110 results on '"Swaney DL"'
Search Results
2. Protocol for mapping differential protein-protein interaction networks using affinity purification-mass spectrometry.
- Author
-
Kaushal P, Ummadi MR, Jang GM, Delgado Y, Makanani SK, Alba K, Winters DM, Blanc SF, Xu J, Polacco B, Zhou Y, Stevenson E, Eckhardt M, Zuliani-Alvarez L, Kaake R, Swaney DL, Krogan NJ, and Bouhaddou M
- Subjects
- Humans, Proteins metabolism, HEK293 Cells, Protein Interaction Mapping methods, Mass Spectrometry methods, Chromatography, Affinity methods, Protein Interaction Maps physiology, Proteomics methods
- Abstract
Proteins congregate into complexes to perform diverse cellular functions. Protein complexes are remodeled by protein-coding mutations or cellular signaling changes, driving phenotypic outcomes in health and disease. We present an affinity purification-mass spectrometry (AP-MS) proteomics protocol to express affinity-tagged "bait" proteins in mammalian cells, identify and quantify purified protein interactors, and visualize differential protein-protein interaction networks between pairwise conditions. Our protocol possesses general applicability to various cell types and biological areas. For complete details on the use and execution of this protocol, please refer to Bouhaddou et al.
1 ., Competing Interests: Declaration of interests The Krogan Laboratory has received research support from Vir Biotechnology, F. Hoffmann-La Roche, and Rezo Therapeutics. N.J.K. has a financially compensated consulting agreement with Maze Therapeutics. N.J.K. is the President and is on the Board of Directors of Rezo Therapeutics, and he is a shareholder in Tenaya Therapeutics, Maze Therapeutics, Rezo Therapeutics, and Interline Therapeutics. M.B. is a scientific advisor for GEn1E LifeSciences., (Copyright © 2024. Published by Elsevier Inc.)- Published
- 2024
- Full Text
- View/download PDF
3. Central control of dynamic gene circuits governs T cell rest and activation.
- Author
-
Arce MM, Umhoefer JM, Arang N, Kasinathan S, Freimer JW, Steinhart Z, Shen H, Pham MTN, Ota M, Wadhera A, Dajani R, Dorovskyi D, Chen YY, Liu Q, Zhou Y, Swaney DL, Obernier K, Shy BR, Carnevale J, Satpathy AT, Krogan NJ, Pritchard JK, and Marson A
- Abstract
The ability of cells to maintain distinct identities and respond to transient environmental signals requires tightly controlled regulation of gene networks
1-3 . These dynamic regulatory circuits that respond to extracellular cues in primary human cells remain poorly defined. The need for context-dependent regulation is prominent in T cells, where distinct lineages must respond to diverse signals to mount effective immune responses and maintain homeostasis4-8 . Here we performed CRISPR screens in multiple primary human CD4+ T cell contexts to identify regulators that control expression of IL-2Rα, a canonical marker of T cell activation transiently expressed by pro-inflammatory effector T cells and constitutively expressed by anti-inflammatory regulatory T cells where it is required for fitness9-11 . Approximately 90% of identified regulators of IL-2Rα had effects that varied across cell types and/or stimulation states, including a subset that even had opposite effects across conditions. Using single-cell transcriptomics after pooled perturbation of context-specific screen hits, we characterized specific factors as regulators of overall rest or activation and constructed state-specific regulatory networks. MED12 - a component of the Mediator complex - serves as a dynamic orchestrator of key regulators, controlling expression of distinct sets of regulators in different T cell contexts. Immunoprecipitation-mass spectrometry revealed that MED12 interacts with the histone methylating COMPASS complex. MED12 was required for histone methylation and expression of genes encoding key context-specific regulators, including the rest maintenance factor KLF2 and the versatile regulator MYC. CRISPR ablation of MED12 blunted the cell-state transitions between rest and activation and protected from activation-induced cell death. Overall, this work leverages CRISPR screens performed across conditions to define dynamic gene circuits required to establish resting and activated T cell states., Competing Interests: