced prey (rabbits, Oryctolagus cuniculus), body mass, landscape productivity and feral cat density on feral cat survival. We also analysed the effects of sex, body mass and landscape productivity on feral cat displacement using linear mixed model analysis. Feral cat survival was positively associated with presence of dingoes and increasing body mass, whereas there was no clear association between feral cat survival and sex, presence of rabbits, or cat density. Presence of foxes had a strong negative effect on feral cat survival, but the hazard ratio was associated with considerable uncertainty. Net displacement of male feral cats was nearly two times further than that of females, and the proportion of feral cats making long-distance movements was greater in landscapes with low productivity. Increasing body mass of feral cats was positively related to net displacement, with heavier cats moving further. Analysis of metadata from telemetry studies can provide valuable insights into wildlife survival rates and movement behaviour. Our findings will help inform the development of effective management strategies and improve feral cat management for biodiversity conservation.
- Published
- 2024
4. How does microclimate affect the growth of the rare liverwort Scapania nimbosa ?
- Author
-
Wangen, K., Speed, J. D. M., and Hassel, K.
- Published
- 2017
5. First H- beam extracted from the non-caesiated external RF-coil ion source at ISIS
- Author
-
Lawrie, S., primary, Abel, R., additional, Cahill, C., additional, Faircloth, D., additional, Macgregor, J., additional, Speed, J., additional, and Tarvainen, O., additional
- Published
- 2023
- Full Text
- View/download PDF
6. Biotic interactions mediate patterns of herbivore diversity in the Arctic
- Author
-
Barrio, I. C., Bueno, C. G., Gartzia, M., Soininen, E. M., Christie, K. S., Speed, J. D. M., Ravolainen, V. T., Forbes, B. C., Gauthier, G., Horstkotte, T., Hoset, K. S., Høye, T. T., Jónsdóttir, I. S., Lévesque, E., Mörsdorf, M. A., Olofsson, J., Wookey, P. A., and Hik, D. S.
- Published
- 2016
7. Evidence of effects of herbivory on Arctic vegetation: a systematic map protocol
- Author
-
Soininen, E. M., Barrio, I., Jepsen, J. U., Ehrich, D., Ravolainen, V. T., and Speed, J. D. M.
- Published
- 2018
- Full Text
- View/download PDF
8. De-Medicalizing Misery II: Society, Politics and the Mental Health Industry
- Author
-
E. Speed, J. Moncrieff, M. Rapley, E. Speed, J. Moncrieff, M. Rapley
- Published
- 2014
9. Western Bay of Plenty, Road Network Risk Assessment
- Author
-
New Zealand Geotechnical Society (2006 : Nelson, N.Z.), Speed, J, and Brabhaharan, P
- Published
- 2006
10. Counting the bodies: Estimating the numbers and spatial variation of Australian reptiles, birds and mammals killed by two invasive mesopredators
- Author
-
Stobo‐Wilson, A.M., Murphy, B.P., Legge, S.M., Caceres‐Escobar, H., Chapple, D.G., Crawford, H.M., Dawson, S.J., Dickman, C.R., Doherty, T.S., Fleming, P.A., Garnett, S.T., Gentle, M., Newsome, T.M., Palmer, R., Rees, M.W., Ritchie, E.G., Speed, J., Stuart, J‐M, Suarez‐Castro, A.F., Thompson, E., Tulloch, A., Turpin, J.M., Woinarski, J.C.Z., Brito, J., Stobo‐Wilson, A.M., Murphy, B.P., Legge, S.M., Caceres‐Escobar, H., Chapple, D.G., Crawford, H.M., Dawson, S.J., Dickman, C.R., Doherty, T.S., Fleming, P.A., Garnett, S.T., Gentle, M., Newsome, T.M., Palmer, R., Rees, M.W., Ritchie, E.G., Speed, J., Stuart, J‐M, Suarez‐Castro, A.F., Thompson, E., Tulloch, A., Turpin, J.M., Woinarski, J.C.Z., and Brito, J.
- Abstract
Aim Introduced predators negatively impact biodiversity globally, with insular fauna often most severely affected. Here, we assess spatial variation in the number of terrestrial vertebrates (excluding amphibians) killed by two mammalian mesopredators introduced to Australia, the red fox (Vulpes vulpes) and feral cat (Felis catus). We aim to identify prey groups that suffer especially high rates of predation, and regions where losses to foxes and/or cats are most substantial. Location Australia. Methods We draw information on the spatial variation in tallies of reptiles, birds and mammals killed by cats in Australia from published studies. We derive tallies for fox predation by (i) modelling continental-scale spatial variation in fox density, (ii) modelling spatial variation in the frequency of occurrence of prey groups in fox diet, (iii) analysing the number of prey individuals within dietary samples and (iv) discounting animals taken as carrion. We derive point estimates of the numbers of individuals killed annually by foxes and by cats and map spatial variation in these tallies. Results Foxes kill more reptiles, birds and mammals (peaking at 1071 km−2 year−1) than cats (55 km−2 year−1) across most of the unmodified temperate and forested areas of mainland Australia, reflecting the generally higher density of foxes than cats in these environments. However, across most of the continent – mainly the arid central and tropical northern regions (and on most Australian islands) – cats kill more animals than foxes. We estimate that foxes and cats together kill 697 million reptiles annually in Australia, 510 million birds and 1435 million mammals. Main conclusions This continental-scale analysis demonstrates that predation by two introduced species takes a substantial and ongoing toll on Australian reptiles, birds and mammals. Continuing population declines and potential extinctions of some of these species threatens to further compound Australia's poor contemporary conser
- Published
- 2022
11. Counting the bodies: Estimating the numbers and spatial variation of Australian reptiles, birds and mammals killed by two invasive mesopredators
- Author
-
Stobo-Wilson, AM, Murphy, BP, Legge, SM, Caceres-Escobar, H, Chapple, DG, Crawford, HM, Dawson, SJ, Dickman, CR, Doherty, Tim, Fleming, PA, Garnett, ST, Gentle, M, Newsome, TM, Palmer, R, Rees, MW, Ritchie, Euan, Speed, J, Stuart, JM, Suarez-Castro, AF, Thompson, E, Tulloch, A, Turpin, JM, Woinarski, JCZ, Stobo-Wilson, AM, Murphy, BP, Legge, SM, Caceres-Escobar, H, Chapple, DG, Crawford, HM, Dawson, SJ, Dickman, CR, Doherty, Tim, Fleming, PA, Garnett, ST, Gentle, M, Newsome, TM, Palmer, R, Rees, MW, Ritchie, Euan, Speed, J, Stuart, JM, Suarez-Castro, AF, Thompson, E, Tulloch, A, Turpin, JM, and Woinarski, JCZ
- Published
- 2022
12. Counting the bodies: Estimating the numbers and spatial variation of Australian reptiles, birds and mammals killed by two invasive mesopredators
- Author
-
Brito, J, Stobo-Wilson, AM, Murphy, BP, Legge, SM, Caceres-Escobar, H, Chapple, DG, Crawford, HM, Dawson, SJ, Dickman, CR, Doherty, TS, Fleming, PA, Garnett, ST, Gentle, M, Newsome, TM, Palmer, R, Rees, MW, Ritchie, EG, Speed, J, Stuart, J-M, Suarez-Castro, AF, Thompson, E, Tulloch, A, Turpin, JM, Woinarski, JCZ, Brito, J, Stobo-Wilson, AM, Murphy, BP, Legge, SM, Caceres-Escobar, H, Chapple, DG, Crawford, HM, Dawson, SJ, Dickman, CR, Doherty, TS, Fleming, PA, Garnett, ST, Gentle, M, Newsome, TM, Palmer, R, Rees, MW, Ritchie, EG, Speed, J, Stuart, J-M, Suarez-Castro, AF, Thompson, E, Tulloch, A, Turpin, JM, and Woinarski, JCZ
- Abstract
Aim Introduced predators negatively impact biodiversity globally, with insular fauna often most severely affected. Here, we assess spatial variation in the number of terrestrial vertebrates (excluding amphibians) killed by two mammalian mesopredators introduced to Australia, the red fox (Vulpes vulpes) and feral cat (Felis catus). We aim to identify prey groups that suffer especially high rates of predation, and regions where losses to foxes and/or cats are most substantial. Location Australia. Methods We draw information on the spatial variation in tallies of reptiles, birds and mammals killed by cats in Australia from published studies. We derive tallies for fox predation by (i) modelling continental‐scale spatial variation in fox density, (ii) modelling spatial variation in the frequency of occurrence of prey groups in fox diet, (iii) analysing the number of prey individuals within dietary samples and (iv) discounting animals taken as carrion. We derive point estimates of the numbers of individuals killed annually by foxes and by cats and map spatial variation in these tallies. Results Foxes kill more reptiles, birds and mammals (peaking at 1071 km−2 year−1) than cats (55 km−2 year−1) across most of the unmodified temperate and forested areas of mainland Australia, reflecting the generally higher density of foxes than cats in these environments. However, across most of the continent – mainly the arid central and tropical northern regions (and on most Australian islands) – cats kill more animals than foxes. We estimate that foxes and cats together kill 697 million reptiles annually in Australia, 510 million birds and 1435 million mammals. Main conclusions This continental‐scale analysis demonstrates that predation by two introduced species takes a substantial and ongoing toll on Australian reptiles, birds and mammals. Continuing population declines and potential extinctions of some of these species threatens to further compound Australia's poor contempora
- Published
- 2022
13. Global maps of soil temperature
- Author
-
Lembrechts, J. J. (Jonas J.), van den Hoogen, J. (Johan), Aalto, J. (Juha), Ashcroft, M. B. (Michael B.), De Frenne, P. (Pieter), Kemppinen, J. (Julia), Kopecky, M. (Martin), Luoto, M. (Miska), Maclean, I. M. (Ilya M. D.), Crowther, T. W. (Thomas W.), Bailey, J. J. (Joseph J.), Haesen, S. (Stef), Klinges, D. H. (David H.), Niittynen, P. (Pekka), Scheffers, B. R. (Brett R.), Van Meerbeek, K. (Koenraad), Aartsma, P. (Peter), Abdalaze, O. (Otar), Abedi, M. (Mehdi), Aerts, R. (Rien), Ahmadian, N. (Negar), Ahrends, A. (Antje), Alatalo, J. M. (Juha M.), Alexander, J. M. (Jake M.), Allonsius, C. N. (Camille Nina), Altman, J. (Jan), Ammann, C. (Christof), Andres, C. (Christian), Andrews, C. (Christopher), Ardo, J. (Jonas), Arriga, N. (Nicola), Arzac, A. (Alberto), Aschero, V. (Valeria), Assis, R. L. (Rafael L.), Assmann, J. J. (Jakob Johann), Bader, M. Y. (Maaike Y.), Bahalkeh, K. (Khadijeh), Barancok, P. (Peter), Barrio, I. C. (Isabel C.), Barros, A. (Agustina), Barthel, M. (Matti), Basham, E. W. (Edmund W.), Bauters, M. (Marijn), Bazzichetto, M. (Manuele), Marchesini, L. B. (Luca Belelli), Bell, M. C. (Michael C.), Benavides, J. C. (Juan C.), Benito Alonso, J. L. (Jose Luis), Berauer, B. J. (Bernd J.), Bjerke, J. W. (Jarle W.), Bjork, R. G. (Robert G.), Bjorkman, M. P. (Mats P.), Bjornsdottir, K. (Katrin), Blonder, B. (Benjamin), Boeckx, P. (Pascal), Boike, J. (Julia), Bokhorst, S. (Stef), Brum, B. N. (Barbara N. S.), Bruna, J. (Josef), Buchmann, N. (Nina), Buysse, P. (Pauline), Camargo, J. L. (Jose Luis), Campoe, O. C. (Otavio C.), Candan, O. (Onur), Canessa, R. (Rafaella), Cannone, N. (Nicoletta), Carbognani, M. (Michele), Carnicer, J. (Jofre), Casanova-Katny, A. (Angelica), Cesarz, S. (Simone), Chojnicki, B. (Bogdan), Choler, P. (Philippe), Chown, S. L. (Steven L.), Cifuentes, E. F. (Edgar F.), Ciliak, M. (Marek), Contador, T. (Tamara), Convey, P. (Peter), Cooper, E. J. (Elisabeth