41,151 results on '"Suresh, P."'
Search Results
2. Syn2Real Domain Generalization for Underwater Mine-like Object Detection Using Side-Scan Sonar
- Author
-
Agrawal, Aayush, Sikdar, Aniruddh, Makam, Rajini, Sundaram, Suresh, Besai, Suresh Kumar, and Gopi, Mahesh
- Subjects
Computer Science - Machine Learning ,Computer Science - Computer Vision and Pattern Recognition ,Electrical Engineering and Systems Science - Image and Video Processing - Abstract
Underwater mine detection with deep learning suffers from limitations due to the scarcity of real-world data. This scarcity leads to overfitting, where models perform well on training data but poorly on unseen data. This paper proposes a Syn2Real (Synthetic to Real) domain generalization approach using diffusion models to address this challenge. We demonstrate that synthetic data generated with noise by DDPM and DDIM models, even if not perfectly realistic, can effectively augment real-world samples for training. The residual noise in the final sampled images improves the model's ability to generalize to real-world data with inherent noise and high variation. The baseline Mask-RCNN model when trained on a combination of synthetic and original training datasets, exhibited approximately a 60% increase in Average Precision (AP) compared to being trained solely on the original training data. This significant improvement highlights the potential of Syn2Real domain generalization for underwater mine detection tasks., Comment: 7 pages, 4 figures and 3 tables
- Published
- 2024
3. Physical and chemical methods of extraction of bioactive molecules from Lepidium sativum linn. and antioxidant activity-based screening and selection of extracts-probable phytochemical, chromatography and mass spectroscopy analysis-based correlates
- Author
-
Rajasekaran, R. and Suresh, P. K.
- Published
- 2021
- Full Text
- View/download PDF
4. Pointwise Weyl Laws for Quantum Completely Integrable Systems
- Author
-
Eswarathasan, Suresh, Greenleaf, Allan, and Keeler, Blake
- Subjects
Mathematics - Analysis of PDEs ,Mathematical Physics ,Mathematics - Spectral Theory - Abstract
The study of the asymptotics of the spectral function for self-adjoint, elliptic differential, or more generally pseudodifferential, operators on a compact manifold has a long history. The seminal 1968 paper of H\"ormander, following important prior contributions by G\"arding, Levitan, Avakumovi\'c, and Agmon-Kannai (to name only some), obtained pointwise asymptotics (or a "pointwise Weyl law") for a single elliptic, self-adjoint operator. Here, we establish a microlocalized pointwise Weyl law for the joint spectral functions of quantum completely integrable (QCI) systems, $\overline{P}=(P_1,P_2,\dots, P_n)$, where $P_i$ are first-order, classical, self-adjoint, pseudodifferential operators on a compact manifold $M^n$, with $\sum P_i^2$ elliptic and $[P_i,P_j]=0$ for $1\leq i,j\leq n$. A particularly important case is when $(M,g)$ is Riemannian and $P_1=(-\Delta)^\frac12$. We illustrate our result with several examples, including surfaces of revolution., Comment: 32 pages
- Published
- 2024
5. Comparative Analysis of Machine Learning Approaches for Bone Age Assessment: A Comprehensive Study on Three Distinct Models
- Author
-
R., Nandavardhan, R., Somanathan, Suresh, Vikram, and P, Savaridassan
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
Radiologists and doctors make use of X-ray images of the non-dominant hands of children and infants to assess the possibility of genetic conditions and growth abnormalities. This is done by assessing the difference between the actual extent of growth found using the X-rays and the chronological age of the subject. The assessment was done conventionally using The Greulich Pyle (GP) or Tanner Whitehouse (TW) approach. These approaches require a high level of expertise and may often lead to observer bias. Hence, to automate the process of assessing the X-rays, and to increase its accuracy and efficiency, several machine learning models have been developed. These machine-learning models have several differences in their accuracy and efficiencies, leading to an unclear choice for the suitable model depending on their needs and available resources. Methods: In this study, we have analyzed the 3 most widely used models for the automation of bone age prediction, which are the Xception model, VGG model and CNN model. These models were trained on the preprocessed dataset and the accuracy was measured using the MAE in terms of months for each model. Using this, the comparison between the models was done. Results: The 3 models, Xception, VGG, and CNN models have been tested for accuracy and other relevant factors.
- Published
- 2024
6. Mapping Methane -- The Impact of Dairy Farm Practices on Emissions Through Satellite Data and Machine Learning
- Author
-
Bi, Hanqing and Neethirajan, Suresh
- Subjects
Computer Science - Machine Learning ,Statistics - Applications - Abstract
This study investigates the correlation between dairy farm characteristics and methane concentrations as derived from satellite observations in Eastern Canada. Utilizing data from 11 dairy farms collected between January 2020 and December 2022, we integrated Sentinel-5P satellite methane data with critical farm-level attributes, including herd genetics, feeding practices, and management strategies. Initial analyses revealed significant correlations with methane concentrations, leading to the application of Variance Inflation Factor (VIF) and Principal Component Analysis (PCA) to address multicollinearity and enhance model stability. Subsequently, machine learning models - specifically Random Forest and Neural Networks - were employed to evaluate feature importance and predict methane emissions. Our findings indicate a strong negative correlation between the Estimated Breeding Value (EBV) for protein percentage and methane concentrations, suggesting that genetic selection for higher milk protein content could be an effective strategy for emissions reduction. The integration of atmospheric transport models with satellite data further refined our emission estimates, significantly enhancing accuracy and spatial resolution. This research underscores the potential of advanced satellite monitoring, machine learning techniques, and atmospheric modeling in improving methane emission assessments within the dairy sector. It emphasizes the critical role of farm-specific characteristics in developing effective mitigation strategies. Future investigations should focus on expanding the dataset and incorporating inversion modeling for more precise emission quantification. Balancing ecological impacts with economic viability will be essential for fostering sustainable dairy farming practices., Comment: 16 pages, 5 figures
- Published
- 2024
7. Effect of pH on photocatalytic degradation of Methylene Blue in water by facile hydrothermally grown TiO2 Nanoparticles under Natural Sunlight
- Author
-
Saint, Uttama Kumar, Baral, Suresh Chandra, Sasmal, Dilip, Maneesha, P., Datta, Sayak, Naushin, Farzana, and Sen, Somaditya
- Subjects
Condensed Matter - Materials Science - Abstract
Each year, the production of synthetic dye wastewater reaches a trillion tons, posing a significant challenge to addressing water scarcity on a global level. Hence, the treatment of wastewater to prevent water scarcity is of prime importance, and failing to do so will increase ecotoxicological risks and human health. Textile wastewater contains harmful dye. Photocatalytic degradation of such dye-contaminated wastewater is crucial to purifying the dye-contaminated water. However, this process takes time, uses high-power lamps, and is expensive. Here, we report the effect of the concentration of precursor on the size and surface morphology of TiO2 nanostructures prepared by facile hydrothermal synthesis and its ability to perform as a photocatalyst to degrade the most common industrial textile dye, methylene blue (MB), under natural sunlight. The impact of particle size on the photocatalytic activity and photocarrier migration rate was thoroughly examined. Also, the effect of pH on adsorption and photocatalytic degradation has been evaluated in detail. With several optimized conditions, almost complete dye degradation was achieved within 40 minutes under the direct illumination of natural sunlight. The enhanced photocatalytic performance can be correlated to the synergetic effect of a higher charge transfer mechanism, good catalytic active surface area availability (386 m2/g), and several optimized parameters that affect the reaction efficacy. Additionally, repeated use of NPs without sacrificing performance five times confirmed its stability and Sustainability as a promising candidate for large-scale industrial textile wastewater remedies.
