12 results on '"Stefan Mc Murtry"'
Search Results
2. Diamond/ZnO/LiNbO3 structure for packageless acoustic wave sensors.
- Author
-
Cécile Floer, Mohammed Moutaouekkil, Florian Bartoli, Harshad Mishra, Stefan Mc Murtry, Sami Hage-Ali, Omar Elmazria, Damia Dekkar, Benoit Baudrillart, Fabien Benedic, Sergei Zhgoon, Abdelkrim Talbi, Olivier Bou Matar, and Thierry Aubert
- Published
- 2017
- Full Text
- View/download PDF
3. Microcapsule-based biosensor containing catechol for the reagent-free inhibitive detection of benzoic acid by tyrosinase
- Author
-
Pierre Agostini, Omar Elmazria, Serge Cosnier, Karine Gorgy, Chantal Gondran, Stefan Mc Murtry, Yannig Nedellec, Département de Chimie Moléculaire (DCM), Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Département de Chimie Moléculaire - Biosystèmes Electrochimiques et Analytiques (DCM - BEA ), and Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Tyrosinase ,Biomedical Engineering ,Biophysics ,Enzyme electrode ,Catechols ,Capsules ,02 engineering and technology ,Biosensing Techniques ,01 natural sciences ,chemistry.chemical_compound ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Electrochemistry ,ComputingMilieux_MISCELLANEOUS ,Benzoic acid ,Detection limit ,Catechol ,Monophenol Monooxygenase ,Nanotubes, Carbon ,010401 analytical chemistry ,Substrate (chemistry) ,General Medicine ,Benzoic Acid ,021001 nanoscience & nanotechnology ,Enzymes, Immobilized ,0104 chemical sciences ,chemistry ,Indicators and Reagents ,0210 nano-technology ,Biosensor ,Methylene blue ,Biotechnology ,Nuclear chemistry - Abstract
A biosensor based on the release of the enzyme substrate from its structure was developed for the inhibitive detection of benzoic acid. A polyurethane support comprising two perforated microcapsules (800 μm in diameter) filled with methylene blue as a model compound and covered with a conductive deposit of multiwalled carbon nanotubes, continuously released this stored dye for 24 h. An increase in methylene blue concentration of 0.5–0.75 μmol L-1 h-1 and 1.5–2 μmol L-1 h-1, in the presence and absence of the multiwalled carbon nanotube coating, respectively, was demonstrated by UV–vis spectroscopy in a 2 mL UV cuvette. The same configuration with microcapsules filled with catechol was modified by a laponite clay coating containing tyrosinase enzyme. The resulting biosensor exhibits a constant cathodic current at −0.155 V vs AgCl/Ag, due to the reduction of the ortho-quinone produced enzymatically from the released catechol. The detection of benzoic acid was recorded from the decrease in cathodic current due to its inhibiting action on the tyrosinase activity. Reagentless biosensors based on different deposited quantity of tyrosinase (100, 200, 400 and 600 μg) were investigated for the detection of catechol and applied to the detection of benzoic acid as inhibitor. The best performance was obtained with the 400 μg-based configuration, namely a detection limit of 0.4 μmol L-1 and a sensitivity of 228 mA L mol−1. After the inhibition process, the biosensors recover 97–100% of their activity towards catechol, confirming a reversible inhibition by benzoic acid.
- Published
- 2021
- Full Text
- View/download PDF
4. AlN/ZnO/LiNbO 3 Packageless Structure as a Low-Profile Sensor for Potential On-Body Applications
- Author
-
M. Moutaouekkil, Florian Bartoli, Omar Elmazria, Cecile Floer, Olivier Bou Matar, Philippe Pigeat, Sami Hage-Ali, Sergei Zhgoon, Harshad Mishra, Thierry Aubert, Abdelkrim Talbi, Stefan Mc Murtry, Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), National Research University, Moscow Power Engineering Institute, Laboratoire Matériaux Optiques, Photonique et Systèmes (LMOPS), CentraleSupélec-Université de Lorraine (UL), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS-IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 (IEMN-DOAE), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), IMPACT N4S, ANR-15-IDEX-0004,LUE,Isite LUE(2015), ANR-18-CE42-0004,SAWGOOD,Dispositifs sans fils étirables à ondes acoustiques de surface : vers des capteurs passifs multifonctionnels imprimés sur la peau(2018), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), ACKNOWLEDGMENTThe authors would like to thank L. Badie, G. Lengaigne, and F. Montaigne from Minalor platform, Institut Jean Lamour, Nancy, France, for their help in the microfabrication., and This work was supported in part by the Direction Générale de l’Armement, in part by the Région Grand-Est, in part by the European funds FEDER, in part by the French PIA project 'Lorraine Université d’Excellence' under Grant ANR-15-IDEX-04-LUE, and in part by the Ministry of Science and Education of Russian Federation under Grant 8.6108.2017/6.7.
