12 results on '"Stape JL"'
Search Results
2. A Growth and Yield Model for Eucalyptus benthamii in the Southeastern United States.
- Author
-
Hall, Kevin B, Stape, Jl, Bullock, Bronson P, Frederick, Doug, Wright, Jeff, Scolforo, Henrique F, and Cook, Rachel
- Abstract
In recent Eucalyptus cold-tolerance trials, E. benthamii has shown good growth rates as well as cold tolerance for USDA Plant Hardiness Zones 8 and 9. This study developed growth and yield models for E. benthamii in the southeastern United States. A network of 182 temporary sample plots of E. benthamii ranging in age from 1.5 to 13.3 years was established, and inventory data were collected. Site quality was determined by fitting a polymorphic site index curve, whereas a function for stand basal area based on age, dominant height, and site occupancy was fitted. Stand-level volume and dry-weight biomass prediction equations were fitted as a function of dominant height and basal area. Based on the growth and yield model results, mean annual increments ranged from 26.4 m
3 ha–1 year–1 at rotation age 6 years on the best sites to 13.7 m3 ha–1 year–1 at rotation age 10 years on the poorest sites. This is the first published set of management-oriented models for land managers considering planting E. benthamii in the southeastern United States. [ABSTRACT FROM AUTHOR]- Published
- 2020
- Full Text
- View/download PDF
3. Insights from full-rotation Nelder spacing trials with Eucalyptus in São Paulo, Brazil
- Author
-
Stape, JL and Binkley, D
- Abstract
The choice of spacing among trees for operational plantations is typically based on one or more experimental plantations that test for the response of tree and stand growth to a range of tree-to-tree distances. The most common design for spacing experiments entails rectangular plots that test different distances between rows, and between trees within rows, and with replication of plots covering one to several hectares within a single stand. Other designs may offer more information with simpler layouts, and we examined the insights that could be obtained from a Nelder (fan-shape) design, where spacing among trees varies with the radial distance from a central point. The response of Eucalyptus dunnii seed-origin trees to spacing was essentially similar between a classic plot design replicated in four blocks (tree spacing from 4.5 to 9.2 m2 tree-1, covering 1.4 ha of land), and a Nelder design (tree spacing from 2.1 to 44.0 m2 tree-1, covering 0.6 ha of land). The Nelder design showed slightly higher volume increment through 10 years of stand development than the block design (for the range of overlap in spacing), but the treatment effect of spacing was essentially identical between the designs at the level of both trees and stands. A second Nelder experiment used clonal-origin trees from six clones, testing for differences in responses to spacing among clones. In all three spacing experiments and for all clones, individual-tree growth was greatest at the widest spacing and stand-level growth was highest at the tightest spacing. These trends were much clearer across the wider range of spacing tested in the Nelder plots (228 to 4 760 trees ha-1) than in the narrower range of spacing tested in the block design (1 111 to 2 222 trees ha-1). Current annual increment reached a higher, earlier peak at narrow spacing. At 8.5 years, the light use efficiency (stem volume growth per unit of light intercepted) was about twice as great for trees at narrow spacing than at wider spacing. Overall, the Nelder designs provided the same information on responses to spacing as the classic block design. The simplicity and small size of Nelder designs provide valuable insights for basic decisions on spacing for operational plantations, particularly when forestry extends into new geographic areas, new genotypes, and new silvicultural techniques. Keywords: Eucalyptus clones, Eucalyptus dunnii, forest growth and yield, leaf area, light use efficiency, sawlog productionSouthern Forests 2010, 72(2): 90–97
- Published
- 2010
4. Productivity gains by fertilisation in Eucalyptus urophylla clonal plantations across gradients in site and stand conditions
- Author
-
de Aguiar Ferreira, JM and Stape, JL
- Abstract
Nutrition management in Eucalyptus plantations is fundamental for sustaining high production. Fertilisation is routinely used to improve tree nutrition, providing profitable returns on large investments. Growth responses to fertilisation differ dramatically among sites, however, so efficient investment decisions in fertilisation is important. The twin-plots design characterises the fertilisation response in a short period of time, providing the information needed to landscape-scale silvicultural prescriptions. This method entails the establishment of pairs of plots, with one control and one treated plot at each location. The control plot may typically be a permanent plot of an inventory network, providing representative information for a company’s decisionmaking. The paired twin-plot receives intensive management (high fertilisation and weed control) to minimise (or remove) these constraints to forest productivity. We used this approach with 131 blocks of twin-plots to represent an area of 34 540 ha in the state of São Paulo, Brazil. Clonal plantations of Eucalyptus urophylla were remeasured one and two years after treatment. Fertilisation increased wood growth by 15% for two years (4.0 t ha–1 y–1, or 8.1 m3 ha–1 y–1), with the current annual biomass increment reaching 31.6 t ha–1 y–1 (64.2 m3 ha–1 y–1) versus 27.6 t ha–1 y–1 (56.1 m3 ha–1 y–1) of the control plots. Twin-plots located on sandier and less fertile soils showed twice the fertilisation response of other plots, increasing wood growth by 8.5 t ha–1 y–1 (16.9 m3 ha–1 y–1). The two predominant clones responded similarly to fertilisation. Older stands showed higher responses than younger stands (1.7 t ha–1 y–1 for each additional year), and the greater response in older stands probably represented increase in fertilisation rates over time, rather than a feature of the age of the stands per se. Fertilisation response correlated negatively with site index (base age 7), soil clay content, and soil base nutrient levels (Ca, Mg and K). Models for the prediction of fertilisation response can be used to develop regional- and site-specific fertiliser prescriptions to maximise financial gain from fertilisation. Keywords: Eucalyptus urophylla; fertilisation; intensive silviculture; inventory network; tropical plantations; twin-plotsSouthern Forests 2009, 71(4): 253–258
- Published
- 2010
5. Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: the Brazilian experience
- Author
-
Gonçalves, JLM, Stape, JL, Laclau, J-P, Bouillet, J-P, and Ranger, J
- Abstract
Eucalyptus is the dominant and most productive planted forest in Brazil, covering around 3.4 million ha for the production of charcoal, pulp, sawtimber, timber plates, wood foils, plywood and for building purposes. At the early establishment of the forest plantations, during the second half of the 1960s, the eucalypt yield was 10 m3 ha–1 y–1. Now, as a result of investments in research and technology, the average productivity is 38 m3 ha–1 y–1. The productivity restrictions are related to the following environmental factors, in order of importance: water deficits > nutrient deficiency > soil depth and strength. The clonal forests have been fundamental in sites with larger water and nutrient restrictions, where they out-perform those established from traditional seed-based planting stock. When the environmental limitations are small the productivities of plantations based on clones or seeds appear to be similar. In the long term there are risks to sustainability, because of the low fertility and low reserves of primary minerals in the soils, which are, commonly, loamy and clayey oxisols and ultisols. Usually, a decline of soil quality is caused by management that does not conserve soil and site resources, damages soil physical and chemical characteristics, and insufficient or unbalanced fertiliser management. The problem is more serious when fast-growing genotypes are planted, which have a high nutrient demand and uptake capacity, and therefore high nutrient output through harvesting. The need to mobilise less soil by providing more cover and protection, reduce the nutrient and organic matter losses, preserve crucial physical properties as permeability (root growth, infiltration and aeration), improve weed control and reduce costs has led to a progressive increase in the use of minimum cultivation practices during the last 20 years, which has been accepted as a good alternative to keep or increase site quality in the long term. In this paper we provide a synthesis and critical appraisal of the research results and practical implications of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations arising from the Brazilian context.Keywords: fertilisation; minimum cultivation; residue management; soil preparation; sustainability; water deficitSouthern Forests 2008, 70(2): 105–118
- Published
- 2008
6. Why don't our stands grow even faster? Control of production and carbon cycling in eucalypt plantations
- Author
-
Ryan, MG, primary, Binkley, D, additional, and Stape, JL, additional
- Published
- 2008
- Full Text
- View/download PDF
7. Intensive silviculture enhances biomass accumulation and tree diversity recovery in tropical forest restoration.
- Author
-
Brancalion PHS, Campoe O, Mendes JCT, Noel C, Moreira GG, van Melis J, Stape JL, and Guillemot J
- Subjects
- Biomass, Brazil, Forests, Trees, Tropical Climate
- Abstract
Maximizing initial aboveground woody biomass (AGB) accumulation in order to obtain early payments for carbon stocking is essential for the financial viability of reforestation programs fostered by climate mitigation efforts. Intensive silviculture, i.e., silviculture traditionally used in commercial forestry to maximize productivity and gains, has recently been advocated as a promising approach to enhance AGB accumulation in restoration plantations. However, this approach may hamper natural forest regeneration and ecological succession due to high competition between colonizing plants and planted trees. We investigated the impacts of different silvicultural treatments applied to restoration plantations with 20 native tree species on AGB accumulation and spontaneous regeneration of native woody species in an experiment set up in the Atlantic Forest of Brazil. Intensive silviculture demonstrated a remarkable potential to enhance AGB accumulation in restoration plantations by increasing up to three times the AGB of tree stands (from ~25 to 75 Mg/ha in the 12th year). Intensive fertilization/weed control enhanced AGB accumulation, while higher tree density and the proportion of pioneers did not have a significant effect on AGB over the time. In spite of higher costs (cost increase of 13-19%), the cost-effectiveness for AGB accumulation of intensive silviculture was comparable to that of traditional silviculture applied to restoration (US$50-100/Mg AGB for 3 × 2 m spacing). Contrary to our expectations, we did not find a trade-off between AGB accumulation by planted trees and the spontaneous regeneration of tree species, since intensive silviculture enhanced the regeneration of both planted (total of 12 species) and colonizing woody species (total of 30 species) in the plantation understory. Specifically, a strong association was found between AGB stocks and the abundance and richness of colonizing species, a vast majority of which (90% of species and 95% of individuals) were dispersed by animals. We report a case of positive correlation between AGB stocking and woody species regeneration in the restoration of the Atlantic Forest. Fostering the establishment and maintenance of restoration tree plantations can, in some cases, be a win-win strategy for climate mitigation and biodiversity conservation in human-modified tropical landscapes., (© 2019 by the Ecological Society of America.)
- Published
- 2019
- Full Text
- View/download PDF
8. Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations.
- Author
-
Laclau JP, da Silva EA, Rodrigues Lambais G, Bernoux M, le Maire G, Stape JL, Bouillet JP, Gonçalves JL, Jourdan C, and Nouvellon Y
- Abstract
Although highly weathered soils cover considerable areas in tropical regions, little is known about exploration by roots in deep soil layers. Intensively managed Eucalyptus plantations are simple forest ecosystems that can provide an insight into the belowground growth strategy of fast-growing tropical trees. Fast exploration of deep soil layers by eucalypt fine roots may contribute to achieving a gross primary production that is among the highest in the world for forests. Soil exploration by fine roots down to a depth of 10 m was studied throughout the complete cycle in Eucalyptus grandis plantations managed in short rotation. Intersects of fine roots, less than 1 mm in diameter, and medium-sized roots, 1-3 mm in diameter, were counted on trench walls in a chronosequence of 1-, 2-, 3.5-, and 6-year-old plantations on a sandy soil, as well as in an adjacent 6-year-old stand growing in a clayey soil. Two soil profiles were studied down to a depth of 10 m in each stand (down to 6 m at ages 1 and 2 years) and 4 soil profiles down to 1.5-3.0 m deep. The root intersects were counted on 224 m(2) of trench walls in 15 pits. Monitoring the soil water content showed that, after clear-cutting, almost all the available water stored down to a depth of 7 m was taken up by tree roots within 1.1 year of planting. The soil space was explored intensively by fine roots down to a depth of 3 m from 1 year after planting, with an increase in anisotropy in the upper layers throughout the rotation. About 60% of fine root intersects were found at a depth of more than 1 m, irrespective of stand age. The root distribution was isotropic in deep soil layers and kriged maps showed fine root clumping. A considerable volume of soil was explored by fine roots in eucalypt plantations on deep tropical soils, which might prevent water and nutrient losses by deep drainage after canopy closure and contribute to maximizing resource uses.