- Published
- 2024
8. EROAS: 3D Efficient Reactive Obstacle Avoidance System for Autonomous Underwater Vehicles using 2.5D Forward-Looking Sonar
- Author
-
Mane, Pruthviraj, George, Allen Jacob, Makam, Rajini, Majumder, Rudrashis, and Sundaram, Suresh
- Subjects
Computer Science - Robotics - Abstract
Advances in Autonomous Underwater Vehicles (AUVs) have evolved vastly in short period of time. While advancements in sonar and camera technology with deep learning aid the obstacle detection and path planning to a great extent, achieving the right balance between computational resources , precision and safety maintained remains a challenge. Finding optimal solutions for real-time navigation in cluttered environments becomes pivotal as systems have to process large amounts of data efficiently. In this work, we propose a novel obstacle avoidance method for navigating 3D underwater environments. This approach utilizes a standard multibeam forward-looking sonar to detect and map obstacle in 3D environment. Instead of using computationally expensive 3D sensors, we pivot the 2D sonar to get 3D heuristic data effectively transforming the sensor into a 2.5D sonar for real-time 3D navigation decisions. This approach enhances obstacle detection and navigation by leveraging the simplicity of 2D sonar with the depth perception typically associated with 3D systems. We have further incorporated Control Barrier Function (CBF) as a filter to ensure safety of the AUV. The effectiveness of this algorithm was tested on a six degrees of freedom (DOF) rover in various simulation scenarios. The results demonstrate that the system successfully avoids obstacles and navigates toward predefined goals, showcasing its capability to manage complex underwater environments with precision. This paper highlights the potential of 2.5D sonar for improving AUV navigation and offers insights into future enhancements and applications of this technology in underwater autonomous systems. \url{https://github.com/AIRLabIISc/EROAS}, Comment: Submitted to ICRA 2025
- Published
- 2024
9. Training on the Test Model: Contamination in Ranking Distillation
- Author
-
Kalal, Vishakha Suresh, Parry, Andrew, and MacAvaney, Sean
- Subjects
Computer Science - Information Retrieval - Abstract
Neural approaches to ranking based on pre-trained language models are highly effective in ad-hoc search. However, the computational expense of these models can limit their application. As such, a process known as knowledge distillation is frequently applied to allow a smaller, efficient model to learn from an effective but expensive model. A key example of this is the distillation of expensive API-based commercial Large Language Models into smaller production-ready models. However, due to the opacity of training data and processes of most commercial models, one cannot ensure that a chosen test collection has not been observed previously, creating the potential for inadvertent data contamination. We, therefore, investigate the effect of a contaminated teacher model in a distillation setting. We evaluate several distillation techniques to assess the degree to which contamination occurs during distillation. By simulating a ``worst-case'' setting where the degree of contamination is known, we find that contamination occurs even when the test data represents a small fraction of the teacher's training samples. We, therefore, encourage caution when training using black-box teacher models where data provenance is ambiguous., Comment: 4 pages
- Published
- 2024
10. Derivative-Guided Symbolic Execution
- Author
-
Yuan, Yongwei, Zhou, Zhe, Belyakova, Julia, and Jagannathan, Suresh
- Subjects
Computer Science - Programming Languages - Abstract
We consider the formulation of a symbolic execution (SE) procedure for functional programs that interact with effectful, opaque libraries. Our procedure allows specifications of libraries and abstract data type (ADT) methods that are expressed in Linear Temporal Logic over Finite Traces (LTLf), interpreting them as symbolic finite automata (SFAs) to enable intelligent specification-guided path exploration in this setting. We apply our technique to facilitate the falsification of complex data structure safety properties in terms of effectful operations made by ADT methods on underlying opaque representation type(s). Specifications naturally characterize admissible traces of temporally-ordered events that ADT methods (and the library methods they depend upon) are allowed to perform. We show how to use these specifications to construct feasible symbolic input states for the corresponding methods, as well as how to encode safety properties in terms of this formalism. More importantly, we incorporate the notion of symbolic derivatives, a mechanism that allows the SE procedure to intelligently underapproximate the set of precondition states it needs to explore, based on the automata structures implicit in the provided specifications and the safety property that is to be falsified. Intuitively, derivatives enable symbolic execution to exploit temporal constraints defined by trace-based specifications to quickly prune unproductive paths and discover feasible error states. Experimental results on a wide-range of challenging ADT implementations demonstrate the effectiveness of our approach., Comment: conditionally accepted at POPL'25
- Published
- 2024
11. Multi Modal Information Fusion of Acoustic and Linguistic Data for Decoding Dairy Cow Vocalizations in Animal Welfare Assessment
- Author
-
Jobarteh, Bubacarr, Mincu, Madalina, Dinu, Gavojdian, and Neethirajan, Suresh
- Subjects
Computer Science - Sound ,Computer Science - Artificial Intelligence ,Electrical Engineering and Systems Science - Audio and Speech Processing ,Quantitative Biology - Quantitative Methods - Abstract
Understanding animal vocalizations through multi-source data fusion is crucial for assessing emotional states and enhancing animal welfare in precision livestock farming. This study aims to decode dairy cow contact calls by employing multi-modal data fusion techniques, integrating transcription, semantic analysis, contextual and emotional assessment, and acoustic feature extraction. We utilized the Natural Language Processing model to transcribe audio recordings of cow vocalizations into written form. By fusing multiple acoustic features frequency, duration, and intensity with transcribed textual data, we developed a comprehensive representation of cow vocalizations. Utilizing data fusion within a custom-developed ontology, we categorized vocalizations into high frequency calls associated with distress or arousal, and low frequency calls linked to contentment or calmness. Analyzing the fused multi dimensional data, we identified anxiety related features indicative of emotional distress, including specific frequency measurements and sound spectrum results. Assessing the sentiment and acoustic features of vocalizations from 20 individual cows allowed us to determine differences in calling patterns and emotional states. Employing advanced machine learning algorithms, Random Forest, Support Vector Machine, and Recurrent Neural Networks, we effectively processed and fused multi-source data to classify cow vocalizations. These models were optimized to handle computational demands and data quality challenges inherent in practical farm environments. Our findings demonstrate the effectiveness of multi-source data fusion and intelligent processing techniques in animal welfare monitoring. This study represents a significant advancement in animal welfare assessment, highlighting the role of innovative fusion technologies in understanding and improving the emotional wellbeing of dairy cows., Comment: 31 pages, 22 figures, 2 tables
- Published
- 2024
12. IndraEye: Infrared Electro-Optical UAV-based Perception Dataset for Robust Downstream Tasks
- Author
-
D, Manjunath, Gurunath, Prajwal, Udupa, Sumanth, Gandhamal, Aditya, Madhu, Shrikar, Sikdar, Aniruddh, and Sundaram, Suresh
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Deep neural networks (DNNs) have shown exceptional performance when trained on well-illuminated images captured by Electro-Optical (EO) cameras, which provide rich texture details. However, in critical applications like aerial perception, it is essential for DNNs to maintain consistent reliability across all conditions, including low-light scenarios where EO cameras often struggle to capture sufficient detail. Additionally, UAV-based aerial object detection faces significant challenges due to scale variability from varying altitudes and slant angles, adding another layer of complexity. Existing methods typically address only illumination changes or style variations as domain shifts, but in aerial perception, correlation shifts also impact DNN performance. In this paper, we introduce the IndraEye dataset, a multi-sensor (EO-IR) dataset designed for various tasks. It includes 5,612 images with 145,666 instances, encompassing multiple viewing angles, altitudes, seven backgrounds, and different times of the day across the Indian subcontinent. The dataset opens up several research opportunities, such as multimodal learning, domain adaptation for object detection and segmentation, and exploration of sensor-specific strengths and weaknesses. IndraEye aims to advance the field by supporting the development of more robust and accurate aerial perception systems, particularly in challenging conditions. IndraEye dataset is benchmarked with object detection and semantic segmentation tasks. Dataset and source codes are available at https://bit.ly/indraeye., Comment: 9 pages, 2 figures
- Published
- 2024
13. Search for gravitational waves emitted from SN 2023ixf
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Obergaulinger, M., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj., Comment: Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table
- Published
- 2024
14. Distributed Online Life-Long Learning (DOL3) for Multi-agent Trust and Reputation Assessment in E-commerce
- Author
-
Ramamoorthy, Hariprasauth, Gupta, Shubhankar, and Sundaram, Suresh
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Multiagent Systems - Abstract
Trust and Reputation Assessment of service providers in citizen-focused environments like e-commerce is vital to maintain the integrity of the interactions among agents. The goals and objectives of both the service provider and service consumer agents are relevant to the goals of the respective citizens (end users). The provider agents often pursue selfish goals that can make the service quality highly volatile, contributing towards the non-stationary nature of the environment. The number of active service providers tends to change over time resulting in an open environment. This necessitates a rapid and continual assessment of the Trust and Reputation. A large number of service providers in the environment require a distributed multi-agent Trust and Reputation assessment. This paper addresses the problem of multi-agent Trust and Reputation Assessment in a non-stationary environment involving transactions between providers and consumers. In this setting, the observer agents carry out the assessment and communicate their assessed trust scores with each other over a network. We propose a novel Distributed Online Life-Long Learning (DOL3) algorithm that involves real-time rapid learning of trust and reputation scores of providers. Each observer carries out an adaptive learning and weighted fusion process combining their own assessment along with that of their neighbour in the communication network. Simulation studies reveal that the state-of-the-art methods, which usually involve training a model to assess an agent's trust and reputation, do not work well in such an environment. The simulation results show that the proposed DOL3 algorithm outperforms these methods and effectively handles the volatility in such environments. From the statistical evaluation, it is evident that DOL3 performs better compared to other models in 90% of the cases.
- Published
- 2024
- Full Text
- View/download PDF
15. Rost injectivity for classical groups over function fields of curves over local fields
- Author
-
Parimala, R. and Suresh, V.
- Subjects
Mathematics - Number Theory ,Mathematics - Algebraic Geometry ,Mathematics - Rings and Algebras ,11E57, 11E39 - Abstract
Let F be a complete discretely valued field with residue field a global field or a local field with no real orderings. Let G be an absolutely simple simply connected group of outer type A_n. If 2 and the index of the underlying algebra of G are coprime to the characteristic of the residue field of F, then we prove that the Rost invariant map from the first Galois cohomology set of G to the degree three Galois cohomology group is injective. Let L be the function field of a curve over a local field K and G an absolutely simple simply connected linear algebraic group over L of classical type. Suppose that the characteristic of the residue field of K is a good prime for G. As a consequence of our result and some known results we conclude that the Rost invariant of G is injective., Comment: 23 pages
- Published
- 2024
16. MLPerf Power: Benchmarking the Energy Efficiency of Machine Learning Systems from Microwatts to Megawatts for Sustainable AI
- Author
-
Tschand, Arya, Rajan, Arun Tejusve Raghunath, Idgunji, Sachin, Ghosh, Anirban, Holleman, Jeremy, Kiraly, Csaba, Ambalkar, Pawan, Borkar, Ritika, Chukka, Ramesh, Cockrell, Trevor, Curtis, Oliver, Fursin, Grigori, Hodak, Miro, Kassa, Hiwot, Lokhmotov, Anton, Miskovic, Dejan, Pan, Yuechao, Manmathan, Manu Prasad, Raymond, Liz, John, Tom St., Suresh, Arjun, Taubitz, Rowan, Zhan, Sean, Wasson, Scott, Kanter, David, and Reddi, Vijay Janapa
- Subjects
Computer Science - Hardware Architecture ,Computer Science - Distributed, Parallel, and Cluster Computing ,Computer Science - Machine Learning - Abstract
Rapid adoption of machine learning (ML) technologies has led to a surge in power consumption across diverse systems, from tiny IoT devices to massive datacenter clusters. Benchmarking the energy efficiency of these systems is crucial for optimization, but presents novel challenges due to the variety of hardware platforms, workload characteristics, and system-level interactions. This paper introduces MLPerf Power, a comprehensive benchmarking methodology with capabilities to evaluate the energy efficiency of ML systems at power levels ranging from microwatts to megawatts. Developed by a consortium of industry professionals from more than 20 organizations, MLPerf Power establishes rules and best practices to ensure comparability across diverse architectures. We use representative workloads from the MLPerf benchmark suite to collect 1,841 reproducible measurements from 60 systems across the entire range of ML deployment scales. Our analysis reveals trade-offs between performance, complexity, and energy efficiency across this wide range of systems, providing actionable insights for designing optimized ML solutions from the smallest edge devices to the largest cloud infrastructures. This work emphasizes the importance of energy efficiency as a key metric in the evaluation and comparison of the ML system, laying the foundation for future research in this critical area. We discuss the implications for developing sustainable AI solutions and standardizing energy efficiency benchmarking for ML systems., Comment: 14 pages, 11 figures, 1 table
- Published
- 2024
17. Single-shot Distinguishability and Anti-distinguishability of Quantum Measurements
- Author
-
Manna, Satyaki, Suresh, Sneha, Kachhawaha, Manan Singh, and Saha, Debashis
- Subjects
Quantum Physics - Abstract
Among the surprising features of quantum measurements, the problem of distinguishing and anti-distinguishing general quantum measurements is fundamentally appealing. Quantum theory offers four distinct scenarios for distinguishing (and anti-distinguishing) quantum measurements - (i) probing single systems and without access to the post-measurement states, (ii) probing entangled systems and without access to the post-measurement states, (iii) probing single systems with access to the post-measurement states, and (iv) probing entangled systems with access to the post-measurement states. In these scenarios, we consider the probability of distinguishing (and anti-distinguishing) quantum measurements sampled from a given set in the single-shot regime. For some scenarios, we derive analytical expressions for the distinguishability (and anti-distinguishability) of qubit projective measurements. Notably, we demonstrate that in scenario (iii), the distinguishability of any pair of qubit projective measurements is always higher than in scenario (ii). Interestingly, for some qubit non-projective measurements, the highest distinguishability in scenario (ii) is achieved using a non-maximally entangled state. It turns out that, for any set of measurements, the distinguishability (and anti-distinguishability) in scenario (i) is always less than or equal to that in any other scenario, while it reaches its highest possible value in scenario (iv). We establish that these relations form a strict hierarchy, and there is no hierarchical relation between scenarios (ii) and (iii). Specifically, we construct pairs (and triples) of qubit measurements that are perfectly distinguishable (and anti-distinguishable) in scenario (ii) but not in scenario (iii), and vice versa. Furthermore, we identify qubit measurements that achieve perfect distinguishability (and anti-distinguishability) only in scenario (iv)., Comment: 21 pages, 11 figures. Comments are welcome
- Published
- 2024
18. STACKFEED: Structured Textual Actor-Critic Knowledge Base Editing with FeedBack
- Author
-
Gupta, Naman, Kirtania, Shashank, Gupta, Priyanshu, Kariya, Krishna, Gulwani, Sumit, Iyer, Arun, Parthasarathy, Suresh, Radhakrishna, Arjun, Rajamani, Sriram K., and Soares, Gustavo
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Machine Learning ,Computer Science - Multiagent Systems - Abstract
Large Language Models (LLMs) often generate incorrect or outdated information, especially in low-resource settings or when dealing with private data. To address this, Retrieval-Augmented Generation (RAG) uses external knowledge bases (KBs), but these can also suffer from inaccuracies. We introduce STACKFEED, a novel Structured Textual Actor-Critic Knowledge base editing with FEEDback approach that iteratively refines the KB based on expert feedback using a multi-actor, centralized critic reinforcement learning framework. Each document is assigned to an actor, modeled as a ReACT agent, which performs structured edits based on document-specific targeted instructions from a centralized critic. Experimental results show that STACKFEED significantly improves KB quality and RAG system performance, enhancing accuracy by up to 8% over baselines.
- Published
- 2024
19. Exploring Channel Distinguishability in Local Neighborhoods of the Model Space in Quantum Neural Networks
- Author
-
Herbst, Sabrina, Cranganore, Sandeep Suresh, De Maio, Vincenzo, and Brandic, Ivona
- Subjects
Quantum Physics ,Computer Science - Machine Learning - Abstract
With the increasing interest in Quantum Machine Learning, Quantum Neural Networks (QNNs) have emerged and gained significant attention. These models have, however, been shown to be notoriously difficult to train, which we hypothesize is partially due to the architectures, called ansatzes, that are hardly studied at this point. Therefore, in this paper, we take a step back and analyze ansatzes. We initially consider their expressivity, i.e., the space of operations they are able to express, and show that the closeness to being a 2-design, the primarily used measure, fails at capturing this property. Hence, we look for alternative ways to characterize ansatzes by considering the local neighborhood of the model space, in particular, analyzing model distinguishability upon small perturbation of parameters. We derive an upper bound on their distinguishability, showcasing that QNNs with few parameters are hardly discriminable upon update. Our numerical experiments support our bounds and further indicate that there is a significant degree of variability, which stresses the need for warm-starting or clever initialization. Altogether, our work provides an ansatz-centric perspective on training dynamics and difficulties in QNNs, ultimately suggesting that iterative training of small quantum models may not be effective, which contrasts their initial motivation.