- Subjects
Materials science ,Acoustics and Ultrasonics ,Temperature sensing ,Acoustics ,Lithium niobate ,Structure (category theory) ,02 engineering and technology ,Particle displacement ,Acoustic wave ,021001 nanoscience & nanotechnology ,01 natural sciences ,Condensed Matter::Materials Science ,chemistry.chemical_compound ,symbols.namesake ,chemistry ,0103 physical sciences ,symbols ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Surface acoustic wave sensor ,Electrical and Electronic Engineering ,Rayleigh wave ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,010301 acoustics ,Instrumentation - Abstract
International audience; Surface acoustic wave (SAW) sensors find their application in a growing number of fields. This interest stems in particular from their passive nature and the possibility of remote interrogation. Still, the sensor package, due to its size, remains an obstacle for some applications. In this regard, packageless solutions are very promising. This paper describes the potential of the AlN/ZnO/LiNbO3 structure for packageless acoustic wave sensors. This structure, based on the waveguided acoustic wave principle, is studied numerically and experimentally. According to the COMSOL simulations, a wave, whose particle displacement is similar to a Rayleigh wave, is confined within the structure when the AlN film is thick enough. This result is confirmed by comprehensive experimental tests, thus proving the potential of this structure for packageless applications, notably temperature sensing. Index Terms-Surface acoustic wave SAW, temperature sensor, waveguiding layer acoustic wave WLAW, packageless, low-profile.
- Published
- 2018
- Full Text
- View/download PDF
5. AlN/ZnO/LiNbO
- Author
-
Cecile, Floer, Sami, Hage-Ali, Sergei, Zhgoon, Mohammed, Moutaouekkil, Florian, Bartoli, Harshad, Mishra, Stefan, Mc Murtry, Philippe, Pigeat, Thierry, Aubert, Olivier, Bou Matar, Abdelkrim, Talbi, and Omar, Elmazria
- Abstract
Surface acoustic wave sensors find their application in a growing number of fields. This interest stems in particular from their passive nature and the possibility of remote interrogation. Still, the sensor package, due to its size, remains an obstacle for some applications. In this regard, packageless solutions are very promising. This paper describes the potential of the AlN/ZnO/LiNbO
- Published
- 2018
6. AlN/ZnO/LiNbO3 packageless structure as a low-profile sensor for on-body applications
- Author
-
Olivier Bou Matar, Stefan Mc Murtry, Thierry Aubert, M. Moutaouekkil, Abdelkrim Talbi, Cecile Floer, Omar Elmazria, Sami Hage-Ali, Florian Bartoli, Sergei Zhgoon, Harshad Mishra, Philippe Pigeat, Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Laboratoire Matériaux Optiques, Photonique et Systèmes (LMOPS), CentraleSupélec-Université de Lorraine (UL), National Research University, Moscow Power Engineering Institute, Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS-IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 (IEMN-DOAE), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), and Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS - IEMN)
- Subjects
010302 applied physics ,Materials science ,business.industry ,Surface acoustic wave ,02 engineering and technology ,Acoustic wave ,Conformable matrix ,021001 nanoscience & nanotechnology ,01 natural sciences ,Resonator ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,Wireless ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,business ,Layer (electronics) ,ComputingMilieux_MISCELLANEOUS - Abstract
Surface acoustic wave (SAW) devices are widely used as filters or resonators for mobile communications or radars applications. However, the velocity of the wave can be very sensitive to physical parameters of the environment (temperature, strain…), which allows the device to be used as a sensor. SAW devices are passive (batteryless) and wireless, but are often bulky due to the package. To dramatically reduces their profile, it is possible to use a Wave-guiding Layer Acoustic Wave (WLAW) structure, which consists of a low velocity layer between two higher velocity layers. These structures have the potential to be ultra-thin and conformable and thus could be used for flexible on-body biomedical applications. This work investigates the AlN/ZnO/LiNbO 3 structure as a candidate for a WLAW temperature sensor.