- Published
- 2013
- Full Text
- View/download PDF
9. Intra-annual nutrient flux in Pinus taeda.
- Author
-
Albaugh TJ, Allen HL, Stape JL, Fox TR, Rubilar RA, and Price JW
- Subjects
- Agricultural Irrigation, Biological Transport, Biomass, Calcium analysis, Calcium metabolism, Fertilizers, Magnesium analysis, Magnesium metabolism, Nitrogen analysis, Nitrogen metabolism, North Carolina, Phenotype, Phosphorus analysis, Phosphorus metabolism, Pinus taeda growth & development, Plant Bark growth & development, Plant Bark metabolism, Plant Leaves growth & development, Plant Leaves metabolism, Plant Roots growth & development, Plant Roots metabolism, Plant Stems growth & development, Plant Stems metabolism, Potassium analysis, Potassium metabolism, Trees, Water metabolism, Pinus taeda metabolism
- Abstract
Intra-annual nutrient (nitrogen, phosphorus, potassium, calcium and magnesium) flux was quantified for Pinus taeda L. at a nutrient-poor, well-drained sandy site in Scotland County, NC, USA where a 2 × 2 factorial of irrigation and nutrition was applied in four replications in a 10-year-old stand with 1200 stems ha(-1). Treatments were applied with the goal of providing optimum nutrition (no nutritional deficiencies) and water availability. Component (foliage, branch, stem and root) nutrient content was estimated monthly for 2 years using nutrient concentration and phenology assessments combined with destructive harvests. Positive flux values indicated nutrient accumulation in the trees while negative values indicated nutrient loss from the trees. Fertilization significantly increased nitrogen, phosphorus, potassium, calcium and magnesium flux 140%, on average, over non-fertilized. Irrigation significantly increased calcium flux 28% while there was no significant irrigation effect on nitrogen, phosphorus, potassium or magnesium. Maximum nutrient fluxes (kg ha(-1) day(-1)) for non-fertilized and fertilized stands were 0.36 and 1.05 for nitrogen, 0.042 and 0.095 for phosphorus, 0.13 and 0.51 for potassium, 0.27 and 0.42 for calcium, and 0.04 and 0.12 for magnesium, respectively. Maximum flux was coincident with ephemeral tissue (foliage and fine root) development and likely would be higher in stands with more foliage than those observed in this study (projected leaf area indices were 1.5 and 3.0 for the non-fertilized and fertilized stands). Minimum nutrient fluxes (kg ha(-1) day(-1)) for non-fertilized and fertilized stands were -0.18 and -0.42 for nitrogen, -0.029 and -0.070 for phosphorus, -0.05 and -0.18 for potassium, -0.04 and -0.05 for calcium, and -0.02 and -0.03 for magnesium, respectively. Minimum fluxes were typically observed in the dormant season and were linked to foliage senescence and branch death. Foliage and branch component nutrient contents were out of phase for nitrogen, phosphorus, potassium and magnesium, indicating nutrient retranslocation and storage in branches prior to foliage development and after foliage senescence. In contrast to current operational fertilizer programs which often target winter application these data suggest the best application times would be during foliage development.
- Published
- 2012
- Full Text
- View/download PDF
10. Stand-level patterns of carbon fluxes and partitioning in a Eucalyptus grandis plantation across a gradient of productivity, in Sao Paulo State, Brazil.
- Author
-
Campoe OC, Stape JL, Laclau JP, Marsden C, and Nouvellon Y
- Subjects
- Biometry, Brazil, Eucalyptus growth & development, Forestry, Plant Stems growth & development, Trees growth & development, Biomass, Carbon metabolism, Eucalyptus metabolism, Trees metabolism, Wood growth & development
- Abstract
Wood production represents a large but variable fraction of gross primary production (GPP) in highly productive Eucalyptus plantations. Assessing patterns of carbon (C) partitioning (C flux as a fraction of GPP) between above- and belowground components is essential to understand mechanisms driving the C budget of these plantations. Better knowledge of fluxes and partitioning to woody and non-woody tissues in response to site characteristics and resource availability could provide opportunities to increase forest productivity. Our study aimed at investigating how C allocation varied within one apparently homogeneous 90 ha stand of Eucalyptus grandis (W. Hill ex Maiden) in Southeastern Brazil. We assessed annual above-ground net primary production (ANPP: stem, leaf, and branch production) and total belowground C flux (TBCF: the sum of root production and respiration and mycorrhizal production and respiration), GPP (computed as the sum of ANPP, TBCF and estimated aboveground respiration) on 12 plots representing the gradient of productivity found within the stand. The spatial heterogeneity of topography and associated soil attributes across the stand likely explained this fertility gradient. Component fluxes of GPP and C partitioning were found to vary among plots. Stem NPP ranged from 554 g C m(-2) year(-1) on the plot with lowest GPP to 923 g C m(-2) year(-1) on the plot with highest GPP. Total belowground carbon flux ranged from 497 to 1235 g C m(-2) year(-1) and showed no relationship with ANPP or GPP. Carbon partitioning to stem NPP increased from 0.19 to 0.23, showing a positive trend of increase with GPP (R(2) = 0.29, P = 0.07). Variations in stem wood production across the gradient of productivity observed at our experimental site were a result of the variability in C partitioning to different forest system components.