- Published
- 2024
20. A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Azrad, D., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R. ., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghonge, S., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs., Comment: 15 pages of text including references, 4 figures, 5 tables
- Published
- 2024
21. IterGen: Iterative Structured LLM Generation
- Author
-
Ugare, Shubham, Gumaste, Rohan, Suresh, Tarun, Singh, Gagandeep, and Misailovic, Sasa
- Subjects
Computer Science - Software Engineering ,Computer Science - Machine Learning ,Computer Science - Programming Languages - Abstract
Large Language Models (LLMs) are widely used for tasks such as natural language and code generation. Still, their outputs often suffer from issues like privacy violations, and semantically inaccurate code generation. Current libraries for LLM generation rely on left-to-right decoding without systematic support for backtracking, limiting the ability to correct or refine outputs mid-generation. To address this issue, we introduce IterGen, an intuitive framework for iterative, grammar-guided LLM generation that enables users to move both forward and backward within the generated output based on grammar symbols. By leveraging a symbol-to-position mapping, IterGen ensures efficient and structured generation while allowing for corrections during the process. We demonstrate IterGen's effectiveness in two important applications: reducing privacy leakage in LLM outputs and improving the accuracy of LLM-generated SQL queries. Our code is available at https://github.com/uiuc-arc/itergen
- Published
- 2024
22. Deep learning-based fault identification in condition monitoring
- Author
-
Dhungana, Hariom, Mukhiya, Suresh Kumar, Dhungana, Pragya, and Karic, Benjamin
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
Vibration-based condition monitoring techniques are commonly used to identify faults in rolling element bearings. Accuracy and speed of fault detection procedures are critical performance measures in condition monitoring. Delay is especially important in remote condition monitoring and time-sensitive industrial applications. While most existing methods focus on accuracy, little attention has been given to the inference time in the fault identification process. In this paper, we address this gap by presenting a Convolutional Neural Network (CNN) based approach for real-time fault identification in rolling element bearings. We encode raw vibration signals into two-dimensional images using various encoding methods and use these with a CNN to classify several categories of bearing fault types and sizes. We analyse the interplay between fault identification accuracy and processing time. For training and evaluation we use a bearing failure CWRU dataset.
- Published
- 2024
23. Overview of Factify5WQA: Fact Verification through 5W Question-Answering
- Author
-
Suresh, Suryavardan, Rani, Anku, Patwa, Parth, Reganti, Aishwarya, Jain, Vinija, Chadha, Aman, Das, Amitava, Sheth, Amit, and Ekbal, Asif
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Researchers have found that fake news spreads much times faster than real news. This is a major problem, especially in today's world where social media is the key source of news for many among the younger population. Fact verification, thus, becomes an important task and many media sites contribute to the cause. Manual fact verification is a tedious task, given the volume of fake news online. The Factify5WQA shared task aims to increase research towards automated fake news detection by providing a dataset with an aspect-based question answering based fact verification method. Each claim and its supporting document is associated with 5W questions that help compare the two information sources. The objective performance measure in the task is done by comparing answers using BLEU score to measure the accuracy of the answers, followed by an accuracy measure of the classification. The task had submissions using custom training setup and pre-trained language-models among others. The best performing team posted an accuracy of 69.56%, which is a near 35% improvement over the baseline., Comment: Accepted at defactify3@aaai2024
- Published
- 2024
24. Effects of eco-driving on energy consumption and battery degradation for electric vehicles at signalized intersections
- Author
-
Wang, Yongqiang, Advani, Suresh G., and Prasad, Ajay K.
- Subjects
Electrical Engineering and Systems Science - Systems and Control - Abstract
Eco-driving has been shown to reduce energy consumption for electric vehicles (EVs). Such strategies can also be implemented to both reduce energy consumption and improve battery lifetime. This study considers the eco-driving of a connected electric vehicle equipped with vehicle-to-infrastructure (V2I) communication passing through two signalized intersections. Dynamic programming is employed to construct an eco-driving algorithm that incorporates a battery degradation model in addition to minimizing energy consumption to optimize the vehicle's speed trajectory while transiting the control zone. A parametric study is conducted for various signal timings and distances between the two intersections. It is found that eco-driving can provide up to 49\% in cost benefits over regular driving due to energy savings and improved battery life which could boost consumers' interests on EVs. This study also considered different battery capacity decay rates based on battery chemistry. Although a higher decay rate affects the optimal speed trajectories only slightly, it amplifies the benefits of eco-driving on battery life. Two battery sizes were also studied to show that the larger battery is associated with a drastically increased lifetime, thus creating opportunities for electric vehicles in other applications such as vehicle-to-grid (V2G) integration. Field tests were also conducted using a simplified rule-based version of the eco-driving algorithm implemented as a phone app which issues audio speed recommendations to the driver. The field test results were promising and validated the results from simulations. The phone app implementation is convenient and could facilitate broader adoption and widespread use of eco-driving which helps to improve transportation efficiency and protect the environment., Comment: 14 pages, 12 figures
- Published
- 2024
25. Open Human-Robot Collaboration using Decentralized Inverse Reinforcement Learning
- Author
-
Suresh, Prasanth Sengadu, Jain, Siddarth, Doshi, Prashant, and Romeres, Diego
- Subjects
Computer Science - Robotics - Abstract
The growing interest in human-robot collaboration (HRC), where humans and robots cooperate towards shared goals, has seen significant advancements over the past decade. While previous research has addressed various challenges, several key issues remain unresolved. Many domains within HRC involve activities that do not necessarily require human presence throughout the entire task. Existing literature typically models HRC as a closed system, where all agents are present for the entire duration of the task. In contrast, an open model offers flexibility by allowing an agent to enter and exit the collaboration as needed, enabling them to concurrently manage other tasks. In this paper, we introduce a novel multiagent framework called oDec-MDP, designed specifically to model open HRC scenarios where agents can join or leave tasks flexibly during execution. We generalize a recent multiagent inverse reinforcement learning method - Dec-AIRL to learn from open systems modeled using the oDec-MDP. Our method is validated through experiments conducted in both a simplified toy firefighting domain and a realistic dyadic human-robot collaborative assembly. Results show that our framework and learning method improves upon its closed system counterpart.