J.), Cremonese, E. (Edoardo), Curasi, S. R. (Salvatore R.), Curtis, R. (Robin), Cutini, M. (Maurizio), Dahlberg, C. J. (C. Johan), Daskalova, G. N. (Gergana N.), Angel de Pablo, M. (Miguel), Della Chiesa, S. (Stefano), Dengler, J. (Juergen), Deronde, B. (Bart), Descombes, P. (Patrice), Di Cecco, V. (Valter), Di Musciano, M. (Michele), Dick, J. (Jan), Dimarco, R. D. (Romina D.), Dolezal, J. (Jiri), Dorrepaal, E. (Ellen), Dusek, J. (Jiri), Eisenhauer, N. (Nico), Eklundh, L. (Lars), Erickson, T. E. (Todd E.), Erschbamer, B. (Brigitta), Eugster, W. (Werner), Ewers, R. M. (Robert M.), Exton, D. A. (Dan A.), Fanin, N. (Nicolas), Fazlioglu, F. (Fatih), Feigenwinter, I. (Iris), Fenu, G. (Giuseppe), Ferlian, O. (Olga), Fernandez Calzado, M. R. (M. Rosa), Fernandez-Pascual, E. (Eduardo), Finckh, M. (Manfred), Higgens, R. F. (Rebecca Finger), Forte, T. G. (T'ai G. W.), Freeman, E. C. (Erika C.), Frei, E. R. (Esther R.), Fuentes-Lillo, E. (Eduardo), Garcia, R. A. (Rafael A.), Garcia, M. B. (Maria B.), Geron, C. (Charly), Gharun, M. (Mana), Ghosn, D. (Dany), Gigauri, K. (Khatuna), Gobin, A. (Anne), Goded, I. (Ignacio), Goeckede, M. (Mathias), Gottschall, F. (Felix), Goulding, K. (Keith), Govaert, S. (Sanne), Graae, B. J. (Bente Jessen), Greenwood, S. (Sarah), Greiser, C. (Caroline), Grelle, A. (Achim), Guenard, B. (Benoit), Guglielmin, M. (Mauro), Guillemot, J. (Joannes), Haase, P. (Peter), Haider, S. (Sylvia), Halbritter, A. H. (Aud H.), Hamid, M. (Maroof), Hammerle, A. (Albin), Hampe, A. (Arndt), Haugum, S. V. (Siri, V), Hederova, L. (Lucia), Heinesch, B. (Bernard), Helfter, C. (Carole), Hepenstrick, D. (Daniel), Herberich, M. (Maximiliane), Herbst, M. (Mathias), Hermanutz, L. (Luise), Hik, D. S. (David S.), Hoffren, R. (Raul), Homeier, J. (Juergen), Hörtnagl, L. (Lukas), Hoye, T. T. (Toke T.), Hrbacek, F. (Filip), Hylander, K. (Kristoffer), Iwata, H. (Hiroki), Jackowicz-Korczynski, M. A. (Marcin Antoni), Jactel, H. (Herve), Jarveoja, J. (Jarvi), Jastrzebowski, S. (Szymon), Jentsch, A. (Anke), Jimenez, J. J. (Juan J.), Jonsdottir, I. S. (Ingibjorg S.), Jucker, T. (Tommaso), Jump, A. S. (Alistair S.), Juszczak, R. (Radoslaw), Kanka, R. (Robert), Kaspar, V. (Vit), Kazakis, G. (George), Kelly, J. (Julia), Khuroo, A. A. (Anzar A.), Klemedtsson, L. (Leif), Klisz, M. (Marcin), Kljun, N. (Natascha), Knohl, A. (Alexander), Kobler, J. (Johannes), Kollar, J. (Jozef), Kotowska, M. M. (Martyna M.), Kovacs, B. (Bence), Kreyling, J. (Juergen), Lamprecht, A. (Andrea), Lang, S. I. (Simone, I), Larson, C. (Christian), Larson, K. (Keith), Laska, K. (Kamil), Maire, G. I. (Guerric Ie), Leihy, R. I. (Rachel, I), Lens, L. (Luc), Liljebladh, B. (Bengt), Lohila, A. (Annalea), Lorite, J. (Juan), Loubet, B. (Benjamin), Lynn, J. (Joshua), Macek, M. (Martin), Mackenzie, R. (Roy), Magliulo, E. (Enzo), Maier, R. (Regine), Malfasi, F. (Francesco), Malis, F. (Frantisek), Man, M. (Matej), Manca, G. (Giovanni), Manco, A. (Antonio), Manise, T. (Tanguy), Manolaki, P. (Paraskevi), Marciniak, F. (Felipe), Matula, R. (Radim), Clara Mazzolari, A. (Ana), Medinets, S. (Sergiy), Medinets, V. (Volodymyr), Meeussen, C. (Camille), Merinero, S. (Sonia), Guimaraes Mesquita, R. d. (Rita de Cassia), Meusburger, K. (Katrin), Meysman, F. J. (Filip J. R.), Michaletz, S. T. (Sean T.), Milbau, A. (Ann), Moiseev, D. (Dmitry), Moiseev, P. (Pavel), Mondoni, A. (Andrea), Monfries, R. (Ruth), Montagnani, L. (Leonardo), Moriana-Armendariz, M. (Mikel), di Cella, U. M. (Umberto Morra), Moersdorf, M. (Martin), Mosedale, J. R. (Jonathan R.), Muffler, L. (Lena), Munoz-Rojas, M. (Miriam), Myers, J. A. (Jonathan A.), Myers-Smith, I. H. (Isla H.), Nagy, L. (Laszlo), Nardino, M. (Marianna), Naujokaitis-Lewis, I. (Ilona), Newling, E. (Emily), Nicklas, L. (Lena), Niedrist, G. (Georg), Niessner, A. (Armin), Nilsson, M. B. (Mats B.), Normand, S. (Signe), Nosetto, M. D. (Marcelo D.), Nouvellon, Y. (Yann), Nunez, M. A. (Martin A.), Ogaya, R. (Roma), Ogee, J. (Jerome), Okello, J. (Joseph), Olejnik, J. (Janusz), Olesen, J. E. (Jorgen Eivind), Opedal, O. H. (Oystein H.), Orsenigo, S. (Simone), Palaj, A. (Andrej), Pampuch, T. (Timo), Panov, A. V. (Alexey V.), Pärtel, M. (Meelis), Pastor, A. (Ada), Pauchard, A. (Aníbal), Pauli, H. (Harald), Pavelka, M. (Marian), Pearse, W. D. (William D.), Peichl, M. (Matthias), Pellissier, L. (Loïc), Penczykowski, R. M. (Rachel M.), Penuelas, J. (Josep), Petit Bon, M. (Matteo), Petraglia, A. (Alessandro), Phartyal, S. S. (Shyam S.), Phoenix, G. K. (Gareth K.), Pio, C. (Casimiro), Pitacco, A. (Andrea), Pitteloud, C. (Camille), Plichta, R. (Roman), Porro, F. (Francesco), Portillo-Estrada, M. (Miguel), Poulenard, J. (Jérôme), Poyatos, R. (Rafael), Prokushkin, A. S. (Anatoly S.), Puchalka, R. (Radoslaw), Pușcaș, M. (Mihai), Radujković, D. (Dajana), Randall, K. (Krystal), Ratier Backes, A. (Amanda), Remmele, S. (Sabine), Remmers, W. (Wolfram), Renault, D. (David), Risch, A. C. (Anita C.), Rixen, C. (Christian), Robinson, S. A. (Sharon A.), Robroek, B. J. (Bjorn J. M.), Rocha, A. V. (Adrian V.), Rossi, C. (Christian), Rossi, G. (Graziano), Roupsard, O. (Olivier), Rubtsov, A. V. (Alexey V.), Saccone, P. (Patrick), Sagot, C. (Clotilde), Sallo Bravo, J. (Jhonatan), Santos, C. C. (Cinthya C.), Sarneel, J. M. (Judith M.), Scharnweber, T. (Tobias), Schmeddes, J. (Jonas), Schmidt, M. (Marius), Scholten, T. (Thomas), Schuchardt, M. (Max), Schwartz, N. (Naomi), Scott, T. (Tony), Seeber, J. (Julia), Segalin De Andrade, A. C. (Ana Cristina), Seipel, T. (Tim), Semenchuk, P. (Philipp), Senior, R. A. (Rebecca A.), Serra-Diaz, J. M. (Josep M.), Sewerniak, P. (Piotr), Shekhar, A. (Ankit), Sidenko, N. V. (Nikita V.), Siebicke, L. (Lukas), Siegwart Collier, L. (Laura), Simpson, E. (Elizabeth), Siqueira, D. P. (David P.), Sitková, Z. (Zuzana), Six, J. (Johan), Smiljanic, M. (Marko), Smith, S. W. (Stuart W.), Smith-Tripp, S. (Sarah), Somers, B. (Ben), Sørensen, M. V. (Mia Vedel), Souza, J. J. (José João L. L.), Souza, B. I. (Bartolomeu Israel), Dias, A. S. (Arildo Souza), Spasojevic, M. J. (Marko J.), Speed, J. D. (James D. M.), Spicher, F. (Fabien), Stanisci, A. (Angela), Steinbauer, K. (Klaus), Steinbrecher, R. (Rainer), Steinwandter, M. (Michael), Stemkovski, M. (Michael), Stephan, J. G. (Jörg G.), Stiegler, C. (Christian), Stoll, S. (Stefan), Svátek, M. (Martin), Svoboda, M. (Miroslav), Tagesson, T. (Torbern), Tanentzap, A. J. (Andrew J.), Tanneberger, F. (Franziska), Theurillat, J.-P. (Jean-Paul), Thomas, H. J. (Haydn J. D.), Thomas, A. D. (Andrew D.), Tielbörger, K. (Katja), Tomaselli, M. (Marcello), Treier, U. A. (Urs Albert), Trouillier, M. (Mario), Turtureanu, P. D. (Pavel Dan), Tutton, R. (Rosamond), Tyystjärvi, V. A. (Vilna A.), Ueyama, M. (Masahito), Ujházy, K. (Karol), Ujházyová, M. (Mariana), Uogintas, D. (Domas), Urban, A. V. (Anastasiya V.), Urban, J. (Josef), Urbaniak, M. (Marek), Ursu, T.-M. (Tudor-Mihai), Vaccari, F. P. (Francesco Primo), Van De Vondel, S. (Stijn), Van Den Brink, L. (Liesbeth), Van Geel, M. (Maarten), Vandvik, V. (Vigdis), Vangansbeke, P. (Pieter), Varlagin, A. (Andrej), Veen, G. F. (G. F.), Veenendaal, E. (Elmar), Venn, S. E. (Susanna E.), Verbeeck, H. (Hans), Verbrugggen, E. (Erik), Verheijen, F. G. (Frank G. A.), Villar, L. (Luis), Vitale, L. (Luca), Vittoz, P. (Pascal), Vives-Ingla, M. (Maria), Von Oppen, J. (Jonathan), Walz, J. (Josefine), Wang, R. (Runxi), Wang, Y. (Yifeng), Way, R. G. (Robert G.), Wedegärtner, R. E. (Ronja E. M.), Weigel, R. (Robert), Wild, J. (Jan), Wilkinson, M. (Matthew), Wilmking, M. (Martin), Wingate, L. (Lisa), Winkler, M. (Manuela), Wipf, S. (Sonja), Wohlfahrt, G. (Georg), Xenakis, G. (Georgios), Yang, Y. (Yan), Yu, Z. (Zicheng), Yu, K. (Kailiang), Zellweger, F. (Florian), Zhang, J. (Jian), Zhang, Z. (Zhaochen), Zhao, P. (Peng), Ziemblińska, K. (Klaudia), Zimmermann, R. (Reiner), Zong, S. (Shengwei), Zyryanov, V. I. (Viacheslav I.), Nijs, I. (Ivan), Lenoir, J. (Jonathan), Lembrechts, J. J. (Jonas J.), van den Hoogen, J. (Johan), Aalto, J. (Juha), Ashcroft, M. B. (Michael B.), De Frenne, P. (Pieter), Kemppinen, J. (Julia), Kopecky, M. (Martin), Luoto, M. (Miska), Maclean, I. M. (Ilya M. D.), Crowther, T. W. (Thomas W.), Bailey, J. J. (Joseph J.), Haesen, S. (Stef), Klinges, D. H. (David H.), Niittynen, P. (Pekka), Scheffers, B. R. (Brett R.), Van Meerbeek, K. (Koenraad), Aartsma, P. (Peter), Abdalaze, O. (Otar), Abedi, M. (Mehdi), Aerts, R. (Rien), Ahmadian, N. (Negar), Ahrends, A. (Antje), Alatalo, J. M. (Juha M.), Alexander, J. M. (Jake M.), Allonsius, C. N. (Camille Nina), Altman, J. (Jan), Ammann, C. (Christof), Andres, C. (Christian), Andrews, C. (Christopher), Ardo, J. (Jonas), Arriga, N. (Nicola), Arzac, A. (Alberto), Aschero, V. (Valeria), Assis, R. L. (Rafael L.), Assmann, J. J. (Jakob Johann), Bader, M. Y. (Maaike Y.), Bahalkeh, K. (Khadijeh), Barancok, P. (Peter), Barrio, I. C. (Isabel C.), Barros, A. (Agustina), Barthel, M. (Matti), Basham, E. W. (Edmund W.), Bauters, M. (Marijn), Bazzichetto, M. (Manuele), Marchesini, L. B. (Luca Belelli), Bell, M. C. (Michael C.), Benavides, J. C. (Juan C.), Benito Alonso, J. L. (Jose Luis), Berauer, B. J. (Bernd J.), Bjerke, J. W. (Jarle W.), Bjork, R. G. (Robert G.), Bjorkman, M. P. (Mats P.), Bjornsdottir, K. (Katrin), Blonder, B. (Benjamin), Boeckx, P. (Pascal), Boike, J. (Julia), Bokhorst, S. (Stef), Brum, B. N. (Barbara N. S.), Bruna, J. (Josef), Buchmann, N. (Nina), Buysse, P. (Pauline), Camargo, J. L. (Jose Luis), Campoe, O. C. (Otavio C.), Candan, O. (Onur), Canessa, R. (Rafaella), Cannone, N. (Nicoletta), Carbognani, M. (Michele), Carnicer, J. (Jofre), Casanova-Katny, A. (Angelica), Cesarz, S. (Simone), Chojnicki, B. (Bogdan), Choler, P. (Philippe), Chown, S. L. (Steven L.), Cifuentes, E. F. (Edgar F.), Ciliak, M. (Marek), Contador, T. (Tamara), Convey, P. (Peter), Cooper, E. J. (Elisabeth J.), Cremonese, E. (Edoardo), Curasi, S. R. (Salvatore R.), Curtis, R. (Robin), Cutini, M. (Maurizio), Dahlberg, C. J. (C. Johan), Daskalova, G. N. (Gergana N.), Angel de Pablo, M. (Miguel), Della Chiesa, S. (Stefano), Dengler, J. (Juergen), Deronde, B. (Bart), Descombes, P. (Patrice), Di Cecco, V. (Valter), Di Musciano, M. (Michele), Dick, J. (Jan), Dimarco, R. D. (Romina D.), Dolezal, J. (Jiri), Dorrepaal, E. (Ellen), Dusek, J. (Jiri), Eisenhauer, N. (Nico), Eklundh, L. (Lars), Erickson, T. E. (Todd E.), Erschbamer, B. (Brigitta), Eugster, W. (Werner), Ewers, R. M. (Robert M.), Exton, D. A. (Dan A.), Fanin, N. (Nicolas), Fazlioglu, F. (Fatih), Feigenwinter, I. (Iris), Fenu, G. (Giuseppe), Ferlian, O. (Olga), Fernandez Calzado, M. R. (M. Rosa), Fernandez-Pascual, E. (Eduardo), Finckh, M. (Manfred), Higgens, R. F. (Rebecca Finger), Forte, T. G. (T'ai G. W.), Freeman, E. C. (Erika C.), Frei, E. R. (Esther R.), Fuentes-Lillo, E. (Eduardo), Garcia, R. A. (Rafael A.), Garcia, M. B. (Maria B.), Geron, C. (Charly), Gharun, M. (Mana), Ghosn, D. (Dany), Gigauri, K. (Khatuna), Gobin, A. (Anne), Goded, I. (Ignacio), Goeckede, M. (Mathias), Gottschall, F. (Felix), Goulding, K. (Keith), Govaert, S. (Sanne), Graae, B. J. (Bente