1. Implementation of preemptive DNA sequence-based pharmacogenomics testing across a large academic medical center: The Mayo-Baylor RIGHT 10K Study.
- Author
-
Wang L, Scherer SE, Bielinski SJ, Muzny DM, Jones LA, Black JL 3rd, Moyer AM, Giri J, Sharp RR, Matey ET, Wright JA, Oyen LJ, Nicholson WT, Wiepert M, Sullard T, Curry TB, Rohrer Vitek CR, McAllister TM, St Sauver JL, Caraballo PJ, Lazaridis KN, Venner E, Qin X, Hu J, Kovar CL, Korchina V, Walker K, Doddapaneni H, Wu TJ, Raj R, Denson S, Liu W, Chandanavelli G, Zhang L, Wang Q, Kalra D, Karow MB, Harris KJ, Sicotte H, Peterson SE, Barthel AE, Moore BE, Skierka JM, Kluge ML, Kotzer KE, Kloke K, Vander Pol JM, Marker H, Sutton JA, Kekic A, Ebenhoh A, Bierle DM, Schuh MJ, Grilli C, Erickson S, Umbreit A, Ward L, Crosby S, Nelson EA, Levey S, Elliott M, Peters SG, Pereira N, Frye M, Shamoun F, Goetz MP, Kullo IJ, Wermers R, Anderson JA, Formea CM, El Melik RM, Zeuli JD, Herges JR, Krieger CA, Hoel RW, Taraba JL, St Thomas SR, Absah I, Bernard ME, Fink SR, Gossard A, Grubbs PL, Jacobson TM, Takahashi P, Zehe SC, Buckles S, Bumgardner M, Gallagher C, Fee-Schroeder K, Nicholas NR, Powers ML, Ragab AK, Richardson DM, Stai A, Wilson J, Pacyna JE, Olson JE, Sutton EJ, Beck AT, Horrow C, Kalari KR, Larson NB, Liu H, Wang L, Lopes GS, Borah BJ, Freimuth RR, Zhu Y, Jacobson DJ, Hathcock MA, Armasu SM, McGree ME, Jiang R, Koep TH, Ross JL, Hilden MG, Bosse K, Ramey B, Searcy I, Boerwinkle E, Gibbs RA, and Weinshilboum RM
- Subjects
- Academic Medical Centers, Base Sequence, Genotype, Humans, Cytochrome P-450 CYP2D6 genetics, Pharmacogenetics methods
- Abstract
Purpose: The Mayo-Baylor RIGHT 10K Study enabled preemptive, sequence-based pharmacogenomics (PGx)-driven drug prescribing practices in routine clinical care within a large cohort. We also generated the tools and resources necessary for clinical PGx implementation and identified challenges that need to be overcome. Furthermore, we measured the frequency of both common genetic variation for which clinical guidelines already exist and rare variation that could be detected by DNA sequencing, rather than genotyping., Methods: Targeted oligonucleotide-capture sequencing of 77 pharmacogenes was performed using DNA from 10,077 consented Mayo Clinic Biobank volunteers. The resulting predicted drug response-related phenotypes for 13 genes, including CYP2D6 and HLA, affecting 21 drug-gene pairs, were deposited preemptively in the Mayo electronic health record., Results: For the 13 pharmacogenes of interest, the genomes of 79% of participants carried clinically actionable variants in 3 or more genes, and DNA sequencing identified an average of 3.3 additional conservatively predicted deleterious variants that would not have been evident using genotyping., Conclusion: Implementation of preemptive rather than reactive and sequence-based rather than genotype-based PGx prescribing revealed nearly universal patient applicability and required integrated institution-wide resources to fully realize individualized drug therapy and to show more efficient use of health care resources., Competing Interests: Conflict of Interest Liewei Wang, John Logan Black III, and Richard M. Weinshilboum are cofounders of and stockholders in OneOme, LLC, which was used only to return results to the study participants. Additionally, John Logan Black III and Mayo Clinic Ventures have applied for a patent on the CNVAR software cited in this study as well as the methodology upon which the software is based. All other authors declare no conflicts of interest., (Copyright © 2022 American College of Medical Genetics and Genomics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF