1. Quasi-static limit for the asymmetric simple exclusion
- Author
-
Anna De Masi, Stefano Marchesani, Stefano Olla, Lu Xu, Università degli Studi dell'Aquila (UNIVAQ), Gran Sasso Science Institute (GSSI), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), and ANR-15-CE40-0020,LSD,Modèles stochastiques en grande dimension pour la physique statistique hors équilibre(2015)
- Subjects
Statistics and Probability ,Entropy solutions ,quasistatic limits ,boundary entropy solutions ,burgers' equation ,Probability (math.PR) ,Asymmetric simple exclusion ,FOS: Physical sciences ,82C22, 82C70, 60K35 ,Mathematical Physics (math-ph) ,Burgers equation ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,FOS: Mathematics ,Quasi-Static limits ,[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] ,Statistics, Probability and Uncertainty ,Mathematics - Probability ,Mathematical Physics ,Analysis - Abstract
We study the one-dimensional asymmetric simple exclusion process on the lattice $\{1, \dots,N\}$ with creation/annihilation at the boundaries. The boundary rates are time dependent and change on a slow time scale $N^{-a}$ with $a>0$. We prove that at the time scale $N^{1+a}$ the system evolves quasi-statically with a macroscopic density profile given by the entropy solution of the stationary Burgers equation with boundary densities changing in time, determined by the corresponding microscopic boundary rates. We consider two different types of boundary rates: the "Liggett boundaries" that correspond to the projection of the infinite dynamics, and the reversible boundaries, that correspond to the contact with particle reservoirs in equilibrium. The proof is based on the control of the Lax boundary entropy--entropy flux pairs and a coupling argument., final version
- Published
- 2022
- Full Text
- View/download PDF