Jessen), Greenwood, S. (Sarah), Greiser, C. (Caroline), Grelle, A. (Achim), Guenard, B. (Benoit), Guglielmin, M. (Mauro), Guillemot, J. (Joannes), Haase, P. (Peter), Haider, S. (Sylvia), Halbritter, A. H. (Aud H.), Hamid, M. (Maroof), Hammerle, A. (Albin), Hampe, A. (Arndt), Haugum, S. V. (Siri, V), Hederova, L. (Lucia), Heinesch, B. (Bernard), Helfter, C. (Carole), Hepenstrick, D. (Daniel), Herberich, M. (Maximiliane), Herbst, M. (Mathias), Hermanutz, L. (Luise), Hik, D. S. (David S.), Hoffren, R. (Raul), Homeier, J. (Juergen), Hörtnagl, L. (Lukas), Hoye, T. T. (Toke T.), Hrbacek, F. (Filip), Hylander, K. (Kristoffer), Iwata, H. (Hiroki), Jackowicz-Korczynski, M. A. (Marcin Antoni), Jactel, H. (Herve), Jarveoja, J. (Jarvi), Jastrzebowski, S. (Szymon), Jentsch, A. (Anke), Jimenez, J. J. (Juan J.), Jonsdottir, I. S. (Ingibjorg S.), Jucker, T. (Tommaso), Jump, A. S. (Alistair S.), Juszczak, R. (Radoslaw), Kanka, R. (Robert), Kaspar, V. (Vit), Kazakis, G. (George), Kelly, J. (Julia), Khuroo, A. A. (Anzar A.), Klemedtsson, L. (Leif), Klisz, M. (Marcin), Kljun, N. (Natascha), Knohl, A. (Alexander), Kobler, J. (Johannes), Kollar, J. (Jozef), Kotowska, M. M. (Martyna M.), Kovacs, B. (Bence), Kreyling, J. (Juergen), Lamprecht, A. (Andrea), Lang, S. I. (Simone, I), Larson, C. (Christian), Larson, K. (Keith), Laska, K. (Kamil), Maire, G. I. (Guerric Ie), Leihy, R. I. (Rachel, I), Lens, L. (Luc), Liljebladh, B. (Bengt), Lohila, A. (Annalea), Lorite, J. (Juan), Loubet, B. (Benjamin), Lynn, J. (Joshua), Macek, M. (Martin), Mackenzie, R. (Roy), Magliulo, E. (Enzo), Maier, R. (Regine), Malfasi, F. (Francesco), Malis, F. (Frantisek), Man, M. (Matej), Manca, G. (Giovanni), Manco, A. (Antonio), Manise, T. (Tanguy), Manolaki, P. (Paraskevi), Marciniak, F. (Felipe), Matula, R. (Radim), Clara Mazzolari, A. (Ana), Medinets, S. (Sergiy), Medinets, V. (Volodymyr), Meeussen, C. (Camille), Merinero, S. (Sonia), Guimaraes Mesquita, R. d. (Rita de Cassia), Meusburger, K. (Katrin), Meysman, F. J. (Filip J. R.), Michaletz, S. T. (Sean T.), Milbau, A. (Ann), Moiseev, D. (Dmitry), Moiseev, P. (Pavel), Mondoni, A. (Andrea), Monfries, R. (Ruth), Montagnani, L. (Leonardo), Moriana-Armendariz, M. (Mikel), di Cella, U. M. (Umberto Morra), Moersdorf, M. (Martin), Mosedale, J. R. (Jonathan R.), Muffler, L. (Lena), Munoz-Rojas, M. (Miriam), Myers, J. A. (Jonathan A.), Myers-Smith, I. H. (Isla H.), Nagy, L. (Laszlo), Nardino, M. (Marianna), Naujokaitis-Lewis, I. (Ilona), Newling, E. (Emily), Nicklas, L. (Lena), Niedrist, G. (Georg), Niessner, A. (Armin), Nilsson, M. B. (Mats B.), Normand, S. (Signe), Nosetto, M. D. (Marcelo D.), Nouvellon, Y. (Yann), Nunez, M. A. (Martin A.), Ogaya, R. (Roma), Ogee, J. (Jerome), Okello, J. (Joseph), Olejnik, J. (Janusz), Olesen, J. E. (Jorgen Eivind), Opedal, O. H. (Oystein H.), Orsenigo, S. (Simone), Palaj, A. (Andrej), Pampuch, T. (Timo), Panov, A. V. (Alexey V.), Pärtel, M. (Meelis), Pastor, A. (Ada), Pauchard, A. (Aníbal), Pauli, H. (Harald), Pavelka, M. (Marian), Pearse, W. D. (William D.), Peichl, M. (Matthias), Pellissier, L. (Loïc), Penczykowski, R. M. (Rachel M.), Penuelas, J. (Josep), Petit Bon, M. (Matteo), Petraglia, A. (Alessandro), Phartyal, S. S. (Shyam S.), Phoenix, G. K. (Gareth K.), Pio, C. (Casimiro), Pitacco, A. (Andrea), Pitteloud, C. (Camille), Plichta, R. (Roman), Porro, F. (Francesco), Portillo-Estrada, M. (Miguel), Poulenard, J. (Jérôme), Poyatos, R. (Rafael), Prokushkin, A. S. (Anatoly S.), Puchalka, R. (Radoslaw), Pușcaș, M. (Mihai), Radujković, D. (Dajana), Randall, K. (Krystal), Ratier Backes, A. (Amanda), Remmele, S. (Sabine), Remmers, W. (Wolfram), Renault, D. (David), Risch, A. C. (Anita C.), Rixen, C. (Christian), Robinson, S. A. (Sharon A.), Robroek, B. J. (Bjorn J. M.), Rocha, A. V. (Adrian V.), Rossi, C. (Christian), Rossi, G. (Graziano), Roupsard, O. (Olivier), Rubtsov, A. V. (Alexey V.), Saccone, P. (Patrick), Sagot, C. (Clotilde), Sallo Bravo, J. (Jhonatan), Santos, C. C. (Cinthya C.), Sarneel, J. M. (Judith M.), Scharnweber, T. (Tobias), Schmeddes, J. (Jonas), Schmidt, M. (Marius), Scholten, T. (Thomas), Schuchardt, M. (Max), Schwartz, N. (Naomi), Scott, T. (Tony), Seeber, J. (Julia), Segalin De Andrade, A. C. (Ana Cristina), Seipel, T. (Tim), Semenchuk, P. (Philipp), Senior, R. A. (Rebecca A.), Serra-Diaz, J. M. (Josep M.), Sewerniak, P. (Piotr), Shekhar, A. (Ankit), Sidenko, N. V. (Nikita V.), Siebicke, L. (Lukas), Siegwart Collier, L. (Laura), Simpson, E. (Elizabeth), Siqueira, D. P. (David P.), Sitková, Z. (Zuzana), Six, J. (Johan), Smiljanic, M. (Marko), Smith, S. W. (Stuart W.), Smith-Tripp, S. (Sarah), Somers, B. (Ben), Sørensen, M. V. (Mia Vedel), Souza, J. J. (José João L. L.), Souza, B. I. (Bartolomeu Israel), Dias, A. S. (Arildo Souza), Spasojevic, M. J. (Marko J.), Speed, J. D. (James D. M.), Spicher, F. (Fabien), Stanisci, A. (Angela), Steinbauer, K. (Klaus), Steinbrecher, R. (Rainer), Steinwandter, M. (Michael), Stemkovski, M. (Michael), Stephan, J. G. (Jörg G.), Stiegler, C. (Christian), Stoll, S. (Stefan), Svátek, M. (Martin), Svoboda, M. (Miroslav), Tagesson, T. (Torbern), Tanentzap, A. J. (Andrew J.), Tanneberger, F. (Franziska), Theurillat, J.-P. (Jean-Paul), Thomas, H. J. (Haydn J. D.), Thomas, A. D. (Andrew D.), Tielbörger, K. (Katja), Tomaselli, M. (Marcello), Treier, U. A. (Urs Albert), Trouillier, M. (Mario), Turtureanu, P. D. (Pavel Dan), Tutton, R. (Rosamond), Tyystjärvi, V. A. (Vilna A.), Ueyama, M. (Masahito), Ujházy, K. (Karol), Ujházyová, M. (Mariana), Uogintas, D. (Domas), Urban, A. V. (Anastasiya V.), Urban, J. (Josef), Urbaniak, M. (Marek), Ursu, T.-M. (Tudor-Mihai), Vaccari, F. P. (Francesco Primo), Van De Vondel, S. (Stijn), Van Den Brink, L. (Liesbeth), Van Geel, M. (Maarten), Vandvik, V. (Vigdis), Vangansbeke, P. (Pieter), Varlagin, A. (Andrej), Veen, G. F. (G. F.), Veenendaal, E. (Elmar), Venn, S. E. (Susanna E.), Verbeeck, H. (Hans), Verbrugggen, E. (Erik), Verheijen, F. G. (Frank G. A.), Villar, L. (Luis), Vitale, L. (Luca), Vittoz, P. (Pascal), Vives-Ingla, M. (Maria), Von Oppen, J. (Jonathan), Walz, J. (Josefine), Wang, R. (Runxi), Wang, Y. (Yifeng), Way, R. G. (Robert G.), Wedegärtner, R. E. (Ronja E. M.), Weigel, R. (Robert), Wild, J. (Jan), Wilkinson, M. (Matthew), Wilmking, M. (Martin), Wingate, L. (Lisa), Winkler, M. (Manuela), Wipf, S. (Sonja), Wohlfahrt, G. (Georg), Xenakis, G. (Georgios), Yang, Y. (Yan), Yu, Z. (Zicheng), Yu, K. (Kailiang), Zellweger, F. (Florian), Zhang, J. (Jian), Zhang, Z. (Zhaochen), Zhao, P. (Peng), Ziemblińska, K. (Klaudia), Zimmermann, R. (Reiner), Zong, S. (Shengwei), Zyryanov, V. I. (Viacheslav I.), Nijs, I. (Ivan), and Lenoir, J. (Jonathan)
- Abstract
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0‐5 and 5‐15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1‐km² pixels (summarized from 8519 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10° degrees C (mean = 3.0 +/‐ 2.1° degrees C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 +/‐2.3° degrees C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (‐0.7 +/‐ 2.3° degrees C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological
- Published
- 2022
14. Growth rings show limited evidence for ungulates’ potential to suppress shrubs across the Arctic
- Author
-
Vuorinen, K. E. (Katariina E. M.), Austrheim, G. (Gunnar), Tremblay, J.-P. (Jean-Pierre), Myers-Smith, I. H. (Isla H.), Hortman, H. I. (Hans I.), Frank, P. (Peter), Barrio, I. C. (Isabel C.), Dalerum, F. (Fredrik), Björkman, M. P. (Mats P.), Björk, R. G. (Robert G.), Ehrich, D. (Dorothee), Sokolov, A. (Aleksandr), Sokolova, N. (Natalya), Ropars, P. (Pascale), Boudreau, S. (Stéphane), Normand, S. (Signe), Prendin, A. L. (Angela L.), Schmidt, N. M. (Niels Martin), Pacheco-Solana, A. (Arturo), Post, E. (Eric), John, C. (Christian), Kerby, J. (Jeff), Sullivan, P. F. (Patrick F.), Le Moullec, M. (Mathilde), Hansen, B. B. (Brage B.), van der Wal, R. (Rene), Pedersen, Å. Ø. (Åshild Ø.), Sandal, L. (Lisa), Gough, L. (Laura), Young, A. (Amanda), Li, B. (Bingxi), Magnússon, R. Í. (Rúna Í.), Sass-Klaassen, U. (Ute), Buchwal, A. (Agata), Welker, J. (Jeffrey), Grogan, P. (Paul), Andruko, R. (Rhett), Morrissette-Boileau, C. (Clara), Volkovitskiy, A. (Alexander), Terekhina, A. (Alexandra), Speed, J. D. (James D. M.), Vuorinen, K. E. (Katariina E. M.), Austrheim, G. (Gunnar), Tremblay, J.-P. (Jean-Pierre), Myers-Smith, I. H. (Isla H.), Hortman, H. I. (Hans I.), Frank, P. (Peter), Barrio, I. C. (Isabel C.), Dalerum, F. (Fredrik), Björkman, M. P. (Mats P.), Björk, R. G. (Robert G.), Ehrich, D. (Dorothee), Sokolov, A. (Aleksandr), Sokolova, N. (Natalya), Ropars, P. (Pascale), Boudreau, S. (Stéphane), Normand, S. (Signe), Prendin, A. L. (Angela L.), Schmidt, N. M. (Niels Martin), Pacheco-Solana, A. (Arturo), Post, E. (Eric), John, C. (Christian), Kerby, J. (Jeff), Sullivan, P. F. (Patrick F.), Le Moullec, M. (Mathilde), Hansen, B. B. (Brage B.), van der Wal, R. (Rene), Pedersen, Å. Ø. (Åshild Ø.), Sandal, L. (Lisa), Gough, L. (Laura), Young, A. (Amanda), Li, B. (Bingxi), Magnússon, R. Í. (Rúna Í.), Sass-Klaassen, U. (Ute), Buchwal, A. (Agata), Welker, J. (Jeffrey), Grogan, P. (Paul), Andruko, R. (Rhett), Morrissette-Boileau, C. (Clara), Volkovitskiy, A. (Alexander), Terekhina, A. (Alexandra), and Speed, J. D. (James D. M.)
- Abstract
Global warming has pronounced effects on tundra vegetation, and rising mean temperatures increase plant growth potential across the Arctic biome. Herbivores may counteract the warming impacts by reducing plant growth, but the strength of this effect may depend on prevailing regional climatic conditions. To study how ungulates interact with temperature to influence growth of tundra shrubs across the Arctic tundra biome, we assembled dendroecological data from 20 sites, comprising 1153 individual shrubs and 223 63 annual growth rings. Evidence for ungulates suppressing shrub radial growth was only observed at intermediate summer temperatures (6.5 °C–9 °C), and even at these temperatures the effect was not strong. Multiple factors, including forage preferences and landscape use by the ungulates, and favourable climatic conditions enabling effective compensatory growth of shrubs, may weaken the effects of ungulates on shrubs, possibly explaining the weakness of observed ungulate effects. Earlier local studies have shown that ungulates may counteract the impacts of warming on tundra shrub growth, but we demonstrate that ungulates’ potential to suppress shrub radial growth is not always evident, and may be limited to certain climatic conditions.
- Published
- 2022
15. Plasma commissioning in a high power external RF-coil volume-type H- ion source
- Author
-
Lawrie, S, primary, Abel, R, additional, Faircloth, D, additional, Sarmento, T, additional, Speed, J, additional, and Tarvainen, O, additional
- Published
- 2022
- Full Text
- View/download PDF
16. ET-1 increases reactive oxygen species following hypoxia and high-salt diet in the mouse glomerulus
- Author
-
Heimlich, J. B., Speed, J. S., Bloom, C. J., OʼConnor, P. M., Pollock, J. S., and Pollock, D. M.
