1. NR4A1 deletion promotes pro-angiogenic polarization of macrophages derived from classical monocytes in a mouse model of neovascular age-related macular degeneration
- Author
-
Steven Droho, Andrew P. Voigt, Jacob K. Sterling, Amrita Rajesh, Kyle S. Chan, Carla M. Cuda, Harris Perlman, and Jeremy A. Lavine
- Subjects
Angiogenesis ,Choroidal neovascularization ,Macrophage ,Monocyte ,Non-classical monocytes ,Neovascular age-related macular degeneration ,Neurology. Diseases of the nervous system ,RC346-429 - Abstract
Abstract Background Neovascular age-related macular degeneration causes vision loss from destructive angiogenesis, termed choroidal neovascularization (CNV). Cx3cr1 −/− mice display alterations in non-classical monocytes and microglia with increased CNV size, suggesting that non-classical monocytes may inhibit CNV formation. NR4A1 is a transcription factor that is necessary for maturation of non-classical monocytes from classical monocytes. While Nr4a1 −/− mice are deficient in non-classical monocytes, results are confounded by macrophage hyper-activation. Nr4a1 se2/se2 mice lack a transcriptional activator, resulting in non-classical monocyte loss without macrophage hyper-activation. Main body We subjected Nr4a1 −/− and Nr4a1 se2/se2 mice to the laser-induced CNV model and performed multi-parameter flow cytometry. We found that both models lack non-classical monocytes, but only Nr4a1 −/− mice displayed increased CNV area. Additionally, CD11c+ macrophages were increased in Nr4a1 −/− mice. Single-cell transcriptomic analysis uncovered that CD11c+ macrophages were enriched from Nr4a1 −/− mice and expressed a pro-angiogenic transcriptomic profile that was disparate from prior reports of macrophage hyper-activation. Conclusions These results suggest that non-classical monocytes are dispensable during CNV, and NR4A1 deficiency results in increased recruitment of pro-angiogenic macrophages.
- Published
- 2023
- Full Text
- View/download PDF