- Published
- 2024
26. Comments on 'Privacy-Enhanced Federated Learning Against Poisoning Adversaries'
- Author
-
Schneider, Thomas, Suresh, Ajith, and Yalame, Hossein
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Machine Learning - Abstract
In August 2021, Liu et al. (IEEE TIFS'21) proposed a privacy-enhanced framework named PEFL to efficiently detect poisoning behaviours in Federated Learning (FL) using homomorphic encryption. In this article, we show that PEFL does not preserve privacy. In particular, we illustrate that PEFL reveals the entire gradient vector of all users in clear to one of the participating entities, thereby violating privacy. Furthermore, we clearly show that an immediate fix for this issue is still insufficient to achieve privacy by pointing out multiple flaws in the proposed system. Note: Although our privacy issues mentioned in Section II have been published in January 2023 (Schneider et. al., IEEE TIFS'23), several subsequent papers continued to reference Liu et al. (IEEE TIFS'21) as a potential solution for private federated learning. While a few works have acknowledged the privacy concerns we raised, several of subsequent works either propagate these errors or adopt the constructions from Liu et al. (IEEE TIFS'21), thereby unintentionally inheriting the same privacy vulnerabilities. We believe this oversight is partly due to the limited visibility of our comments paper at TIFS'23 (Schneider et. al., IEEE TIFS'23). Consequently, to prevent the continued propagation of the flawed algorithms in Liu et al. (IEEE TIFS'21) into future research, we also put this article to an ePrint., Comment: Published at IEEE Transactions on Information Forensics and Security'23
- Published
- 2024
- Full Text
- View/download PDF
27. Balancing Cost and Effectiveness of Synthetic Data Generation Strategies for LLMs
- Author
-
Chan, Yung-Chieh, Pu, George, Shanker, Apaar, Suresh, Parth, Jenks, Penn, Heyer, John, and Denton, Sam
- Subjects
Computer Science - Computation and Language ,Computer Science - Machine Learning - Abstract
As large language models (LLMs) are applied to more use cases, creating high quality, task-specific datasets for fine-tuning becomes a bottleneck for model improvement. Using high quality human data has been the most common approach to unlock model performance, but is prohibitively expensive in many scenarios. Several alternative methods have also emerged, such as generating synthetic or hybrid data, but the effectiveness of these approaches remain unclear, especially in resource-constrained scenarios and tasks that are not easily verified. To investigate this, we group various synthetic data generation strategies into three representative categories -- Answer Augmentation, Question Rephrase and New Question -- and study the performance of student LLMs trained under various constraints, namely seed instruction set size and query budget. We demonstrate that these strategies are not equally effective across settings. Notably, the optimal data generation strategy depends strongly on the ratio between the available teacher query budget and the size of the seed instruction set. When this ratio is low, generating new answers to existing questions proves most effective, but as this ratio increases, generating new questions becomes optimal. Across all tasks, we find that choice of augmentation method and other design choices matter substantially more in low to mid data regimes than in high data regimes. We provide a practical framework for selecting the appropriate augmentation method across settings, taking into account additional factors such as the scalability of each method, the importance of verifying synthetic data, and the use of different LLMs for synthetic data generation., Comment: NeurIPS '24 Workshop on Fine-Tuning in Modern Machine Learning: Principles and Scalability
- Published
- 2024
28. SELP: Generating Safe and Efficient Task Plans for Robot Agents with Large Language Models
- Author
-
Wu, Yi, Xiong, Zikang, Hu, Yiran, Iyengar, Shreyash S., Jiang, Nan, Bera, Aniket, Tan, Lin, and Jagannathan, Suresh
- Subjects
Computer Science - Robotics ,Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Computer Science - Formal Languages and Automata Theory - Abstract
Despite significant advancements in large language models (LLMs) that enhance robot agents' understanding and execution of natural language (NL) commands, ensuring the agents adhere to user-specified constraints remains challenging, particularly for complex commands and long-horizon tasks. To address this challenge, we present three key insights, equivalence voting, constrained decoding, and domain-specific fine-tuning, which significantly enhance LLM planners' capability in handling complex tasks. Equivalence voting ensures consistency by generating and sampling multiple Linear Temporal Logic (LTL) formulas from NL commands, grouping equivalent LTL formulas, and selecting the majority group of formulas as the final LTL formula. Constrained decoding then uses the generated LTL formula to enforce the autoregressive inference of plans, ensuring the generated plans conform to the LTL. Domain-specific fine-tuning customizes LLMs to produce safe and efficient plans within specific task domains. Our approach, Safe Efficient LLM Planner (SELP), combines these insights to create LLM planners to generate plans adhering to user commands with high confidence. We demonstrate the effectiveness and generalizability of SELP across different robot agents and tasks, including drone navigation and robot manipulation. For drone navigation tasks, SELP outperforms state-of-the-art planners by 10.8% in safety rate (i.e., finishing tasks conforming to NL commands) and by 19.8% in plan efficiency. For robot manipulation tasks, SELP achieves 20.4% improvement in safety rate. Our datasets for evaluating NL-to-LTL and robot task planning will be released in github.com/lt-asset/selp.
- Published
- 2024
29. First Measurement of Near- and Sub-Threshold $J/\psi$ Photoproduction off Nuclei
- Author
-
Pybus, J. R., Ehinger, L., Kolar, T., Devkota, B., Sharp, P., Yu, B., Dalton, M. M., Dutta, D., Gao, H., Hen, O., Piasetzky, E., Santiesteban, S. N., Schmidt, A., Somov, A., Szumila-Vance, H., Adhikari, S., Asaturyan, A., Austregesilo, A., Gayoso, C. Ayerbe, Barlow, J., Berdnikov, V. V., Bhatt, H. D., Bhetuwal, Deepak, Black, T., Briscoe, W. J., Chung, G., Cole, P. L., Deur, A., Dotel, R., Egiyan, H., Eugenio, P., Fanelli, C., Gan, L., Gasparian, A., Guo, J., Hernandez, K., Higinbotham, D. W., Hurck, P., Jaegle, I., Jones, R. T., Kakoyan, V., Karki, A., Li, H., Li, W. B., Linera, G. R., Lyubovitskij, V., Marukyan, H., McCaughan, M. D., McCracken, M., Mizutani, K., Nguyen, D., Oresic, S., Ostrovidov, A. I., Papandreou, Z., Paudel, C., Peters, K., Ritman, J., Schick, A., Schwiening, J., Smith, A., Somov, S., Strakovsky, I., Suresh, K., Tarasov, V. V., Taylor, S., Xiao, T., Zhang, Z., and Zhou, X.
- Subjects
Nuclear Experiment - Abstract
We report on the first measurement of $J/\psi$ photoproduction from nuclei in the photon energy range of $7$ to $10.8$ GeV, extending above and below the photoproduction threshold in the free proton of $\sim8.2$ GeV. The experiment used a tagged photon beam incident on deuterium, helium, and carbon, and the GlueX detector at Jefferson Lab to measure the semi-inclusive $A(\gamma,e^+e^-p)$ reaction with a dilepton invariant mass $M(e^+e^-)\sim m_{J/\psi}=3.1$ GeV. The incoherent $J/\psi$ photoproduction cross sections in the measured nuclei are extracted as a function of the incident photon energy, momentum transfer, and proton reconstructed missing light-cone momentum fraction. Comparisons with theoretical predictions assuming a dipole form factor allow extracting a gluonic radius for bound protons of $\sqrt{\langle r^2\rangle}=0.85\pm0.14$ fm. The data also suggest an excess of the measured cross section for sub-threshold production and for interactions with high missing light-cone momentum fraction protons. The measured enhancement can be explained by modified gluon structure for high-virtuality bound-protons.
- Published
- 2024
30. DiaSynth: Synthetic Dialogue Generation Framework for Low Resource Dialogue Applications
- Author
-
Suresh, Sathya Krishnan, Mengjun, Wu, Pranav, Tushar, and Chng, Eng Siong
- Subjects
Computer Science - Computation and Language ,Computer Science - Machine Learning - Abstract
The scarcity of domain-specific dialogue datasets limits the development of dialogue systems across applications. Existing research is constrained by general or niche datasets that lack sufficient scale for training dialogue systems. To address this gap, we introduce DiaSynth - a synthetic dialogue generation framework capable of generating high-quality, contextually rich dialogues across a wide range of domains. Unlike existing frameworks, DiaSynth uses Large Language Models (LLMs) and Chain of Thought (CoT) reasoning to generate dynamic, domain-specific dialogues with simulated personas and diverse conversational features. We perform our experiments by generating synthetic data using different LLMs and few-shot examples from DialogSum and SAMSum. The pretrained language models fine-tuned on the synthetic data outperform the base models by 16.47% on dialogue summarization, while the comparison between models fine-tuned on in-domain data and synthetic data shows that the synthetic data is able to capture 90.48% of the performance distribution of the in-domain data on dialogue summarization. The quality of the data generated also increases as we increase the size of LLM from 3B to 8B. These results validate DiaSynth's potential as a robust alternative to traditional data collection methods. We open source the code and data generated for future research., Comment: 13 pages, 1 figure
- Published
- 2024
31. Large Language Model Predicts Above Normal All India Summer Monsoon Rainfall in 2024
- Author
-
Sharma, Ujjawal, Biyani, Madhav, Suresh, Akhil Dev, Bhuyan, Debi Prasad, Mishra, Saroj Kanta, and Chakraborty, Tanmoy
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Machine Learning ,Statistics - Applications - Abstract
Reliable prediction of the All India Summer Monsoon Rainfall (AISMR) is pivotal for informed policymaking for the country, impacting the lives of billions of people. However, accurate simulation of AISMR has been a persistent challenge due to the complex interplay of various muti-scale factors and the inherent variability of the monsoon system. This research focuses on adapting and fine-tuning the latest LLM model, PatchTST, to accurately predict AISMR with a lead time of three months. The fine-tuned PatchTST model, trained with historical AISMR data, the Ni\~no3.4 index, and categorical Indian Ocean Dipole values, outperforms several popular neural network models and statistical models. This fine-tuned LLM model exhibits an exceptionally low RMSE percentage of 0.07% and a Spearman correlation of 0.976. This is particularly impressive, since it is nearly 80% more accurate than the best-performing NN models. The model predicts an above-normal monsoon for the year 2024, with an accumulated rainfall of 921.6 mm in the month of June-September for the entire country., Comment: 3 figures
- Published
- 2024
32. A Fast Dynamic Internal Predictive Power Scheduling Approach for Power Management in Microgrids
- Author
-
Maya, Neethu, Poolla, Bala Kameshwar, Srinivasan, Seshadhri, Sundararajan, Narasimman, and Sundaram, Suresh
- Subjects
Electrical Engineering and Systems Science - Systems and Control - Abstract
This paper presents a Dynamic Internal Predictive Power Scheduling (DIPPS) approach for optimizing power management in microgrids, particularly focusingon external power exchanges among diverse prosumers. DIPPS utilizes a dynamic objective function with a time-varying binary parameter to control the timing of power transfers to the external grid, facilitated by efficient usage of energy storage for surplus renewable power. The microgrid power scheduling problem is modeled as a mixed-integer nonlinear programmig (MINLP-PS) and subsequently transformed into a mixed-integer linear programming (MILP-PS) optimization through McCormick's relaxation to reduce the computational complexity. A predictive window with 6 data points is solved at an average of 0.92s, a 97.6% improvement over the 38.27s required for the MINLP-PS formulation, implying the numerical feasibility of the DIPPS approach for real-time implementation. Finally, the approach is validated against a static objective using real-world load data across three case studies with different time-varying parameters, demonstrationg the ability of DIPPS to optimize power exchanges and efficiently utilize distributed resources whie shifting the eexternal power transfers to specified time durations.