- Published
- 2017
7. Electrical spin injection and detection in molybdenum disulfide multilayer channel
- Author
-
Shiheng Liang, Huaiwen Yang, Pierre Renucci, Bingshan Tao, Piotr Laczkowski, Stefan Mc-Murtry, Gang Wang, Xavier Marie, Jean-Marie George, Sébastien Petit-Watelot, Abdelhak Djeffal, Stéphane Mangin, Henri Jaffrès, Yuan Lu, Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique et chimie des nano-objets (LPCNO), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES [France]-Centre National de la Recherche Scientifique (CNRS), IMPACT N4S, ANR-15-IDEX-0004,LUE,Isite LUE(2015), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-THALES, Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), and THALES-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Science ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,Article - Abstract
Molybdenum disulfide has recently emerged as a promising two-dimensional semiconducting material for nano-electronic, opto-electronic and spintronic applications. However, the demonstration of an electron spin transport through a semiconducting MoS2 channel remains challenging. Here we show the evidence of the electrical spin injection and detection in the conduction band of a multilayer MoS2 semiconducting channel using a two-terminal spin-valve configuration geometry. A magnetoresistance around 1% has been observed through a 450 nm long, 6 monolayer thick MoS2 channel with a Co/MgO tunnelling spin injector and detector. It is found that keeping a good balance between the interface resistance and channel resistance is mandatory for the observation of the two-terminal magnetoresistance. Moreover, the electron spin-relaxation is found to be greatly suppressed in the multilayer MoS2 channel with an in-plane spin polarization. The long spin diffusion length (approximately ∼235 nm) could open a new avenue for spintronic applications using multilayer transition metal dichalcogenides., MoS2 is a promising two-dimensional candidate for opto-electronic and spintronic applications. Here, the authors report electrical spin injection and detection in a few-layered MoS2 channel, demonstrating that the spin diffusion length is at least 235 nm in MoS2 conduction band.
- Published
- 2016
- Full Text
- View/download PDF
8. Sensing applications of a low-coherence fibre-optic interferometer measuring the refractive index of air
- Author
-
John D. Wright, Stefan Mc Murtry, and David A. Jackson
- Subjects
Optical fiber ,business.industry ,Chemistry ,Metals and Alloys ,Humidity ,Response time ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,law.invention ,Interferometry ,Optics ,law ,Materials Chemistry ,Coherence (signal processing) ,Relative humidity ,Sensitivity (control systems) ,Electrical and Electronic Engineering ,business ,Instrumentation ,Refractive index - Abstract
A remote fiberised low-coherence interferometric sensor has been used to measure the refractive index of air. The relative humidity, temperature, pressure or carbon dioxide content may be determined from the measurement of the refractive index of air if the values of the other parameters are known. The sensor works linearly, for example, over the full range of humidity and does not suffer from aging or hysteresis. This maintenance-free sensor has a relative accuracy of 1.6% with a fast response time. The relative sensitivity of the sensor to changes in the values of the other parameters influencing the refractive index of air has also been deduced. The sensor is designed primarily for industrial applications where conventional electronic sensors cannot be used in environments where materials degradation prevents the use of conventional gas and humidity sensors.
- Published
- 2001
- Full Text
- View/download PDF
9. Computational Analysis of a Spiral Thermoelectric Nanoantenna for Solar Energy Harvesting Applications
- Author
-
François Montaigne, Francisco Javier González, Joel Briones, Michel Hehn, Javier Alda, Stefan Mc Murtry, Edgar Briones, and Alexander Cuadrado
- Subjects
Physics ,Work (thermodynamics) ,Condensed Matter - Materials Science ,business.industry ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Radiation ,Solar energy harvesting ,Responsivity ,Thermoelectric effect ,Optoelectronics ,Computational analysis ,Spiral (railway) ,Optica ,business ,Broadband antennas ,Óptica - Abstract
Thermo-electrical nanoantennas have been proposed as an alternative option for conversion solar energy harvesting applications. In this work, the response of a spiral broadband antenna has been obtained from numerical and theoretical simulations perspectives. The results show that this device exhibits a responsivity of 20mV/W under 117W/cm2, for a single-frequency radiation. We discuss strategies for enhanced efficiency.