- Published
- 2015
- Full Text
- View/download PDF
17. Privilege of Communications between a Solicitor and His Client
- Author
-
Speed, J. A.
- Published
- 1965
18. Stomping in silence:conceptualizing trampling effects on soils in polar tundra
- Author
-
Tuomi, M. (Maria), Väisänen, M. (Maria), Ylänne, H. (Henni), Brearley, F. Q. (Francis Q.), Barrio, I. C. (Isabel C.), Bråthen, K. A. (Kari Anne), Eischeid, I. (Isabell), Forbes, B. C. (Bruce C.), Jónsdóttir, I. S. (Ingibjörg S.), Kolstad, A. L. (Anders L.), Macek, P. (Petr), Petit Bon, M. (Matteo), Speed, J. D. (James D. M.), Stark, S. (Sari), Svavarsdóttir, K. (Kristin), Thórsson, J. (Jóhann), and Bueno, C. G. (C. Guillermo)
- Subjects
Arctic ecosystems ,herbivory ,non‐trophic interactions ,physical disturbance ,grazing ,herbivore–soil interactions ,treading - Abstract
1. Ungulate trampling modifies soils and interlinked ecosystem functions across biomes. Until today, most research has focused on temperate ecosystems and mineral soils while trampling effects on cold and organic matter‐rich tundra soils remain largely unknown. 2. We aimed to develop a general model of trampling effects on soil structure, biota, microclimate and biogeochemical processes, with a particular focus on polar tundra soils. To reach this goal, we reviewed literature about the effects of trampling and physical disturbances on soils across biomes and used this to discuss the knowns and unknowns of trampling effects on tundra soils. 3. We identified the following four pathways through which trampling affects soils: (a) soil compaction; (b) reductions in soil fauna and fungi; (c) rapid losses in vegetation biomass and cover; and (d) longer term shifts in vegetation community composition. 4. We found that, in polar tundra, soil responses to trampling pathways 1 and 3 could be characterized by nonlinear dynamics and tundra‐specific context dependencies that we formulated into testable hypotheses. 5. In conclusion, trampling may affect tundra soil significantly but many direct, interacting and cascading responses remain unknown. We call for research to advance the understanding of trampling effects on soils to support informed efforts to manage and predict the functioning of tundra systems under global changes.
- Published
- 2021
19. Sharing meals: Predation on Australian mammals by the introduced European red fox compounds and complements predation by feral cats
- Author
-
Stobo-Wilson, A.M., Murphy, B.P., Crawford, H.M., Dawson, S.J., Dickman, C.R., Doherty, T.S., Fleming, P.A., Gentle, M.N., Legge, S.M., Newsome, T.M., Palmer, R., Rees, M.W., Ritchie, E.G., Speed, J., Stuart, J-M, Thompson, E., Turpin, J., Woinarski, J.C.Z., Stobo-Wilson, A.M., Murphy, B.P., Crawford, H.M., Dawson, S.J., Dickman, C.R., Doherty, T.S., Fleming, P.A., Gentle, M.N., Legge, S.M., Newsome, T.M., Palmer, R., Rees, M.W., Ritchie, E.G., Speed, J., Stuart, J-M, Thompson, E., Turpin, J., and Woinarski, J.C.Z.
- Abstract
Two introduced carnivores, the European red fox Vulpes vulpes and domestic cat Felis catus, have had, and continue to have, major impacts on wildlife, particularly mammals, across Australia. Based mainly on the contents of almost 50,000 fox dietary samples, we provide the first comprehensive inventory of Australian mammal species known to be consumed by foxes, and compare this with a similar assessment for cats. We recorded consumption by foxes of 114 species of Australian land mammal (40% of extant species), fewer than consumed by cats (173 species). Foxes are known to consume 42 threatened mammal species (50% of Australia's threatened land mammals and 66% of those within the fox's Australian range). Reflecting the importance of mammals in their diet, foxes are known to consume a far higher proportion of Australian mammal species (40%) than of Australian birds (24%) and reptiles (16%). Both foxes and cats were most likely to consume medium-sized mammals, with the likelihood of predation by foxes peaking for mammals of ca. 280 g and by cats at ca. 130 g. For non-flying mammals, threatened species had a higher relative likelihood of predation by foxes than non-threatened species. Using trait-based modelling, we estimate that many now-extinct Australian mammal species had very high likelihoods of predation by foxes and cats, although we note that for some of these species, extinction likely pre-dated the arrival of foxes. These two predators continue to have compounding and complementary impacts on Australian mammals. Targeted and integrated management of foxes and cats is required to help maintain and recover the Australian mammal fauna.
- Published
- 2021
20. Reptiles as food: Predation of Australian reptiles by introduced red foxes compounds and complements predation by cats
- Author
-
Stobo-Wilson, A.M., Murphy, B.P., Legge, S.M., Chapple, D.G., Crawford, H.M., Dawson, S.J., Dickman, C.R., Doherty, T.S., Fleming, P.A., Gentle, M., Newsome, T.M., Palmer, R., Rees, M.W., Ritchie, E.G., Speed, J., Stuart, J-M, Thompson, E., Turpin, J., Woinarski, J.C.Z., Stobo-Wilson, A.M., Murphy, B.P., Legge, S.M., Chapple, D.G., Crawford, H.M., Dawson, S.J., Dickman, C.R., Doherty, T.S., Fleming, P.A., Gentle, M., Newsome, T.M., Palmer, R., Rees, M.W., Ritchie, E.G., Speed, J., Stuart, J-M, Thompson, E., Turpin, J., and Woinarski, J.C.Z.
- Abstract
Context: Invasive species are a major cause of biodiversity loss across much of the world, and a key threat to Australia’s diverse reptile fauna. There has been no previous comprehensive analysis of the potential impact of the introduced European red fox, Vulpes vulpes, on Australian reptiles. Aims: We seek to provide an inventory of all Australian reptile species known to be consumed by the fox, and identify characteristics of squamate species associated with such predation. We also compare these tallies and characteristics with reptile species known to be consumed by the domestic cat, Felis catus, to examine whether predation by these two introduced species is compounded (i.e. affecting much the same set of species) or complementary (affecting different groups of species). Methods: We collated records of Australian reptiles consumed by foxes in Australia, with most records deriving from fox dietary studies (tallying >35 000 samples). We modelled presence or absence of fox predation records against a set of biological and other traits, and population trends, for squamate species. Key results: In total, 108 reptile species (~11% of Australia’s terrestrial reptile fauna) have been recorded as consumed by foxes, fewer than that reported for cats (263 species). Eighty-six species have been reported to be eaten by both predators. More Australian turtle species have been reported as consumed by foxes than by cats, including many that suffer high levels of predation on egg clutches. Twenty threatened reptile species have been reported as consumed by foxes, and 15 by cats. Squamate species consumed by foxes are more likely to be undergoing population decline than those not known to be consumed by foxes. The likelihood of predation by foxes increased with squamate species’ adult body mass, in contrast to the relationship for predation by cats, which peaked at ~217 g. Foxes, but not cats, were also less likely to consume venomous snakes. Conclusions: The two introduced, and
- Published
- 2021
21. Diet of the introduced red fox Vulpes vulpes in Australia: Analysis of temporal and spatial patterns
- Author
-
Fleming, P.A., Crawford, H.M., Stobo‐Wilson, A.M., Dawson, S.J., Dickman, C.R., Dundas, S.J., Gentle, M.N., Newsome, T.M., O’Connor, J., Palmer, R., Riley, J., Ritchie, E.G., Speed, J., Saunders, G., Stuart, J‐M.D., Thompson, E., Turpin, J.M., Woinarski, J.C.Z., Fleming, P.A., Crawford, H.M., Stobo‐Wilson, A.M., Dawson, S.J., Dickman, C.R., Dundas, S.J., Gentle, M.N., Newsome, T.M., O’Connor, J., Palmer, R., Riley, J., Ritchie, E.G., Speed, J., Saunders, G., Stuart, J‐M.D., Thompson, E., Turpin, J.M., and Woinarski, J.C.Z.
- Abstract
The red fox Vulpes vulpes is one of the world’s most widespread carnivores. A key to its success has been its broad, opportunistic diet. The fox was introduced to Australia about 150 years ago, and within 30 years of its introduction was already recognised as a threat to livestock and native wildlife. We reviewed 85 fox diet studies (totalling 31693 samples) from throughout the species’ geographic range within Australia. Mammals were a major component of fox diet, being present in 70 ± 19% of samples across n = 160 locations. Invertebrates (38 ± 26% n = 130) and plant material (26 ± 25% n = 123) were also both staple foods and often the dominant food category recorded. Birds (13 ± 11% n = 137) and reptiles (10 ± 15% n = 132) were also commonly reported, while frogs were scarcely represented (1.6 ± 3.6% n = 111) in fox diet studies. Biogeographical differences reveal factors that likely determine prey availability. Diet composition varied with ecosystem, level of vegetation clearing and condition, and climate zone. Sample type (i.e. stomach versus scat samples) also significantly influenced reporting of diet composition. Livestock and frogs were underrepresented in records based on analysis of scats, whereas small mammals (native rodents, dasyurid marsupials, and bats) were more likely to be recorded in studies of scats than in studies of stomach contents. Diet varied seasonally, reflecting activity patterns of prey species and food availability. This synthesis also captures temporal shifts in fox diet over 70 years (1951–2020), as foxes have switched to consuming more native species in the wake of successful broadscale biological control of the invasive European rabbit Oryctolagus cuniculus. Diet analyses, such as those summarised in this review, capture the evidence required to motivate for greater control of foxes in Australia. This synthesis also highlights the importance of integrated pest species management to meet biodiversity conservation outcomes.
- Published
- 2021
22. Compounding and complementary carnivores: Australian bird species eaten by the introduced European red fox Vulpes vulpes and domestic cat Felis catus
- Author
-
Woinarski, J.C.Z., Stobo-Wilson, A.M., Crawford, H.M., Dawson, S.J., Dickman, C.R., Doherty, T.S., Fleming, P.A., Garnett, S.T., Gentle, M.N., Legge, S.M., Newsome, T.M., Palmer, R., Rees, M.W., Ritchie, E.G., Speed, J., Stuart, J-M, Thompson, E., Turpin, J., Murphy, B.P., Woinarski, J.C.Z., Stobo-Wilson, A.M., Crawford, H.M., Dawson, S.J., Dickman, C.R., Doherty, T.S., Fleming, P.A., Garnett, S.T., Gentle, M.N., Legge, S.M., Newsome, T.M., Palmer, R., Rees, M.W., Ritchie, E.G., Speed, J., Stuart, J-M, Thompson, E., Turpin, J., and Murphy, B.P.
- Abstract
Two introduced carnivores, the European red fox Vulpes vulpes and domestic cat Felis catus, have had extensive impacts on Australian biodiversity. In this study, we collate information on consumption of Australian birds by the fox, paralleling a recent study reporting on birds consumed by cats. We found records of consumption by foxes on 128 native bird species (18% of the non-vagrant bird fauna and 25% of those species within the fox’s range), a smaller tally than for cats (343 species, including 297 within the fox’s Australian range, a subset of that of the cat). Most (81%) bird species eaten by foxes are also eaten by cats, suggesting that predation impacts are compounded. As with consumption by cats, birds that nest or forage on the ground are most likely to be consumed by foxes. However, there is also some partitioning, with records of consumption by foxes but not cats for 25 bird species, indicating that impacts of the two predators may also be complementary. Bird species ≥3.4 kg were more likely to be eaten by foxes, and those <3.4 kg by cats. Our compilation provides an inventory and describes characteristics of Australian bird species known to be consumed by foxes, but we acknowledge that records of predation do not imply population-level impacts. Nonetheless, there is sufficient information from other studies to demonstrate that fox predation has significant impacts on the population viability of some Australian birds, especially larger birds, and those that nest or forage on the ground.