- Published
- 2024
33. Generative LLM Powered Conversational AI Application for Personalized Risk Assessment: A Case Study in COVID-19
- Author
-
Roshani, Mohammad Amin, Zhou, Xiangyu, Qiang, Yao, Suresh, Srinivasan, Hicks, Steve, Sethuraman, Usha, and Zhu, Dongxiao
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence - Abstract
Large language models (LLMs) have shown remarkable capabilities in various natural language tasks and are increasingly being applied in healthcare domains. This work demonstrates a new LLM-powered disease risk assessment approach via streaming human-AI conversation, eliminating the need for programming required by traditional machine learning approaches. In a COVID-19 severity risk assessment case study, we fine-tune pre-trained generative LLMs (e.g., Llama2-7b and Flan-t5-xl) using a few shots of natural language examples, comparing their performance with traditional classifiers (i.e., Logistic Regression, XGBoost, Random Forest) that are trained de novo using tabular data across various experimental settings. We develop a mobile application that uses these fine-tuned LLMs as its generative AI (GenAI) core to facilitate real-time interaction between clinicians and patients, providing no-code risk assessment through conversational interfaces. This integration not only allows for the use of streaming Questions and Answers (QA) as inputs but also offers personalized feature importance analysis derived from the LLM's attention layers, enhancing the interpretability of risk assessments. By achieving high Area Under the Curve (AUC) scores with a limited number of fine-tuning samples, our results demonstrate the potential of generative LLMs to outperform discriminative classification methods in low-data regimes, highlighting their real-world adaptability and effectiveness. This work aims to fill the existing gap in leveraging generative LLMs for interactive no-code risk assessment and to encourage further research in this emerging field.
- Published
- 2024
34. Beauty Beyond Words: Explainable Beauty Product Recommendations Using Ingredient-Based Product Attributes
- Author
-
Liu, Siliang, Suresh, Rahul, and Banitalebi-Dehkordi, Amin
- Subjects
Computer Science - Machine Learning ,Computer Science - Information Retrieval - Abstract
Accurate attribute extraction is critical for beauty product recommendations and building trust with customers. This remains an open problem, as existing solutions are often unreliable and incomplete. We present a system to extract beauty-specific attributes using end-to-end supervised learning based on beauty product ingredients. A key insight to our system is a novel energy-based implicit model architecture. We show that this implicit model architecture offers significant benefits in terms of accuracy, explainability, robustness, and flexibility. Furthermore, our implicit model can be easily fine-tuned to incorporate additional attributes as they become available, making it more useful in real-world applications. We validate our model on a major e-commerce skincare product catalog dataset and demonstrate its effectiveness. Finally, we showcase how ingredient-based attribute extraction contributes to enhancing the explainability of beauty recommendations., Comment: 18th ACM Conference on Recommender Systems, Workshop on Strategic and Utility-aware REcommendation
- Published
- 2024
35. Deep Learning based Optical Image Super-Resolution via Generative Diffusion Models for Layerwise in-situ LPBF Monitoring
- Author
-
Ogoke, Francis, Suresh, Sumesh Kalambettu, Adamczyk, Jesse, Bolintineanu, Dan, Garland, Anthony, Heiden, Michael, and Farimani, Amir Barati
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
The stochastic formation of defects during Laser Powder Bed Fusion (L-PBF) negatively impacts its adoption for high-precision use cases. Optical monitoring techniques can be used to identify defects based on layer-wise imaging, but these methods are difficult to scale to high resolutions due to cost and memory constraints. Therefore, we implement generative deep learning models to link low-cost, low-resolution images of the build plate to detailed high-resolution optical images of the build plate, enabling cost-efficient process monitoring. To do so, a conditional latent probabilistic diffusion model is trained to produce realistic high-resolution images of the build plate from low-resolution webcam images, recovering the distribution of small-scale features and surface roughness. We first evaluate the performance of the model by analyzing the reconstruction quality of the generated images using peak-signal-to-noise-ratio (PSNR), structural similarity index measure (SSIM) and wavelet covariance metrics that describe the preservation of high-frequency information. Additionally, we design a framework based upon the Segment Anything foundation model to recreate the 3D morphology of the printed part and analyze the surface roughness of the reconstructed samples. Finally, we explore the zero-shot generalization capabilities of the implemented framework to other part geometries by creating synthetic low-resolution data.