- Published
- 2014
10. High Efficiency White Luminescence of Alumina doped ZnO
- Author
-
Christophe Couteau, Emmanuelle Peter, Emilie Charlet, Gilles Lerondel, Etienne Barthel, Sergey Grachev, Elin Sondergard, Alban Letailleur, Stefan Mc Murtry, Komla Nomenyo, Surface du Verre et Interfaces (SVI), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Nanotechnologie et d'Instrumentation Optique (LNIO), Institut Charles Delaunay (ICD), Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de la Matière Condensée de Paris (site Paris VI) (LCMCP (site Paris VI)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Thin Films Division, Saint-Gobain Recherche (SGR), Saint-Gobain-Saint-Gobain, and Saint-Gobain Recherche
- Subjects
Ostwald ripening ,White luminescence ,Photoluminescence ,Materials science ,Annealing (metallurgy) ,Band gap ,Biophysics ,Analytical chemistry ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,Biochemistry ,symbols.namesake ,Optics ,Sputtering ,0103 physical sciences ,Zinc oxide ,Doping ,Thin film ,010302 applied physics ,business.industry ,General Chemistry ,Sputter deposition ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Rapid annealing ,symbols ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology ,Luminescence ,business - Abstract
International audience; The application of Alumina-doped ZnO (AZO) films as luminescent material for large area lighting sources has been evaluated. Thin films were grown on quartz using magnetron sputtering and subsequently annealed under argon atmosphere in a rapid thermal annealing experiment. Below 550 °C, red-shift of the optical band gap and increase of the visible emission are observed in agreement with Al diffusion and formation of interstitial oxygen atoms. At temperatures higher than 800 °C, diffusion is activated and Ostwald ripening leads to the formation of larger grains and an increase of the crystalline phase. The photoluminescence (PL) intensity is enhanced, specifically in the UV range. As a result the emission spectrum of AZO thin films can be adjusted by the annealing conditions, with equal contributions from the UV and orange parts of the PL spectrum resulting in an efficient white emission as quantified using the color space map of the Commission Internationale de l'Éclairage.
- Published
- 2011
- Full Text
- View/download PDF
11. High order symmetry interference lithography based nanoimprint
- Author
-
Gilles Lerondel, Elin Sondergard, Etienne Barthel, Komla Nomenyo, Alban Letailleur, Stefan Mc Murtry, Surface du Verre et Interfaces (SVI), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Nanotechnologie et d'Instrumentation Optique (LNIO), Institut Charles Delaunay (ICD), and Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,Materials science ,Silicon ,General Physics and Astronomy ,chemistry.chemical_element ,Nanotechnology ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Soft lithography ,Symmetry (physics) ,Nanoimprint lithography ,law.invention ,Interference lithography ,Nanolithography ,chemistry ,law ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,X-ray lithography ,0210 nano-technology ,Next-generation lithography - Abstract
International audience; We report on soft nanoimprint lithography using masters obtained by high order symmetry interference lithography. The use of high order symmetry leads to the formation of three-dimensional structures with features smaller than 40 nm. Masters were realized in silicon in a two-step process without transfer layer. Pure silicon masters allow mechanical stability and potential surface functionalization. We further demonstrate the ability of these masters as mold for nanoimprint lithography. High fidelity replication in hybrid sol-gel and pure silica with conservation of both minute features and long distance organization is observed over large areas.
- Published
- 2011
- Full Text
- View/download PDF
12. Guided versus surface emission study in ZnO thin films deposited on sapphire: A first step towards optimized nanostructured thin film emitting devices
- Author
-
Laurent Divay, Stefan Mc Murtry, Sylvain Blaize, Gilles Lerondel, Alain Lusson, Rogers, David J., Hosseini Teherani, F., Laboratoire de Nanotechnologie et d'Instrumentation Optique (LNIO), Institut Charles Delaunay (ICD), Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS), Groupe d'Etude de la Matière Condensée (GEMAC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Nanovation SARL (Nanovation), Nanovation SARL, and VU VAN, Jean-Baptiste
- Subjects
[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.