- Published
- 2021
23. Reptiles as food: Predation of Australian reptiles by introduced red foxes compounds and complements predation by cats
- Author
-
Stobo-Wilson, A M, Murphy, B P, Legge, S M, Chapple, D G, Crawford, H M, Dawson, S J, Dickman, C R, Doherty, T S, Fleming, P A, Gentle, M, Newsome, T M, Palmer, R, Rees, M W, Martin Ritchie, Euan, Speed, J, Stuart, J M, Thompson, E, Turpin, J, Woinarski, J C Z, Stobo-Wilson, A M, Murphy, B P, Legge, S M, Chapple, D G, Crawford, H M, Dawson, S J, Dickman, C R, Doherty, T S, Fleming, P A, Gentle, M, Newsome, T M, Palmer, R, Rees, M W, Martin Ritchie, Euan, Speed, J, Stuart, J M, Thompson, E, Turpin, J, and Woinarski, J C Z
- Published
- 2021
24. Diet of the introduced red fox Vulpes vulpes in Australia: analysis of temporal and spatial patterns
- Author
-
Fleming, PA, Crawford, HM, Stobo-Wilson, AM, Dawson, SJ, Dickman, CR, Dundas, SJ, Gentle, MN, Newsome, TM, O’Connor, J, Palmer, R, Riley, J, Ritchie, Euan, Speed, J, Saunders, G, Stuart, JMD, Thompson, Eilysh, Turpin, JM, Woinarski, JCZ, Fleming, PA, Crawford, HM, Stobo-Wilson, AM, Dawson, SJ, Dickman, CR, Dundas, SJ, Gentle, MN, Newsome, TM, O’Connor, J, Palmer, R, Riley, J, Ritchie, Euan, Speed, J, Saunders, G, Stuart, JMD, Thompson, Eilysh, Turpin, JM, and Woinarski, JCZ
- Published
- 2021
25. Sharing meals: Predation on Australian mammals by the introduced European red fox compounds and complements predation by feral cats
- Author
-
Stobo-Wilson, AM, Murphy, BP, Crawford, HM, Dawson, SJ, Dickman, CR, Doherty, TS, Fleming, PA, Gentle, MN, Legge, SM, Newsome, TM, Palmer, R, Rees, MW, Martin Ritchie, Euan, Speed, J, Stuart, JM, Thompson, E, Turpin, J, Woinarski, JCZ, Stobo-Wilson, AM, Murphy, BP, Crawford, HM, Dawson, SJ, Dickman, CR, Doherty, TS, Fleming, PA, Gentle, MN, Legge, SM, Newsome, TM, Palmer, R, Rees, MW, Martin Ritchie, Euan, Speed, J, Stuart, JM, Thompson, E, Turpin, J, and Woinarski, JCZ
- Published
- 2021
26. Reptiles as food: predation of Australian reptiles by introduced red foxes compounds and complements predation by cats
- Author
-
Stobo-Wilson, AM, Murphy, BP, Legge, SM, Chapple, DG, Crawford, HM, Dawson, SJ, Dickman, CR, Doherty, TS, Fleming, PA, Gentle, M, Newsome, TM, Palmer, R, Rees, MW, Ritchie, EG, Speed, J, Stuart, J-M, Thompson, E, Turpin, J, Woinarski, JCZ, Stobo-Wilson, AM, Murphy, BP, Legge, SM, Chapple, DG, Crawford, HM, Dawson, SJ, Dickman, CR, Doherty, TS, Fleming, PA, Gentle, M, Newsome, TM, Palmer, R, Rees, MW, Ritchie, EG, Speed, J, Stuart, J-M, Thompson, E, Turpin, J, and Woinarski, JCZ
- Abstract
Context Invasive species are a major cause of biodiversity loss across much of the world, and a key threat to Australia’s diverse reptile fauna. There has been no previous comprehensive analysis of the potential impact of the introduced European red fox, Vulpes vulpes, on Australian reptiles. Aims We seek to provide an inventory of all Australian reptile species known to be consumed by the fox, and identify characteristics of squamate species associated with such predation. We also compare these tallies and characteristics with reptile species known to be consumed by the domestic cat, Felis catus, to examine whether predation by these two introduced species is compounded (i.e. affecting much the same set of species) or complementary (affecting different groups of species). Methods We collated records of Australian reptiles consumed by foxes in Australia, with most records deriving from fox dietary studies (tallying >35 000 samples). We modelled presence or absence of fox predation records against a set of biological and other traits, and population trends, for squamate species. Key results In total, 108 reptile species (~11% of Australia’s terrestrial reptile fauna) have been recorded as consumed by foxes, fewer than that reported for cats (263 species). Eighty-six species have been reported to be eaten by both predators. More Australian turtle species have been reported as consumed by foxes than by cats, including many that suffer high levels of predation on egg clutches. Twenty threatened reptile species have been reported as consumed by foxes, and 15 by cats. Squamate species consumed by foxes are more likely to be undergoing population decline than those not known to be consumed by foxes. The likelihood of predation by foxes increased with squamate species’ adult body mass, in contrast to the relationship for predation by cats, which peaked at ~217 g. Foxes, but not cats, were also less likely to consume venomous snakes. Conclusions The two introduced, and no
- Published
- 2021
27. Location of studies and evidence of effects of herbivory on Arctic vegetation: a systematic map
- Author
-
Soininen, E. M. (E. M.), Barrio, I. C. (I. C.), Bjørkås, R. (R.), Björnsdottir, K. (K.), Ehrich, D. (D.), Hopping, K. A. (K. A.), Kaarlejärvi, E. (E.), Kolstad, A. L. (A. L.), Abdulmanova, S. (S.), Björk, R. G. (R. G.), Bueno, C. G. (C. G.), Eischeid, I. (I), Finger-Higgens, R. (R.), Forbey, J. S. (J. S.), Gignac, C. (C.), Gilg, O. (O.), den Herder, M. (M.), Holm, H. S. (H. S.), Hwang, B. C. (B. C.), Jepsen, J. U. (J. U.), Kamenova, S. (S.), Kater, I. (I), Koltz, A. M. (A. M.), Kristensen, J. A. (J. A.), Little, C. J. (C. J.), Macek, P. (P.), Mathisen, K. M. (K. M.), Metcalfe, D. B. (D. B.), Mosbacher, J. B. (J. B.), Mörsdorf, M. (M.), Park, T. (T.), Propster, J. R. (J. R.), Roberts, A. J. (A. J.), Serrano, E. (E.), Spiegel, M. P. (M. P.), Tamayo, M. (M.), Tuomi, M. W. (M. W.), Verma, M. (M.), Vuorinen, K. E. (K. E. M.), Väisänen, M. (M.), Van der Wal, R. (R.), Wilcots, M. E. (M. E.), Yoccoz, N. G. (N. G.), Speed, J. D. (J. D. M.), Soininen, E. M. (E. M.), Barrio, I. C. (I. C.), Bjørkås, R. (R.), Björnsdottir, K. (K.), Ehrich, D. (D.), Hopping, K. A. (K. A.), Kaarlejärvi, E. (E.), Kolstad, A. L. (A. L.), Abdulmanova, S. (S.), Björk, R. G. (R. G.), Bueno, C. G. (C. G.), Eischeid, I. (I), Finger-Higgens, R. (R.), Forbey, J. S. (J. S.), Gignac, C. (C.), Gilg, O. (O.), den Herder, M. (M.), Holm, H. S. (H. S.), Hwang, B. C. (B. C.), Jepsen, J. U. (J. U.), Kamenova, S. (S.), Kater, I. (I), Koltz, A. M. (A. M.), Kristensen, J. A. (J. A.), Little, C. J. (C. J.), Macek, P. (P.), Mathisen, K. M. (K. M.), Metcalfe, D. B. (D. B.), Mosbacher, J. B. (J. B.), Mörsdorf, M. (M.), Park, T. (T.), Propster, J. R. (J. R.), Roberts, A. J. (A. J.), Serrano, E. (E.), Spiegel, M. P. (M. P.), Tamayo, M. (M.), Tuomi, M. W. (M. W.), Verma, M. (M.), Vuorinen, K. E. (K. E. M.), Väisänen, M. (M.), Van der Wal, R. (R.), Wilcots, M. E. (M. E.), Yoccoz, N. G. (N. G.), and Speed, J. D. (J. D. M.)
- Abstract
Background: Herbivores modify the structure and function of tundra ecosystems. Understanding their impacts is necessary to assess the responses of these ecosystems to ongoing environmental changes. However, the effects of herbivores on plants and ecosystem structure and function vary across the Arctic. Strong spatial variation in herbivore effects implies that the results of individual studies on herbivory depend on local conditions, i.e., their ecological context. An important first step in assessing whether generalizable conclusions can be produced is to identify the existing studies and assess how well they cover the underlying environmental conditions across the Arctic. This systematic map aims to identify the ecological contexts in which herbivore impacts on vegetation have been studied in the Arctic. Specifically, the primary question of the systematic map was: ”What evidence exists on the effects of herbivores on Arctic vegetation?”. Methods: We used a published systematic map protocol to identify studies addressing the effects of herbivores on Arctic vegetation. We conducted searches for relevant literature in online databases, search engines and specialist websites. Literature was screened to identify eligible studies, defined as reporting primary data on herbivore impacts on Arctic plants and plant communities. We extracted information on variables that describe the ecological context of the studies, from the studies themselves and from geospatial data. We synthesized the findings narratively and created a Shiny App where the coded data are searchable and variables can be visually explored. Review findings We identified 309 relevant articles with 662 studies (representing different ecological contexts or datasets within the same article). These studies addressed vertebrate herbivory seven times more often than invertebrate herbivory. Geographically, the largest cluster of studies was in Northern Fennoscandia. Warmer and wetter parts of the Arctic
- Published
- 2021
28. 106 A Whole Hospital Delirium Audit with 20 Week Follow-Up
- Author
-
Khambay, E, primary, Katz-Summercorn, C, additional, Speed, J, additional, Amarnani, R, additional, Enfield-Bance, A, additional, Mani, S, additional, and Glasser, M, additional
- Published
- 2021
- Full Text
- View/download PDF
29. Global plant trait relationships extend to the climatic extremes of the tundra biome
- Author
-
Thomas, H. J. D., Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Kattge, J., Diaz, S., Vellend, M., Blok, D., Cornelissen, J. H. C., Forbes, B. C., Henry, G. H. R., Hollister, R. D., Normand, S., Prevéy, J. S., Rixen, C., Schaepman-Strub, G., Wilmking, M., Wipf, S., Cornwell, W. K., Beck, P. S. A., Georges, D., Goetz, S. J., Guay, K. C., Rüger, N., Soudzilovskaia, N. A., Spasojevic, M. J., Alatalo, J. M., Alexander, H. D., Anadon-Rosell, A., Angers-Blondin, S., te Beest, M., Berner, L. T., Björk, R. G., Buchwal, A., Buras, A., Carbognani, M., Christie, K. S., Collier, L. S., Cooper, E. J., Elberling, B., Eskelinen, A., Frei, E. R., Grau, O., Grogan, P., Hallinger, M., Heijmans, M. M. P. D., Hermanutz, L., Hudson, J. M. G., Johnstone, J. F., Hülber, K., Iturrate-Garcia, M., Iversen, C. M., Jaroszynska, F., Kaarlejarvi, E., Kulonen, A., Lamarque, L. J., Lantz, T. C., Lévesque, E., Little, C. J., Michelsen, A., Milbau, A., Nabe-Nielsen, J., Nielsen, S. S., Ninot, J. M., Oberbauer, S. F., Olofsson, J., Onipchenko, V. G., Petraglia, A., Rumpf, S. B., Shetti, R., Speed, J. D. M., Suding, K. N., Tape, K. D., Tomaselli, M., Trant, A. J., Treier, U. A., Tremblay, M., Venn, S. E., Vowles, T., Weijers, S., Wookey, P. A., Zamin, T. J., Bahn, M., Blonder, B., van Bodegom, P. M., Bond-Lamberty, B., Campetella, G., Cerabolini, B. E. L., Chapin, F. S., Craine, J. M., Dainese, M., Green, W. A., Jansen, S., Kleyer, M., Manning, P., Niinemets, Ü., Onoda, Y., Ozinga, W. A., Peñuelas, J., Poschlod, P., Reich, P. B., Sandel, B., Schamp, B. S., Sheremetiev, S. N., de Vries, F. T., Thomas, H. J. D., Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Kattge, J., Diaz, S., Vellend, M., Blok, D., Cornelissen, J. H. C., Forbes, B. C., Henry, G. H. R., Hollister, R. D., Normand, S., Prevéy, J. S., Rixen, C., Schaepman-Strub, G., Wilmking, M., Wipf, S., Cornwell, W. K., Beck, P. S. A., Georges, D., Goetz, S. J., Guay, K. C., Rüger, N., Soudzilovskaia, N. A., Spasojevic, M. J., Alatalo, J. M., Alexander, H. D., Anadon-Rosell, A., Angers-Blondin, S., te Beest, M., Berner, L. T., Björk, R. G., Buchwal, A., Buras, A., Carbognani, M., Christie, K. S., Collier, L. S., Cooper, E. J., Elberling, B., Eskelinen, A., Frei, E. R., Grau, O., Grogan, P., Hallinger, M., Heijmans, M. M. P. D., Hermanutz, L., Hudson, J. M. G., Johnstone, J. F., Hülber, K., Iturrate-Garcia, M., Iversen, C. M., Jaroszynska, F., Kaarlejarvi, E., Kulonen, A., Lamarque, L. J., Lantz, T. C., Lévesque, E., Little, C. J., Michelsen, A., Milbau, A., Nabe-Nielsen, J., Nielsen, S. S., Ninot, J. M., Oberbauer, S. F., Olofsson, J., Onipchenko, V. G., Petraglia, A., Rumpf, S. B., Shetti, R., Speed, J. D. M., Suding, K. N., Tape, K. D., Tomaselli, M., Trant, A. J., Treier, U. A., Tremblay, M., Venn, S. E., Vowles, T., Weijers, S., Wookey, P. A., Zamin, T. J., Bahn, M., Blonder, B., van Bodegom, P. M., Bond-Lamberty, B., Campetella, G., Cerabolini, B. E. L., Chapin, F. S., Craine, J. M., Dainese, M., Green, W. A., Jansen, S., Kleyer, M., Manning, P., Niinemets, Ü., Onoda, Y., Ozinga, W. A., Peñuelas, J., Poschlod, P., Reich, P. B., Sandel, B., Schamp, B. S., Sheremetiev, S. N., and de Vries, F. T.
- Abstract
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
- Published
- 2020
30. Global plant trait relationships extend to the climatic extremes of the tundra biome
- Author
-
Spatial Ecology and Global Change, Environmental Sciences, Thomas, H. J. D., Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Kattge, J., Diaz, S., Vellend, M., Blok, D., Cornelissen, J. H. C., Forbes, B. C., Henry, G. H. R., Hollister, R. D., Normand, S., Prevéy, J. S., Rixen, C., Schaepman-Strub, G., Wilmking, M., Wipf, S., Cornwell, W. K., Beck, P. S. A., Georges, D., Goetz, S. J., Guay, K. C., Rüger, N., Soudzilovskaia, N. A., Spasojevic, M. J., Alatalo, J. M., Alexander, H. D., Anadon-Rosell, A., Angers-Blondin, S., te Beest, M., Berner, L. T., Björk, R. G., Buchwal, A., Buras, A., Carbognani, M., Christie, K. S., Collier, L. S., Cooper, E. J., Elberling, B., Eskelinen, A., Frei, E. R., Grau, O., Grogan, P., Hallinger, M., Heijmans, M. M. P. D., Hermanutz, L., Hudson, J. M. G., Johnstone, J. F., Hülber, K., Iturrate-Garcia, M., Iversen, C. M., Jaroszynska, F., Kaarlejarvi, E., Kulonen, A., Lamarque, L. J., Lantz, T. C., Lévesque, E., Little, C. J., Michelsen, A., Milbau, A., Nabe-Nielsen, J., Nielsen, S. S., Ninot, J. M., Oberbauer, S. F., Olofsson, J., Onipchenko, V. G., Petraglia, A., Rumpf, S. B., Shetti, R., Speed, J. D. M., Suding, K. N., Tape, K. D., Tomaselli, M., Trant, A. J., Treier, U. A., Tremblay, M., Venn, S. E., Vowles, T., Weijers, S., Wookey, P. A., Zamin, T. J., Bahn, M., Blonder, B., van Bodegom, P. M., Bond-Lamberty, B., Campetella, G., Cerabolini, B. E. L., Chapin, F. S., Craine, J. M., Dainese, M., Green, W. A., Jansen, S., Kleyer, M., Manning, P., Niinemets, Ü., Onoda, Y., Ozinga, W. A., Peñuelas, J., Poschlod, P., Reich, P. B., Sandel, B., Schamp, B. S., Sheremetiev, S. N., de Vries, F. T., Spatial Ecology and Global Change, Environmental Sciences, Thomas, H. J. D., Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Kattge, J., Diaz, S., Vellend, M., Blok, D., Cornelissen, J. H. C., Forbes, B. C., Henry, G. H. R., Hollister, R. D., Normand, S., Prevéy, J. S., Rixen, C., Schaepman-Strub, G., Wilmking, M., Wipf, S., Cornwell, W. K., Beck, P. S. A., Georges, D., Goetz, S. J., Guay, K. C., Rüger, N., Soudzilovskaia, N. A., Spasojevic, M. J., Alatalo, J. M., Alexander, H. D., Anadon-Rosell, A., Angers-Blondin, S., te Beest, M., Berner, L. T., Björk, R. G., Buchwal, A., Buras, A., Carbognani, M., Christie, K. S., Collier, L. S., Cooper, E. J., Elberling, B., Eskelinen, A., Frei, E. R., Grau, O., Grogan, P., Hallinger, M., Heijmans, M. M. P. D., Hermanutz, L., Hudson, J. M. G., Johnstone, J. F., Hülber, K., Iturrate-Garcia, M., Iversen, C. M., Jaroszynska, F., Kaarlejarvi, E., Kulonen, A., Lamarque, L. J., Lantz, T. C., Lévesque, E., Little, C. J., Michelsen, A., Milbau, A., Nabe-Nielsen, J., Nielsen, S. S., Ninot, J. M., Oberbauer, S. F., Olofsson, J., Onipchenko, V. G., Petraglia, A., Rumpf, S. B., Shetti, R., Speed, J. D. M., Suding, K. N., Tape, K. D., Tomaselli, M., Trant, A. J., Treier, U. A., Tremblay, M., Venn, S. E., Vowles, T., Weijers, S., Wookey, P. A., Zamin, T. J., Bahn, M., Blonder, B., van Bodegom, P. M., Bond-Lamberty, B., Campetella, G., Cerabolini, B. E. L., Chapin, F. S., Craine, J. M., Dainese, M., Green, W. A., Jansen, S., Kleyer, M., Manning, P., Niinemets, Ü., Onoda, Y., Ozinga, W. A., Peñuelas, J., Poschlod, P., Reich, P. B., Sandel, B., Schamp, B. S., Sheremetiev, S. N., and de Vries, F. T.