- Published
- 2012
- Full Text
- View/download PDF
11. Competition among eucalyptus trees depends on genetic variation and resource supply.
- Author
-
Boyden S, Binkley D, and Stape JL
- Subjects
- Ecosystem, Eucalyptus anatomy & histology, Nutritional Physiological Phenomena, Plant Roots metabolism, Plant Roots physiology, Soil standards, Species Specificity, Biodiversity, Eucalyptus genetics, Eucalyptus growth & development, Genetic Variation, Soil analysis
- Abstract
Genetic variation and environmental heterogeneity fundamentally shape the interactions between plants of the same species. According to the resource partitioning hypothesis, competition between neighbors intensifies as their similarity increases. Such competition may change in response to increasing supplies of limiting resources. We tested the resource partitioning hypothesis in stands of genetically identical (clone-origin) and genetically diverse (seed-origin) Eucalyptus trees with different water and nutrient supplies, using individual-based tree growth models. We found that genetic variation greatly reduced competitive interactions between neighboring trees, supporting the resource partitioning hypothesis. The importance of genetic variation for Eucalyptus growth patterns depended strongly on local stand structure and focal tree size. This suggests that spatial and temporal variation in the strength of species interactions leads to reversals in the growth rank of seed-origin and clone-origin trees. This study is one of the first to experimentally test the resource partitioning hypothesis for intergenotypic vs. intragenotypic interactions in trees. We provide evidence that variation at the level of genes, and not just species, is functionally important for driving individual and community-level processes in forested ecosystems.
- Published
- 2008
- Full Text
- View/download PDF
12. Tree-girdling to separate root and heterotrophic respiration in two Eucalyptus stands in Brazil.
- Author
-
Binkley D, Stape JL, Takahashi EN, and Ryan MG
- Subjects
- Brazil, Ecosystem, Photosynthesis physiology, Tropical Climate, Carbon Dioxide metabolism, Eucalyptus metabolism, Plant Roots metabolism, Soil Microbiology
- Abstract
The release of carbon as CO2 from belowground processes accounts for about 70% of total ecosystem respiration. Insights about factors controlling soil CO2 efflux are constrained by the challenge of apportioning sources of CO2 between autotrophic tree roots (and mycorrhizal fungi) and heterotrophic microorganisms. In some temperate conifer forests, the reduction in soil CO2 efflux after girdling (phloem removal) has been used to separate these sources. Girdling stops the flow of carbohydrates to the belowground portion of the ecosystem, which should slow respiration by roots and mycorrhizae while heterotrophic respiration should remain constant or be enhanced by the decomposition of newly dead roots. Therefore, the reduction in CO2 efflux after girdling should be a conservative estimate of the belowground flux of C from trees. We tested this approach in two tropical Eucalyptus plantations. Tree canopies remained intact for more than 3 months after girdling, showing no reduction in light interception. The reduction in soil CO2 efflux averaged 16-24% for the 3-month period after girdling. The reduction in CO2 efflux was similar for plots with one half of the trees girdled and those with all of the trees girdled. Girdling did not reduce live fine root biomass for at least 5 months after treatment, indicating that large reserves of carbohydrates in the root systems of Eucalyptus trees maintained the roots and root respiration. Our results suggest that the girdling approach is unlikely to provide useful insights into the contribution of tree roots and heterotrophs to soil CO2 efflux in this type of forest ecosystem.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.