- Published
- 2024
36. Calibration of Spectropolarimetry channel of Visible Emission Line Coronagraph onboard Aditya-L1
- Author
-
Narra, Venkata Suresh, Raja, K. Sasikumar, B, Raghavendra Prasad, Singh, Jagdev, Mishra, Shalabh, U, Sanal Krishnan V, S, Bhavana Hegde, D., Utkarsha, V, Natarajan, S, Pawan Kumar, Priyal V, Muthu, P, Savarimuthu, Gavshinde, Priya, and P, Umesh Kamath
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The magnetic field strength and its topology play an important role in understanding the formation, evolution, and dynamics of the solar corona. Also, it plays a significant role in addressing long-standing mysteries such as coronal heating problem, origin and propagation of coronal mass ejections, drivers of space weather, origin and acceleration of solar wind, and so on. Despite having photospheric magnetograms for decades, we do not have reliable observations of coronal magnetic field strengths today. To measure the coronal magnetic field precisely, the spectropolarimetry channel of the Visible Emission Line Coronagraph (VELC) on board the Aditya-L1 mission is designed. Using the observations of coronal emission line Fe XIII [10747{\AA~}], it is possible to generate full Stokes maps (I, Q, U, and V) that help in estimating the Line-of-Sight (LOS) magnetic field strength and to derive the magnetic field topology maps of solar corona in the Field of View (FOV) (1.05 -- 1.5~R$_{\odot}$). In this article, we summarize the instrumental details of the spectropolarimetry channel and detailed calibration procedures adopted to derive the modulation and demodulation matrices. Furthermore, we have applied the derived demodulation matrices to the observed data in the laboratory and studied their performance., Comment: 12 pages, 5 Figures, Published in Journal of Experimental Astronomy
- Published
- 2024
- Full Text
- View/download PDF
37. Tuning the MAPS Adaptive Secondary Mirror: Actuator Control, PID Tuning, Power Spectra and Failure Diagnosis
- Author
-
Johnson, Jess A., Vaz, Amali, Montoya, Manny, Morzinski, Katie M., Patience, Jennifer, Sivanandam, Suresh, Brusa, Guido, Durney, Olivier, Gardner, Andrew, Guyon, Olivier, Harrison, Lori, Jones, Ron, Leisenring, Jarron, Males, Jared, Payan, Bianca, Perez, Lauren, Rotman, Yoav, Taylor, Jacob, Vargas, Dan, and West, Grant
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The MMT Adaptive optics exoPlanet characterization System (MAPS) is currently in its engineering phase, operating on-sky at the MMT Telescope on Mt. Hopkins in southern Arizona. The MAPS Adaptive Secondary Mirror's actuators are controlled by a closed loop modified PID control law and an open loop feed-forward law, which in combination allows for faster actuator response time. An essential element of achieving the secondary's performance goals involves the process of PID gain tuning. To start, we briefly discuss the design of the MAPS ASM and its actuators. We then describe the actuator positional control system and control law. Next, we discuss a few of the issues that make ASM tuning difficult. We then outline our initial attempts at tuning the actuator controllers and discuss the use of actuator positional power spectra for both tuning and determining the health and failure states of individual actuators. We conclude by presenting the results of our latest round of tuning configuration trials, which have been successful at decreasing mirror latency, increasing operational mirror modes and improving image PSF., Comment: To be published in Proceedings of SPIE, Optics and Photonics 2024. 24 pages, 16 figures, 5 tables. Lead Author, J. Johnson. Second Lead Author, A. Vaz. Project P.I., K. Morzinski. Project Second P.I.s, J. Patience and S. Sivanandam, Project Manager, M. Montoya
- Published
- 2024
38. Learning a Terrain- and Robot-Aware Dynamics Model for Autonomous Mobile Robot Navigation
- Author
-
Achterhold, Jan, Guttikonda, Suresh, Kreber, Jens U., Li, Haolong, and Stueckler, Joerg
- Subjects
Computer Science - Robotics ,Computer Science - Machine Learning - Abstract
Mobile robots should be capable of planning cost-efficient paths for autonomous navigation. Typically, the terrain and robot properties are subject to variations. For instance, properties of the terrain such as friction may vary across different locations. Also, properties of the robot may change such as payloads or wear and tear, e.g., causing changing actuator gains or joint friction. Autonomous navigation approaches should thus be able to adapt to such variations. In this article, we propose a novel approach for learning a probabilistic, terrain- and robot-aware forward dynamics model (TRADYN) which can adapt to such variations and demonstrate its use for navigation. Our learning approach extends recent advances in meta-learning forward dynamics models based on Neural Processes for mobile robot navigation. We evaluate our method in simulation for 2D navigation of a robot with uni-cycle dynamics with varying properties on terrain with spatially varying friction coefficients. In our experiments, we demonstrate that TRADYN has lower prediction error over long time horizons than model ablations which do not adapt to robot or terrain variations. We also evaluate our model for navigation planning in a model-predictive control framework and under various sources of noise. We demonstrate that our approach yields improved performance in planning control-efficient paths by taking robot and terrain properties into account., Comment: Submitted to Robotics and Autonomous Systems. arXiv admin note: substantial text overlap with arXiv:2307.09206
- Published
- 2024
39. ODYSSEE: Oyster Detection Yielded by Sensor Systems on Edge Electronics
- Author
-
Lin, Xiaomin, Mange, Vivek, Suresh, Arjun, Neuberger, Bernhard, Palnitkar, Aadi, Campbell, Brendan, Williams, Alan, Baxevani, Kleio, Mallette, Jeremy, Vera, Alhim, Vincze, Markus, Rekleitis, Ioannis, Tanner, Herbert G., and Aloimonos, Yiannis
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Robotics - Abstract
Oysters are a vital keystone species in coastal ecosystems, providing significant economic, environmental, and cultural benefits. As the importance of oysters grows, so does the relevance of autonomous systems for their detection and monitoring. However, current monitoring strategies often rely on destructive methods. While manual identification of oysters from video footage is non-destructive, it is time-consuming, requires expert input, and is further complicated by the challenges of the underwater environment. To address these challenges, we propose a novel pipeline using stable diffusion to augment a collected real dataset with realistic synthetic data. This method enhances the dataset used to train a YOLOv10-based vision model. The model is then deployed and tested on an edge platform in underwater robotics, achieving a state-of-the-art 0.657 mAP@50 for oyster detection on the Aqua2 platform.
- Published
- 2024
40. High-quality hexagonal boron nitride selectively grown on patterned epigraphene by MOVPE
- Author
-
Ottapilakkal, Vishnu, Juyal, Abhishek, Sundaram, Suresh, Vuong, Phuong, Beck, Collin, Dudeck, Noel L., Bencherif, Amira, Loiseau, Annick, Fossard, Frédéric, Mérot, Jean-Sebastien, Chapron, David, Kauffmann, Thomas H., Salvestrini, Jean-Paul, Voss, Paul L., de Heer, Walt A., Berger, Claire, and Ougazzaden, Abdallah
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
Hexagonal boron nitride encapsulation is the method of choice for protecting graphene from environmental doping and impurity scattering. It was previously demonstrated that metal-organic vapor phase epitaxy (MOVPE) grows epitaxially ordered, uniform BN layers on epigraphene (graphene grown on SiC). Due to graphene non-wetting properties, h-BN growth starts preferentially from the graphene ledges. We use this fact here to selectively promote growth of high-quality flat h-BN on epigraphene by patterning epigraphene microstructures prior to BN growth. Thin h-BN films (down to 6 nm) grown by MOVPE show smooth and pleated surface morphology on epigraphene, while crumpled BN is observed on the SiC. Cross-sectional high-resolution transmission electron microscopy images and fluorescence imaging confirm the higher BN quality grown on the epigraphene. Transport measurements reveal p-doping as expected from hydrogen intercalation of epigraphene and regions of high and low mobility. This method can be used to produce structurally uniform high-quality h-BN/epigraphene micro/nano scale heterostructure.
- Published
- 2024
41. Digital Twin Enabled Data-Driven Approach for Traffic Efficiency and Software-Defined Vehicular Network Optimization
- Author
-
Shahriar, Mohammad Sajid, Subramaniam, Suresh, Matsuura, Motoharu, Hasegawa, Hiroshi, and Lin, Shih-Chun
- Subjects
Computer Science - Networking and Internet Architecture - Abstract
In the realms of the internet of vehicles (IoV) and intelligent transportation systems (ITS), software defined vehicular networks (SDVN) and edge computing (EC) have emerged as promising technologies for enhancing road traffic efficiency. However, the increasing number of connected autonomous vehicles (CAVs) and EC-based applications presents multi-domain challenges such as inefficient traffic flow due to poor CAV coordination and flow-table overflow in SDVN from increased connectivity and limited ternary content addressable memory (TCAM) capacity. To address these, we focus on a data-driven approach using virtualization technologies like digital twin (DT) to leverage real-time data and simulations. We introduce a DT design and propose two data-driven solutions: a centralized decision support framework to improve traffic efficiency by reducing waiting times at roundabouts and an approach to minimize flow-table overflow and flow re-installation by optimizing flow-entry lifespan in SDVN. Simulation results show the decision support framework reduces average waiting times by 22% compared to human-driven vehicles, even with a CAV penetration rate of 40%. Additionally, the proposed optimization of flow-table space usage demonstrates a 50% reduction in flow-table space requirements, even with 100% penetration of connected vehicles., Comment: 7 pages, 9 figures, conference paper
- Published
- 2024
42. Continual Skill and Task Learning via Dialogue
- Author
-
Gu, Weiwei, Kondepudi, Suresh, Huang, Lixiao, and Gopalan, Nakul
- Subjects
Computer Science - Robotics ,Computer Science - Artificial Intelligence ,Computer Science - Computation and Language - Abstract
Continual and interactive robot learning is a challenging problem as the robot is present with human users who expect the robot to learn novel skills to solve novel tasks perpetually with sample efficiency. In this work we present a framework for robots to query and learn visuo-motor robot skills and task relevant information via natural language dialog interactions with human users. Previous approaches either focus on improving the performance of instruction following agents, or passively learn novel skills or concepts. Instead, we used dialog combined with a language-skill grounding embedding to query or confirm skills and/or tasks requested by a user. To achieve this goal, we developed and integrated three different components for our agent. Firstly, we propose a novel visual-motor control policy ACT with Low Rank Adaptation (ACT-LoRA), which enables the existing SoTA ACT model to perform few-shot continual learning. Secondly, we develop an alignment model that projects demonstrations across skill embodiments into a shared embedding allowing us to know when to ask questions and/or demonstrations from users. Finally, we integrated an existing LLM to interact with a human user to perform grounded interactive continual skill learning to solve a task. Our ACT-LoRA model learns novel fine-tuned skills with a 100% accuracy when trained with only five demonstrations for a novel skill while still maintaining a 74.75% accuracy on pre-trained skills in the RLBench dataset where other models fall significantly short. We also performed a human-subjects study with 8 subjects to demonstrate the continual learning capabilities of our combined framework. We achieve a success rate of 75% in the task of sandwich making with the real robot learning from participant data demonstrating that robots can learn novel skills or task knowledge from dialogue with non-expert users using our approach.