- Published
- 2020
31. Global plant trait relationships extend to the climatic extremes of the tundra biome
- Author
-
Thomas, H. J. (H. J. D.), Bjorkman, A. D. (A. D.), Myers-Smith, I. H. (I. H.), Elmendorf, S. C. (S. C.), Kattge, J. (J.), Diaz, S. (S.), Vellend, M. (M.), Blok, D. (D.), Cornelissen, J. H. (J. H. C.), Forbes, B. C. (B. C.), Henry, G. H. (G. H. R.), Hollister, R. D. (R. D.), Normand, S. (S.), Prevey, J. S. (J. S.), Rixen, C. (C.), Schaepman-Strub, G. (G.), Wilmking, M. (M.), Wipf, S. (S.), Cornwell, W. K. (W. K.), Beck, P. S. (P. S. A.), Georges, D. (D.), Goetz, S. J. (S. J.), Guay, K. C. (K. C.), Ruger, N. (N.), Soudzilovskaia, N. A. (N. A.), Spasojevic, M. J. (M. J.), Alatalo, J. M. (J. M.), Alexander, H. D. (H. D.), Anadon-Rosell, A. (A.), Angers-Blondin, S. (S.), te Beest, M. (M.), Berner, L. T. (L. T.), Bjoerk, R. G. (R. G.), Buchwal, A. (A.), Buras, A. (A.), Carbognani, M. (M.), Christie, K. S. (K. S.), Collier, L. S. (L. S.), Cooper, E. J. (E. J.), Elberling, B. (B.), Eskelinen, A. (A.), Frei, E. R. (E. R.), Grau, O. (O.), Grogan, P. (P.), Hallinger, M. (M.), Heijmans, M. M. (M. M. P. D.), Hermanutz, L. (L.), Hudson, J. M. (J. M. G.), Johnstone, J. F. (J. F.), Huelber, K. (K.), Iturrate-Garcia, M. (M.), Iversen, C. M. (C. M.), Jaroszynska, F. (F.), Kaarlejarvi, E. (E.), Kulonen, A. (A.), Lamarque, L. J. (L. J.), Lantz, T. C. (T. C.), Levesque, E. (E.), Little, C. J. (C. J.), Michelsen, A. (A.), Milbau, A. (A.), Nabe-Nielsen, J. (J.), Nielsen, S. S. (S. S.), Ninot, J. M. (J. M.), Oberbauer, S. F. (S. F.), Olofsson, J. (J.), Onipchenko, V. G. (V. G.), Petraglia, A. (A.), Rumpf, S. B. (S. B.), Shetti, R. (R.), Speed, J. D. (J. D. M.), Suding, K. N. (K. N.), Tape, K. D. (K. D.), Tomaselli, M. (M.), Trant, A. J. (A. J.), Treier, U. A. (U. A.), Tremblay, M. (M.), Venn, S. E. (S. E.), Vowles, T. (T.), Weijers, S. (S.), Wookey, P. A. (P. A.), Zamin, T. J. (T. J.), Bahn, M. (M.), Blonder, B. (B.), van Bodegom, P. M. (P. M.), Bond-Lamberty, B. (B.), Campetella, G. (G.), Cerabolini, B. E. (B. E. L.), Chapin, F. S. (F. S., III), Craine, J. M. (J. M.), Dainese, M. (M.), Green, W. A. (W. A.), Jansen, S. (S.), Kleyer, M. (M.), Manning, P. (P.), Niinemets, U. (U.), Onoda, Y. (Y.), Ozinga, W. A. (W. A.), Penuelas, J. (J.), Poschlod, P. (P.), Reich, P. B. (P. B.), Sandel, B. (B.), Schamp, B. S. (B. S.), Sheremetiev, S. N. (S. N.), de Vries, F. T. (F. T.), Thomas, H. J. (H. J. D.), Bjorkman, A. D. (A. D.), Myers-Smith, I. H. (I. H.), Elmendorf, S. C. (S. C.), Kattge, J. (J.), Diaz, S. (S.), Vellend, M. (M.), Blok, D. (D.), Cornelissen, J. H. (J. H. C.), Forbes, B. C. (B. C.), Henry, G. H. (G. H. R.), Hollister, R. D. (R. D.), Normand, S. (S.), Prevey, J. S. (J. S.), Rixen, C. (C.), Schaepman-Strub, G. (G.), Wilmking, M. (M.), Wipf, S. (S.), Cornwell, W. K. (W. K.), Beck, P. S. (P. S. A.), Georges, D. (D.), Goetz, S. J. (S. J.), Guay, K. C. (K. C.), Ruger, N. (N.), Soudzilovskaia, N. A. (N. A.), Spasojevic, M. J. (M. J.), Alatalo, J. M. (J. M.), Alexander, H. D. (H. D.), Anadon-Rosell, A. (A.), Angers-Blondin, S. (S.), te Beest, M. (M.), Berner, L. T. (L. T.), Bjoerk, R. G. (R. G.), Buchwal, A. (A.), Buras, A. (A.), Carbognani, M. (M.), Christie, K. S. (K. S.), Collier, L. S. (L. S.), Cooper, E. J. (E. J.), Elberling, B. (B.), Eskelinen, A. (A.), Frei, E. R. (E. R.), Grau, O. (O.), Grogan, P. (P.), Hallinger, M. (M.), Heijmans, M. M. (M. M. P. D.), Hermanutz, L. (L.), Hudson, J. M. (J. M. G.), Johnstone, J. F. (J. F.), Huelber, K. (K.), Iturrate-Garcia, M. (M.), Iversen, C. M. (C. M.), Jaroszynska, F. (F.), Kaarlejarvi, E. (E.), Kulonen, A. (A.), Lamarque, L. J. (L. J.), Lantz, T. C. (T. C.), Levesque, E. (E.), Little, C. J. (C. J.), Michelsen, A. (A.), Milbau, A. (A.), Nabe-Nielsen, J. (J.), Nielsen, S. S. (S. S.), Ninot, J. M. (J. M.), Oberbauer, S. F. (S. F.), Olofsson, J. (J.), Onipchenko, V. G. (V. G.), Petraglia, A. (A.), Rumpf, S. B. (S. B.), Shetti, R. (R.), Speed, J. D. (J. D. M.), Suding, K. N. (K. N.), Tape, K. D. (K. D.), Tomaselli, M. (M.), Trant, A. J. (A. J.), Treier, U. A. (U. A.), Tremblay, M. (M.), Venn, S. E. (S. E.), Vowles, T. (T.), Weijers, S. (S.), Wookey, P. A. (P. A.), Zamin, T. J. (T. J.), Bahn, M. (M.), Blonder, B. (B.), van Bodegom, P. M. (P. M.), Bond-Lamberty, B. (B.), Campetella, G. (G.), Cerabolini, B. E. (B. E. L.), Chapin, F. S. (F. S., III), Craine, J. M. (J. M.), Dainese, M. (M.), Green, W. A. (W. A.), Jansen, S. (S.), Kleyer, M. (M.), Manning, P. (P.), Niinemets, U. (U.), Onoda, Y. (Y.), Ozinga, W. A. (W. A.), Penuelas, J. (J.), Poschlod, P. (P.), Reich, P. B. (P. B.), Sandel, B. (B.), Schamp, B. S. (B. S.), Sheremetiev, S. N. (S. N.), and de Vries, F. T. (F. T.)
- Abstract
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
- Published
- 2020
32. Traditional plant functional groups explain variation in economic but not size‐related traits across the tundra biome
- Author
-
Thomas, H. J. (H. J. D.), Myers‐Smith, I. H. (I. H.), Bjorkman, A. D. (A. D.), Elmendorf, S. C. (S. C.), Blok, D. (D.), Cornelissen, J. H. (J. H. C.), Forbes, B. C. (B. C.), Hollister, R. D. (R. D.), Normand, S. (S.), Prevéy, J. S. (J. S.), Rixen, C. (C.), Schaepman‐Strub, G. (G.), Wilmking, M. (M.), Wipf, S. (S.), Cornwell, W. K. (W. K.), Kattge, J. (J.), Goetz, S. J. (S. J.), Guay, K. C. (K. C.), Alatalo, J. M. (J. M.), Anadon‐Rosell, A. (A.), Angers‐Blondin, S. (S.), Berner, L. T. (L. T.), Björk, R. G. (R. G.), Buchwal, A. (A.), Buras, A. (A.), Carbognani, M. (M.), Christie, K. (K.), Siegwart Collier, L. (L.), Cooper, E. J. (E. J.), Eskelinen, A. (A.), Frei, E. R. (E. R.), Grau, O. (O.), Grogan, P. (P.), Hallinger, M. (M.), Heijmans, M. M. (M. M. P. D.), Hermanutz, L. (L.), Hudson, J. M. (J. M. G.), Hülber, K. (K.), Iturrate‐Garcia, M. (M.), Iversen, C. M. (C. M.), Jaroszynska, F. (F.), Johnstone, J. F. (J. F.), Kaarlejärvi, E. (E.), Kulonen, A. (A.), Lamarque, L. J. (L. J.), Lévesque, E. (E.), Michelsen, A. (A.), Milbau, A. (A.), Nabe‐Nielsen, J. (J.), Nielsen, S. S. (S. S.), Ninot, J. M. (J. M.), Oberbauer, S. F. (S. F.), Olofsson, J. (J.), Onipchenko, V. G. (V. G.), Petraglia, A. (A.), Rumpf, S. B. (S. B.), Semenchuk, P. R. (P. R.), Soudzilovskaia, N. A. (N. A.), Spasojevic, M. J. (M. J.), Speed, J. D. (J. D. M.), Tape, K. D. (K. D.), te Beest, M. (M.), Tomaselli, M. (M.), Trant, A. (A.), Treier, U. A. (U. A.), Venn, S. (S.), Vowles, T. (T.), Weijers, S. (S.), Zamin, T. (T.), Atkin, O. K. (O. K.), Bahn, M. (M.), Blonder, B. (B.), Campetella, G. (G.), Cerabolini, B. E. (B. E. L.), Chapin III, F. S. (F. S.), Dainese, M. (M.), de Vries, F. T. (F. T.), Díaz, S. (S.), Green, W. (W.), Jackson, R. B. (R. B.), Manning, P. (P.), Niinemets, Ü. (Ü.), Ozinga, W. A. (W. A.), Peñuelas, J. (J.), Reich, P. B. (P. B.), Schamp, B. (B.), Sheremetev, S. (S.), and van Bodegom, P. M. (P. M.)
- Subjects
vegetation change ,plant traits ,ecosystem function ,food and beverages ,tundra biome ,community composition ,plant functional types ,plant functional groups ,cluster analysis - Abstract
Aim: Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups represent variation in six ecologically important plant traits. Location: Tundra biome. Time period: Data collected between 1964 and 2016. Major taxa studied: 295 tundra vascular plant species. Methods: We compiled a database of six plant traits (plant height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, seed mass) for tundra species. We examined the variation in species‐level trait expression explained by four traditional functional groups (evergreen shrubs, deciduous shrubs, graminoids, forbs), and whether variation explained was dependent upon the traits included in analysis. We further compared the explanatory power and species composition of functional groups to alternative classifications generated using post hoc clustering of species‐level traits. Results: Traditional functional groups explained significant differences in trait expression, particularly amongst traits associated with resource economics, which were consistent across sites and at the biome scale. However, functional groups explained 19% of overall trait variation and poorly represented differences in traits associated with plant size. Post hoc classification of species did not correspond well with traditional functional groups, and explained twice as much variation in species‐level trait expression. Main conclusions: Traditional functional groups only coarsely represent variation in well‐measured traits within tundra plant communities, and better explain resource economic traits than size‐related traits. We recommend caution when using functional group approaches to predict tundra vegetation change, or ecosystem functions relating to plant size, such as albedo or carbon storage. We argue that alternative classifications or direct use of specific plant traits could provide new insights for ecological prediction and modelling.
