1. Quantifying uncertainty in climate projections with conformal ensembles
- Author
-
Harris, Trevor and Sriver, Ryan
- Subjects
Statistics - Applications ,Statistics - Machine Learning - Abstract
Large climate model ensembles are the primary tool for robustly projecting future climate states and quantifying projection uncertainty. Despite significant advancements in climate modeling over the past few decades, overall projection certainty has not commensurately decreased with steadily improving model skill. We introduce conformal ensembling, a new approach to uncertainty quantification in climate projections based on conformal inference to reduce projection uncertainty. Unlike traditional methods, conformal ensembling seamlessly integrates climate model ensembles and observational data across a range of scales to generate statistically rigorous, easy-to-interpret uncertainty estimates. It can be applied to any climatic variable using any ensemble analysis method and outperforms existing inter-model variability methods in uncertainty quantification across all time horizons and most spatial locations under SSP2-4.5. Conformal ensembling is also computationally efficient, requires minimal assumptions, and is highly robust to the conformity measure. Experiments show that it is effective when conditioning future projections on historical reanalysis data compared with standard ensemble averaging approaches, yielding more physically consistent projections., Comment: 25 pages, 8 figures, 2 tables
- Published
- 2024