- Published
- 2024
43. Observing Context Improves Disparity Estimation when Race is Unobserved
- Author
-
Kwegyir-Aggrey, Kweku, Durvasula, Naveen, Wang, Jennifer, and Venkatasubramanian, Suresh
- Subjects
Computer Science - Computers and Society - Abstract
In many domains, it is difficult to obtain the race data that is required to estimate racial disparity. To address this problem, practitioners have adopted the use of proxy methods which predict race using non-protected covariates. However, these proxies often yield biased estimates, especially for minority groups, limiting their real-world utility. In this paper, we introduce two new contextual proxy models that advance existing methods by incorporating contextual features in order to improve race estimates. We show that these algorithms demonstrate significant performance improvements in estimating disparities on real-world home loan and voter data. We establish that achieving unbiased disparity estimates with contextual proxies relies on mean-consistency, a calibration-like condition.
- Published
- 2024
44. TreeTOp: Topology Optimization using Constructive Solid Geometry Trees
- Author
-
Padhy, Rahul Kumar, Thombre, Pramod, Suresh, Krishnan, and Chandrasekhar, Aaditya
- Subjects
Computer Science - Computational Engineering, Finance, and Science ,Mathematics - Numerical Analysis - Abstract
Feature-mapping methods for topology optimization (FMTO) facilitate direct geometry extraction by leveraging high-level geometric descriptions of the designs. However, FMTO often relies solely on Boolean unions, which can restrict the design space. This work proposes an FMTO framework leveraging an expanded set of Boolean operations, namely, union, intersection, and subtraction. The optimization process entails determining the primitives and the optimal Boolean operation tree. In particular, the framework leverages a recently proposed unified Boolean operation approach. This approach presents a continuous and differentiable function that interpolates the Boolean operations, enabling gradient-based optimization. The proposed methodology is agnostic to the specific primitive parametrization and is showcased through various numerical examples., Comment: Submitted to Structural and Multidisciplinary Optimization
- Published
- 2024
45. Representing Neural Network Layers as Linear Operations via Koopman Operator Theory
- Author
-
Aswani, Nishant Suresh, Jabari, Saif Eddin, and Shafique, Muhammad
- Subjects
Computer Science - Machine Learning - Abstract
The strong performance of simple neural networks is often attributed to their nonlinear activations. However, a linear view of neural networks makes understanding and controlling networks much more approachable. We draw from a dynamical systems view of neural networks, offering a fresh perspective by using Koopman operator theory and its connections with dynamic mode decomposition (DMD). Together, they offer a framework for linearizing dynamical systems by embedding the system into an appropriate observable space. By reframing a neural network as a dynamical system, we demonstrate that we can replace the nonlinear layer in a pretrained multi-layer perceptron (MLP) with a finite-dimensional linear operator. In addition, we analyze the eigenvalues of DMD and the right singular vectors of SVD, to present evidence that time-delayed coordinates provide a straightforward and highly effective observable space for Koopman theory to linearize a network layer. Consequently, we replace layers of an MLP trained on the Yin-Yang dataset with predictions from a DMD model, achieving a mdoel accuracy of up to 97.3%, compared to the original 98.4%. In addition, we replace layers in an MLP trained on the MNIST dataset, achieving up to 95.8%, compared to the original 97.2% on the test set.
- Published
- 2024
46. Determination of elemental impurities of Arsenic, Cadmium, Mercury, Lead and Palladium content in Testosterone propionate by using ICP-MS
- Author
-
Suresh, P. and Kumar, Konda Ravi
- Published
- 2021
- Full Text
- View/download PDF
47. How Student-Faculty Pedagogical Partnerships Counter Adultism in Higher Education
- Author
-
Alison Cook-Sather, Abyssinia Braud, Brisa Kane, and Abhirami Suresh
- Abstract
Higher education students, formally adults, are nevertheless subject to adultism. The co-authors of this article--the director of the Students as Teachers and Learners (SaLT) program and three undergraduates who have worked in pedagogical partnership with faculty through SaLT--discuss how this program counters adultism on three levels: conceptually, structurally, and personally/interpersonally. We conclude with implications of this work for others interested in creating structures, practices, and relationships that counter adultism in higher education.
- Published
- 2024
48. Frameworks and Challenges for Implementing Machine Learning Curriculum in Secondary Education
- Author
-
Fletcher Wadsworth, Josh Blaney, Matthew Springsteen, Bruce Coburn, Nischal Khanal, Tessa Rodgers, Chase Livingston, and Suresh Muknahallipatna
- Abstract
Artificial Intelligence (AI) and, more specifically, Machine Learning (ML) methodologies have successfully tailored commercial applications for decades. However, the recent profound success of large language models like ChatGPT and the enormous subsequent funding from governments and investors have positioned ML to emerge as a paradigm-shifting technology across numerous domains in the coming years. To cultivate a competent workforce and prepare students for success in this new AI-focused evolving world, the integration of ML is proposed to begin in compulsory education rather than in college courses or expensive boot camps. Unfortunately, ML is a complex and intimidating topic for high school teachers to engage with, let alone high school students. Based on our experiences hosting Machine Learning for High School Teachers (ML4HST) workshops for teachers teaching ML topics at our institution, we present in this paper various considerations for educating educators on the topic of ML. In particular, we discuss (a) overarching pedagogic strategies, (b) accessibility of resources such as computational hardware and datasets, (c) balancing theory and implementation, (d) appropriate selection of topics and activities for fostering understanding and engagement, and perhaps most importantly, (e) a compilation of pitfalls to avoid. Synthesizing these insights, we propose a framework for successfully empowering educators to introduce ML in the classroom.
- Published
- 2024
49. Coherence-Based Automatic Short Answer Scoring Using Sentence Embedding
- Author
-
Dadi Ramesh and Suresh Kumar Sanampudi
- Abstract
Automatic essay scoring (AES) is an essential educational application in natural language processing. This automated process will alleviate the burden by increasing the reliability and consistency of the assessment. With the advances in text embedding libraries and neural network models, AES systems achieved good results in terms of accuracy. However, the actual goals still need to be attained, like embedding essays into vectors with cohesion and coherence, and providing student feedback is still challenging. In this paper, we proposed coherence-based embedding of an essay into vectors using sentence-Bidirectional Encoder Representation for Transformers. We trained these vectors on Long short-term memory and bidirectional long short-term memory to capture sentence connectivity with other sentences' semantics. We used two datasets: standard ASAP Kaggle and a domain-specific dataset with almost 2500 responses from 650 students. Our model performed well on both datasets, with an average quadratic weighted kappa score of 0.76. Furthermore, we achieved good results compared to other prescribed models, and we also tested our model on adversarial responses of both datasets and observed decent outcomes.
- Published
- 2024
- Full Text
- View/download PDF
50. Molecular analysis of oncogenicity associated gene 'vil8' of serotype 1 Marek's disease virus isolates from India
- Author
-
Suresh, P., Rajeswar, J. Johnson, Sukumar, K., Harikrishnan, T.J., and Srinivasan, P.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.