- Published
- 2019
33. Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome
- Author
-
Thomas, H. J. D., Myers-Smith, I. H., Bjorkman, A. D., Elmendorf, S. C., Blok, D., Cornelissen, J. H. C., Forbes, B. C., Hollister, R. D., Normand, S., Prevéy, J. S., Rixen, C., Schaepman-Strub, G., Wilmking, M., Wipf, S., Cornwell, W. K., Kattge, J., Goetz, S. J., Guay, K. C., Alatalo, J. M., Anadon-Rosell, A., Angers-Blondin, S., Berner, L. T., Björk, R. G., Buchwal, A., Buras, A., Carbognani, M., Christie, K., Siegwart Collier, L., Cooper, E. J., Eskelinen, A., Frei, E. R., Grau, O., Grogan, P., Hallinger, M., Heijmans, M. M. P. D., Hermanutz, L., Hudson, J. M. G., Hülber, K., Iturrate-Garcia, M., Iversen, C. M., Jaroszynska, F., Johnstone, J. F., Kaarlejärvi, E., Kulonen, A., Lamarque, L. J., Lévesque, E., Little, C. J., Michelsen, A., Milbau, A., Nabe-Nielsen, J., Nielsen, S. S., Ninot, J. M., Oberbauer, S. F., Olofsson, J., Onipchenko, V. G., Petraglia, A., Rumpf, S. B., Semenchuk, P. R., Soudzilovskaia, N. A., Spasojevic, M. J., Speed, J. D. M., Tape, K. D., te Beest, M., Tomaselli, M., Trant, A., Treier, U. A., Venn, S., Vowles, T., Weijers, S., Zamin, T., Atkin, O. K., Bahn, M., Blonder, B., Campetella, G., Cerabolini, B. E. L., Chapin III, F. S., Dainese, M., de Vries, F. T., Díaz, S., Green, W., Jackson, R. B., Manning, P., Niinemets, Ü., Ozinga, W. A., Peñuelas, J., Reich, P. B., Schamp, B., Sheremetev, S., van Bodegom, P. M., Spatial Ecology and Global Change, and Environmental Sciences
- Subjects
vegetation change ,plant traits ,ecosystem function ,food and beverages ,tundra biome ,community composition ,plant functional types ,plant functional groups ,cluster analysis - Abstract
Aim Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups represent variation in six ecologically important plant traits. Location Tundra biome. Time period Data collected between 1964 and 2016. Major taxa studied 295 tundra vascular plant species. Methods We compiled a database of six plant traits (plant height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, seed mass) for tundra species. We examined the variation in species-level trait expression explained by four traditional functional groups (evergreen shrubs, deciduous shrubs, graminoids, forbs), and whether variation explained was dependent upon the traits included in analysis. We further compared the explanatory power and species composition of functional groups to alternative classifications generated using post hoc clustering of species-level traits. Results Traditional functional groups explained significant differences in trait expression, particularly amongst traits associated with resource economics, which were consistent across sites and at the biome scale. However, functional groups explained 19% of overall trait variation and poorly represented differences in traits associated with plant size. Post hoc classification of species did not correspond well with traditional functional groups, and explained twice as much variation in species-level trait expression. Main conclusions Traditional functional groups only coarsely represent variation in well-measured traits within tundra plant communities, and better explain resource economic traits than size-related traits. We recommend caution when using functional group approaches to predict tundra vegetation change, or ecosystem functions relating to plant size, such as albedo or carbon storage. We argue that alternative classifications or direct use of specific plant traits could provide new insights for ecological prediction and modelling.
- Published
- 2019
34. Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome
- Author
-
Spatial Ecology and Global Change, Environmental Sciences, Thomas, H. J. D., Myers-Smith, I. H., Bjorkman, A. D., Elmendorf, S. C., Blok, D., Cornelissen, J. H. C., Forbes, B. C., Hollister, R. D., Normand, S., Prevéy, J. S., Rixen, C., Schaepman-Strub, G., Wilmking, M., Wipf, S., Cornwell, W. K., Kattge, J., Goetz, S. J., Guay, K. C., Alatalo, J. M., Anadon-Rosell, A., Angers-Blondin, S., Berner, L. T., Björk, R. G., Buchwal, A., Buras, A., Carbognani, M., Christie, K., Siegwart Collier, L., Cooper, E. J., Eskelinen, A., Frei, E. R., Grau, O., Grogan, P., Hallinger, M., Heijmans, M. M. P. D., Hermanutz, L., Hudson, J. M. G., Hülber, K., Iturrate-Garcia, M., Iversen, C. M., Jaroszynska, F., Johnstone, J. F., Kaarlejärvi, E., Kulonen, A., Lamarque, L. J., Lévesque, E., Little, C. J., Michelsen, A., Milbau, A., Nabe-Nielsen, J., Nielsen, S. S., Ninot, J. M., Oberbauer, S. F., Olofsson, J., Onipchenko, V. G., Petraglia, A., Rumpf, S. B., Semenchuk, P. R., Soudzilovskaia, N. A., Spasojevic, M. J., Speed, J. D. M., Tape, K. D., te Beest, M., Tomaselli, M., Trant, A., Treier, U. A., Venn, S., Vowles, T., Weijers, S., Zamin, T., Atkin, O. K., Bahn, M., Blonder, B., Campetella, G., Cerabolini, B. E. L., Chapin III, F. S., Dainese, M., de Vries, F. T., Díaz, S., Green, W., Jackson, R. B., Manning, P., Niinemets, Ü., Ozinga, W. A., Peñuelas, J., Reich, P. B., Schamp, B., Sheremetev, S., van Bodegom, P. M., Spatial Ecology and Global Change, Environmental Sciences, Thomas, H. J. D., Myers-Smith, I. H., Bjorkman, A. D., Elmendorf, S. C., Blok, D., Cornelissen, J. H. C., Forbes, B. C., Hollister, R. D., Normand, S., Prevéy, J. S., Rixen, C., Schaepman-Strub, G., Wilmking, M., Wipf, S., Cornwell, W. K., Kattge, J., Goetz, S. J., Guay, K. C., Alatalo, J. M., Anadon-Rosell, A., Angers-Blondin, S., Berner, L. T., Björk, R. G., Buchwal, A., Buras, A., Carbognani, M., Christie, K., Siegwart Collier, L., Cooper, E. J., Eskelinen, A., Frei, E. R., Grau, O., Grogan, P., Hallinger, M., Heijmans, M. M. P. D., Hermanutz, L., Hudson, J. M. G., Hülber, K., Iturrate-Garcia, M., Iversen, C. M., Jaroszynska, F., Johnstone, J. F., Kaarlejärvi, E., Kulonen, A., Lamarque, L. J., Lévesque, E., Little, C. J., Michelsen, A., Milbau, A., Nabe-Nielsen, J., Nielsen, S. S., Ninot, J. M., Oberbauer, S. F., Olofsson, J., Onipchenko, V. G., Petraglia, A., Rumpf, S. B., Semenchuk, P. R., Soudzilovskaia, N. A., Spasojevic, M. J., Speed, J. D. M., Tape, K. D., te Beest, M., Tomaselli, M., Trant, A., Treier, U. A., Venn, S., Vowles, T., Weijers, S., Zamin, T., Atkin, O. K., Bahn, M., Blonder, B., Campetella, G., Cerabolini, B. E. L., Chapin III, F. S., Dainese, M., de Vries, F. T., Díaz, S., Green, W., Jackson, R. B., Manning, P., Niinemets, Ü., Ozinga, W. A., Peñuelas, J., Reich, P. B., Schamp, B., Sheremetev, S., and van Bodegom, P. M.
- Published
- 2019
35. Thermodynamic stability of palladium alloys: Part I: The palladium-niobium system
- Author
-
Stickney, M. J., Chandrasekharaiah, M. S., Gingerich, K. A., and Speed, J. A.
- Published
- 1991
- Full Text
- View/download PDF
36. 90 - Impact of adequate pelvic lymph node dissection on overall survival after radical cystectomy: A stratified analysis by clinical stage and receipt of neoadjuvant chemotherapy
- Author
-
Von Landenberg, N., Speed, J., Cole, A.P., Seisen, T., Gild, P., Berg, S., Roghmann, F., Noldus, J., Abdollah, F., Menon, M., Kibel, A.S., and Trinh, Q.-D.
- Published
- 2018
- Full Text
- View/download PDF
37. A pre-injector upgrade for ISIS, including a medium energy beam transport line and an RF-driven H− ion source
- Author
-
Lawrie, S. R., primary, Abel, R. E., additional, Cahill, C. A., additional, Faircloth, D. C., additional, Macgregor, J. H., additional, Patel, S., additional, de M. Sarmento, T. C., additional, Speed, J., additional, Tarvainen, O. A., additional, Whitehead, M. O., additional, Wood, T., additional, and Zacek, D., additional
- Published
- 2019
- Full Text
- View/download PDF
38. Tundra Trait Team:a database of plant traits spanning the tundra biome
- Author
-
Bjorkman, A. D. (Anne D.), Myers-Smith, I. H. (Isla H.), Elmendorf, S. C. (Sarah C.), Normand, S. (Signe), Thomas, H. J. (Haydn J. D.), Alatalo, J. M. (Juha M.), Alexander, H. (Heather), Anadon-Rosell, A. (Alba), Angers-Blondin, S. (Sandra), Bai, Y. (Yang), Baruah, G. (Gaurav), te Beest, M. (Mariska), Berner, L. (Logan), Bjork, R. G. (Robert G.), Blok, D. (Daan), Bruelheide, H. (Helge), Buchwal, A. (Agata), Buras, A. (Allan), Carbognani, M. (Michele), Christie, K. (Katherine), Collier, L. S. (Laura S.), Cooper, E. J. (Elisabeth J.), Cornelissen, J. H. (J. Hans C.), Dickinson, K. J. (Katharine J. M.), Dullinger, S. (Stefan), Elberling, B. (Bo), Eskelinen, A. (Anu), Forbes, B. C. (Bruce C.), Frei, E. R. (Esther R.), Iturrate-Garcia, M. (Maitane), Good, M. K. (Megan K.), Grau, O. (Oriol), Green, P. (Peter), Greve, M. (Michelle), Grogan, P. (Paul), Haider, S. (Sylvia), Hajek, T. (Tomas), Hallinger, M. (Martin), Happonen, K. (Konsta), Harper, K. A. (Karen A.), Heijmans, M. M. (Monique M. P. D.), Henry, G. H. (Gregory H. R.), Hermanutz, L. (Luise), Hewitt, R. E. (Rebecca E.), Hollister, R. D. (Robert D.), Hudson, J. (James), Huelber, K. (Karl), Iversen, C. M. (Colleen M.), Jaroszynska, F. (Francesca), Jimenez-Alfaro, B. (Borja), Johnstone, J. (Jill), Jorgensen, R. H. (Rasmus Halfdan), Kaarlejarvi, E. (Elina), Klady, R. (Rebecca), Klimesova, J. (Jitka), Korsten, A. (Annika), Kuleza, S. (Sara), Kulonen, A. (Aino), Lamarque, L. J. (Laurent J.), Lantz, T. (Trevor), Lavalle, A. (Amanda), Lembrechts, J. J. (Jonas J.), Levesque, E. (Esther), Little, C. J. (Chelsea J.), Luoto, M. (Miska), Macek, P. (Petr), Mack, M. C. (Michelle C.), Mathakutha, R. (Rabia), Michelsen, A. (Anders), Milbau, A. (Ann), Molau, U. (Ulf), Morgan, J. W. (John W.), Morsdorf, M. A. (Martin Alfons), Nabe-Nielsen, J. (Jacob), Nielsen, S. S. (Sigrid Scholer), Ninot, J. M. (Josep M.), Oberbauer, S. F. (Steven F.), Olofsson, J. (Johan), Onipchenko, V. G. (Vladimir G.), Petraglia, A. (Alessandro), Pickering, C. (Catherine), Prevey, J. S. (Janet S.), Rixen, C. (Christian), Rumpf, S. B. (Sabine B.), Schaepman-Strub, G. (Gabriela), Semenchuk, P. (Philipp), Shetti, R. (Rohan), Soudzilovskaia, N. A. (Nadejda A.), Spasojevic, M. J. (Marko J.), Speed, J. D. (James David Mervyn), Street, L. E. (Lorna E.), Suding, K. (Katharine), Tape, K. D. (Ken D.), Tomaselli, M. (Marcello), Trant, A. (Andrew), Treier, U. A. (Urs A.), Tremblay, J.-P. (Jean-Pierre), Tremblay, M. (Maxime), Venn, S. (Susanna), Virkkala, A.-M. (Anna-Maria), Vowles, T. (Tage), Weijers, S. (Stef), Wilmking, M. (Martin), Wipf, S. (Sonja), Zamin, T. (Tara), Bjorkman, A. D. (Anne D.), Myers-Smith, I. H. (Isla H.), Elmendorf, S. C. (Sarah C.), Normand, S. (Signe), Thomas, H. J. (Haydn J. D.), Alatalo, J. M. (Juha M.), Alexander, H. (Heather), Anadon-Rosell, A. (Alba), Angers-Blondin, S. (Sandra), Bai, Y. (Yang), Baruah, G. (Gaurav), te Beest, M. (Mariska), Berner, L. (Logan), Bjork, R. G. (Robert G.), Blok, D. (Daan), Bruelheide, H. (Helge), Buchwal, A. (Agata), Buras, A. (Allan), Carbognani, M. (Michele), Christie, K. (Katherine), Collier, L. S. (Laura S.), Cooper, E. J. (Elisabeth J.), Cornelissen, J. H. (J. Hans C.), Dickinson, K. J. (Katharine J. M.), Dullinger, S. (Stefan), Elberling, B. (Bo), Eskelinen, A. (Anu), Forbes, B. C. (Bruce C.), Frei, E. R. (Esther R.), Iturrate-Garcia, M. (Maitane), Good, M. K. (Megan K.), Grau, O. (Oriol), Green, P. (Peter), Greve, M. (Michelle), Grogan, P. (Paul), Haider, S. (Sylvia), Hajek, T. (Tomas), Hallinger, M. (Martin), Happonen, K. (Konsta), Harper, K. A. (Karen A.), Heijmans, M. M. (Monique M. P. D.), Henry, G. H. (Gregory H. R.), Hermanutz, L. (Luise), Hewitt, R. E. (Rebecca E.), Hollister, R. D. (Robert D.), Hudson, J. (James), Huelber, K. (Karl), Iversen, C. M. (Colleen M.), Jaroszynska, F. (Francesca), Jimenez-Alfaro, B. (Borja), Johnstone, J. (Jill), Jorgensen, R. H. (Rasmus Halfdan), Kaarlejarvi, E. (Elina), Klady, R. (Rebecca), Klimesova, J. (Jitka), Korsten, A. (Annika), Kuleza, S. (Sara), Kulonen, A. (Aino), Lamarque, L. J. (Laurent J.), Lantz, T. (Trevor), Lavalle, A. (Amanda), Lembrechts, J. J. (Jonas J.), Levesque, E. (Esther), Little, C. J. (Chelsea J.), Luoto, M. (Miska), Macek, P. (Petr), Mack, M. C. (Michelle C.), Mathakutha, R. (Rabia), Michelsen, A. (Anders), Milbau, A. (Ann), Molau, U. (Ulf), Morgan, J. W. (John W.), Morsdorf, M. A. (Martin Alfons), Nabe-Nielsen, J. (Jacob), Nielsen, S. S. (Sigrid Scholer), Ninot, J. M. (Josep M.), Oberbauer, S. F. (Steven F.), Olofsson, J. (Johan), Onipchenko, V. G. (Vladimir G.), Petraglia, A. (Alessandro), Pickering, C. (Catherine), Prevey, J. S. (Janet S.), Rixen, C. (Christian), Rumpf, S. B. (Sabine B.), Schaepman-Strub, G. (Gabriela), Semenchuk, P. (Philipp), Shetti, R. (Rohan), Soudzilovskaia, N. A. (Nadejda A.), Spasojevic, M. J. (Marko J.), Speed, J. D. (James David Mervyn), Street, L. E. (Lorna E.), Suding, K. (Katharine), Tape, K. D. (Ken D.), Tomaselli, M. (Marcello), Trant, A. (Andrew), Treier, U. A. (Urs A.), Tremblay, J.-P. (Jean-Pierre), Tremblay, M. (Maxime), Venn, S. (Susanna), Virkkala, A.-M. (Anna-Maria), Vowles, T. (Tage), Weijers, S. (Stef), Wilmking, M. (Martin), Wipf, S. (Sonja), and Zamin, T. (Tara)
- Abstract
Motivation: The Tundra Trait Team (TTT) database includes field‐based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade‐offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (> 1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub‐Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
- Published
- 2018
39. Tundra Trait Team: A database of plant traits spanning the tundra biome
- Author
-
Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Normand, S., Thomas, H. J. D., Alatalo, J. M., Alexander, H., Anadon-Rosell, A., Angers-Blondin, S., Bai, Y., Baruah, G., te Beest, M., Berner, L., Björk, R. G., Blok, D., Bruelheide, H., Buchwal, A., Buras, A., Carbognani, M., Christie, K., Collier, L. S., Cooper, E. J., Cornelissen, J. H. C., Dickinson, K. J. M., Dullinger, S., Elberling, B., Eskelinen, A., Forbes, B. C., Frei, E. R., Iturrate-Garcia, M., Good, M. K., Grau, O., Green, P., Greve, M., Grogan, P., Haider, S., Hájek, T., Hallinger, M., Happonen, K., Harper, K. A., Heijmans, M. M. P. D., Henry, G. H. R., Hermanutz, L., Hewitt, R. E., Hollister, R. D., Hudson, J., Hülber, K., Iversen, C. M., Jaroszynska, F., Jiménez-Alfaro, B., Johnstone, J., Jorgensen, R. H., Kaarlejärvi, E., Klady, R., Klimešová, J., Korsten, A., Kuleza, S., Kulonen, A., Lamarque, L. J., Lantz, T., Lavalle, A., Lembrechts, J. J., Lévesque, E., Little, C. J., Luoto, M., Macek, P., Mack, M. C., Mathakutha, R., Michelsen, A., Milbau, A., Molau, U., Morgan, J. W., Mörsdorf, M. A., Nabe-Nielsen, J., Nielsen, S. S., Ninot, J. M., Oberbauer, S. F., Olofsson, J., Onipchenko, V. G., Petraglia, A., Pickering, C., Prevéy, J. S., Rixen, C., Rumpf, S. B., Schaepman-Strub, G., Semenchuk, P., Shetti, R., Soudzilovskaia, N. A., Spasojevic, M. J., Speed, J. D. M., Street, L. E., Suding, K., Tape, K. D., Tomaselli, M., Trant, A., Treier, U. A., Tremblay, J. P., Tremblay, M., Venn, S., Virkkala, A. M., Vowles, T., Weijers, S., Wilmking, M., Wipf, S., Zamin, T., Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Normand, S., Thomas, H. J. D., Alatalo, J. M., Alexander, H., Anadon-Rosell, A., Angers-Blondin, S., Bai, Y., Baruah, G., te Beest, M., Berner, L., Björk, R. G., Blok, D., Bruelheide, H., Buchwal, A., Buras, A., Carbognani, M., Christie, K., Collier, L. S., Cooper, E. J., Cornelissen, J. H. C., Dickinson, K. J. M., Dullinger, S., Elberling, B., Eskelinen, A., Forbes, B. C., Frei, E. R., Iturrate-Garcia, M., Good, M. K., Grau, O., Green, P., Greve, M., Grogan, P., Haider, S., Hájek, T., Hallinger, M., Happonen, K., Harper, K. A., Heijmans, M. M. P. D., Henry, G. H. R., Hermanutz, L., Hewitt, R. E., Hollister, R. D., Hudson, J., Hülber, K., Iversen, C. M., Jaroszynska, F., Jiménez-Alfaro, B., Johnstone, J., Jorgensen, R. H., Kaarlejärvi, E., Klady, R., Klimešová, J., Korsten, A., Kuleza, S., Kulonen, A., Lamarque, L. J., Lantz, T., Lavalle, A., Lembrechts, J. J., Lévesque, E., Little, C. J., Luoto, M., Macek, P., Mack, M. C., Mathakutha, R., Michelsen, A., Milbau, A., Molau, U., Morgan, J. W., Mörsdorf, M. A., Nabe-Nielsen, J., Nielsen, S. S., Ninot, J. M., Oberbauer, S. F., Olofsson, J., Onipchenko, V. G., Petraglia, A., Pickering, C., Prevéy, J. S., Rixen, C., Rumpf, S. B., Schaepman-Strub, G., Semenchuk, P., Shetti, R., Soudzilovskaia, N. A., Spasojevic, M. J., Speed, J. D. M., Street, L. E., Suding, K., Tape, K. D., Tomaselli, M., Trant, A., Treier, U. A., Tremblay, J. P., Tremblay, M., Venn, S., Virkkala, A. M., Vowles, T., Weijers, S., Wilmking, M., Wipf, S., and Zamin, T.
- Abstract
Motivation: The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (> 1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
- Published
- 2018
40. Traditional plant functional groups explain variation in economic but not size‐related traits across the tundra biome
- Author
-
Thomas, H. J. D., primary, Myers‐Smith, I. H., additional, Bjorkman, A. D., additional, Elmendorf, S. C., additional, Blok, D., additional, Cornelissen, J. H. C., additional, Forbes, B. C., additional, Hollister, R. D., additional, Normand, S., additional, Prevéy, J. S., additional, Rixen, C., additional, Schaepman‐Strub, G., additional, Wilmking, M., additional, Wipf, S., additional, Cornwell, W. K., additional, Kattge, J., additional, Goetz, S. J., additional, Guay, K. C., additional, Alatalo, J. M., additional, Anadon‐Rosell, A., additional, Angers‐Blondin, S., additional, Berner, L. T., additional, Björk, R. G., additional, Buchwal, A., additional, Buras, A., additional, Carbognani, M., additional, Christie, K., additional, Siegwart Collier, L., additional, Cooper, E. J., additional, Eskelinen, A., additional, Frei, E. R., additional, Grau, O., additional, Grogan, P., additional, Hallinger, M., additional, Heijmans, M. M. P. D., additional, Hermanutz, L., additional, Hudson, J. M. G., additional, Hülber, K., additional, Iturrate‐Garcia, M., additional, Iversen, C. M., additional, Jaroszynska, F., additional, Johnstone, J. F., additional, Kaarlejärvi, E., additional, Kulonen, A., additional, Lamarque, L. J., additional, Lévesque, E., additional, Little, C. J., additional, Michelsen, A., additional, Milbau, A., additional, Nabe‐Nielsen, J., additional, Nielsen, S. S., additional, Ninot, J. M., additional, Oberbauer, S. F., additional, Olofsson, J., additional, Onipchenko, V. G., additional, Petraglia, A., additional, Rumpf, S. B., additional, Semenchuk, P. R., additional, Soudzilovskaia, N. A., additional, Spasojevic, M. J., additional, Speed, J. D. M., additional, Tape, K. D., additional, te Beest, M., additional, Tomaselli, M., additional, Trant, A., additional, Treier, U. A., additional, Venn, S., additional, Vowles, T., additional, Weijers, S., additional, Zamin, T., additional, Atkin, O. K., additional, Bahn, M., additional, Blonder, B., additional, Campetella, G., additional, Cerabolini, B. E. L., additional, Chapin III, F. S., additional, Dainese, M., additional, de Vries, F. T., additional, Díaz, S., additional, Green, W., additional, Jackson, R. B., additional, Manning, P., additional, Niinemets, Ü., additional, Ozinga, W. A., additional, Peñuelas, J., additional, Reich, P. B., additional, Schamp, B., additional, Sheremetev, S., additional, and van Bodegom, P. M., additional
- Published
- 2018
- Full Text
- View/download PDF
41. Evaluation of medical decision making capacity in acute traumatic brain injury rehabilitation
- Author
-
MacKenzie, J., primary, Derbidge, C., additional, Daniel, C., additional, Trapp, S., additional, and Speed, J., additional
- Published
- 2018
- Full Text
- View/download PDF
42. Impact of adequate pelvic lymph node dissection on overall survival after radical cystectomy: A stratified analysis by clinical stage and receipt of neoadjuvant chemotherapy
- Author
-
Von Landenberg, N., primary, Speed, J., additional, Cole, A.P., additional, Seisen, T., additional, Gild, P., additional, Berg, S., additional, Roghmann, F., additional, Noldus, J., additional, Abdollah, F., additional, Menon, M., additional, Kibel, A.S., additional, and Trinh, Q.-D., additional
- Published
- 2018
- Full Text
- View/download PDF
43. Effects of hydropeaking on benthic invertebrate community composition in two central Norwegian rivers
- Author
-
Kjaerstad, G., primary, Arnekleiv, J. V., additional, Speed, J. D. M., additional, and Herland, A. K., additional
- Published
- 2018
- Full Text
- View/download PDF
44. A pre-injector upgrade for ISIS, including a medium energy beam transport line and an RF-driven H− ion source.
- Author
-
Lawrie, S. R., Abel, R. E., Cahill, C. A., Faircloth, D. C., Macgregor, J. H., Patel, S., de M. Sarmento, T. C., Speed, J., Tarvainen, O. A., Whitehead, M. O., Wood, T., and Zacek, D.
- Subjects
ION sources ,PLASMA beam injection heating ,NEUTRAL beams ,MUONS - Abstract
The ISIS spallation neutron and muon facility is undergoing an upgrade to the negative hydrogen (H
− ) linac preinjector with the addition of a medium-energy beam transport (MEBT) line. A fast electrostatic sweep chopper is included in the MEBT and will notch the linac bunch train at the synchrotron frequency. The MEBT and chopper will increase the beam transport efficiency significantly, reducing the output H− current requirements from the ion source. As such, a long-lifetime, noncesiated, RF-driven, external-antenna H− ion source based on the successful CERN Linac4 and SNS designs is constructed, which will improve facility uptime and reliability. This paper will highlight the latest developments on the MEBT before focusing on the RF ion source. The RF ion source must deliver 35 mA of H− beam current in pulses 400 μs long at a 50 Hz repetition rate, with transverse normalized 4 rms emittances less than 1.2 π mm mrad. The beam current and emittance are within the reach of a noncesiated H− source, whereas operating at relatively high duty cycles presents challenges in terms of thermal management, which this paper will address. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
45. Shrubs – Expanding opportunities for dendrochronologists
- Author
-
Wilmking, M, Hallinger, M, Myers-Smith, I, Baittinger, C, Beil, I, Blok, D, Boulanger-Lapointe, N, Buchwal, A, Buras, A, Dawes, M, Forbes, B, Hik, D, de Jong, R, Jørgensen, R.H., Lantz, T, Levesque, E, Macias-Fauria, M, Naito, A, Ravolainen, V, Rayback, S, Rixen, C, Schaepman-Strub, G, Schmidt, Niels Martin, Speed, J, Tape, K.D., Trant, A, Vellend, M, Weijers, S, Wheeler, J, Wipf, S, and Zimowski, M
- Published
- 2013
46. Effects of hydropeaking on benthic invertebrate community composition in two central Norwegian rivers.
- Author
-
Kjærstad, G., Arnekleiv, J. V., Speed, J. D. M., and Herland, A. K.
- Subjects
BIOTIC communities ,INVERTEBRATES ,CHIRONOMIDAE ,BAETIS ,OLIGOCHAETA - Abstract
Abstract: Hydropower regulations can have dramatic impacts on river ecological communities. The operation of hydropower stations is related to power demands, but their releases in the receiving water body causes sudden changes in flow, which in turn affect the biota. The effects of such flow variations on benthic invertebrates is not fully understood. Here, we studied the effects of duration and intensity of hydropeaking on benthic invertebrates in two rivers over a 3.5‐year period. We used both quantitative (Surber) and semiquantitative (kick samples) sampling methods to compare the ramping zone with the permanently water covered zone downstream of the hydropower plant, and with corresponding unaffected upstream areas. The ramping zone had a different invertebrate community composition and lower benthic density than other areas, especially after hydropeaking. Mayflies and chironomids were most negatively affected by hydropeaking and oligochaetes largely unaffected. Chironomids and the mayfly Baetis rhodani were able to recolonize the ramping zone and almost reach densities similar to deeper areas within 48 days following hydropeaking. The relative abundance of filter feeders tended to increase and gatherers/collectors tended to decrease from the ramping zone towards the deep, permanently water covered areas. In corresponding areas upstream of the power plant, the relative abundance of different functional feeding groups was the same in the mid‐channel and shore sites. Our study shows that hydropeaking has clear impacts on the functional structure of benthic invertebrates below the power plants. The ecological impact of hydropeaking on invertebrate communities should thus be taken into account, for example, by reducing the amplitude and duration of flow fluctuations. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
47. Continuous and discontinuous variation in ecosystem carbon stocks with elevation across a treeline ecotone
- Author
-
Speed, J. D. M., primary, Martinsen, V., additional, Hester, A. J., additional, Holand, Ø., additional, Mulder, J., additional, Mysterud, A., additional, and Austrheim, G., additional
- Published
- 2015
- Full Text
- View/download PDF
48. Effects of Three Consecutive Rotenone Treatments on the Benthic Macroinvertebrate Fauna of the River Ogna, Central Norway
- Author
-
Kjaerstad, G., primary, Arnekleiv, J. V., additional, and Speed, J. D. M., additional
- Published
- 2015
- Full Text
- View/download PDF
49. Continuous and discontinuous variation in ecosystem carbon stocks with elevation across a treeline ecotone
- Author
-
Speed, J. D. M., primary, Martinsen, V., additional, Hester, A. J., additional, Holand, Ø., additional, Mulder, J., additional, Mysterud, A., additional, and Austrheim, G., additional
- Published
- 2014
- Full Text
- View/download PDF
50. ET‐1 increases reactive oxygen species following hypoxia and high‐salt diet in the mouse glomerulus
- Author
-
Heimlich, J. B., primary, Speed, J. S., additional, Bloom, C. J., additional, O'Connor, P. M., additional, Pollock, J. S., additional, and Pollock, D. M., additional
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.