Competing interests: A.M. is a cofounder of Site Tx, Arsenal Biosciences, Spotlight Therapeutics and Survey Genomics; serves on the boards of directors at Site Tx, Spotlight Therapeutics and Survey Genomics; is a member of the scientific advisory boards of Site Tx, Arsenal Biosciences, Cellanome, Spotlight Therapeutics, Survey Genomics, NewLimit, Amgen and Tenaya; owns stock in Arsenal Biosciences, Site Tx, Cellanome, Spotlight Therapeutics, NewLimit, Survey Genomics, Tenaya and Lightcast; has received fees from Site Tx, Arsenal Biosciences, Cellanome, Spotlight Therapeutics, NewLimit, Gilead, Pfizer, 23andMe, PACT Pharma, Juno Therapeutics, Tenaya, Lightcast, Trizell, Vertex, Merck, Amgen, Genentech, GLG, ClearView Healthcare, AlphaSights, Rupert Case Management, Bernstein and ALDA; is an investor in and informal advisor to Offline Ventures; and a client of EPIQ. The Marson laboratory has received research support from the Parker Institute for Cancer Immunotherapy, the Emerson Collective, Arc Institute, Juno Therapeutics, Epinomics, Sanofi, GlaxoSmithKline, Gilead and Anthem and reagents from Genscript and Illumina. The Krogan Laboratory has received research support from Vir Biotechnology, F. Hoffmann-La Roche and Rezo Therapeutics. N.J.K. has a financially compensated consulting agreement with Maze Therapeutics. N.J.K. is the President and on the Board of Directors of Rezo Therapeutics; and is a shareholder in Tenaya Therapeutics, Maze Therapeutics, Rezo Therapeutics, GEn1E Lifesciences and Interline Therapeutics. J.W.F. was a consultant for NewLimit; is an employee of Genentech; and has equity in Roche. A.T.S. is a founder of Immunai, Cartography Biosciences, Santa Ana Bio and Prox Biosciences; is an advisor to Zafrens and Wing Venture Capital; and receives research funding from Astellas and Merck Research Laboratories. Patent applications have been filed based on the findings described here. The other authors declare no competing interests., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
4. HBV Remodels PP2A Complexes to Rewire Kinase Signaling in Hepatocellular Carcinoma.
- Author
-
Turnham RE, Pitea A, Jang GM, Xu Z, Lim HC, Choi AL, Von Dollen J, Levin RS, Webber JT, McCarthy E, Hu J, Li X, Che L, Singh A, Yoon A, Chan G, Kelley RK, Swaney DL, Zhang W, Bandyopadhyay S, Theis FJ, Eckhardt M, Chen X, Shokat KM, Ideker T, Krogan NJ, and Gordan JD
- Abstract
Hepatitis B virus (HBV) infections promote liver cancer initiation by inducing inflammation and cellular stress. Despite the primarily indirect effect on oncogenesis, HBV is associated with a recurrent genomic phenotype in HCC, suggesting that it impacts the biology of established HCC. Characterization of the interaction of HBV with host proteins and the mechanistic contributions of HBV to HCC initiation and maintenance could provide insights into HCC biology and uncover therapeutic vulnerabilities. Here, we used affinity purification mass spectrometry to comprehensively map a network of 145 physical interactions between HBV and human proteins in hepatocellular carcinoma (HCC). A subset of the host factors targeted by HBV proteins were preferentially mutated in non-HBV-associated HCC, suggesting that their interaction with HBV influences HCC biology. HBV interacted with proteins involved in mRNA splicing, mitogenic signaling, and DNA repair, with the latter set interacting with the HBV oncoprotein X (HBx). HBx remodeled the PP2A phosphatase complex by excluding striatin regulatory subunits from the PP2A holoenzyme, and the HBx effects on PP2A caused Hippo kinase activation. In parallel, HBx activated mTOR complex 2 (mTORC2), which can prevent YAP degradation. mTORC2-mediated upregulation of YAP was observed in human HCC specimens and mouse HCC models and could be targeted with mTOR kinase inhibitors. Thus, HBV interaction with host proteins rewires HCC signaling rather than directly activating mitogenic pathways, provide an alternative paradigm for the cellular effects of a tumor promoting virus.
- Published
- 2024
- Full Text
- View/download PDF
5. Plasma proteomics for novel biomarker discovery in childhood tuberculosis.
- Author
-
Fossati A, Wambi P, Jaganath D, Calderon R, Castro R, Mohapatra A, McKetney J, Luiz J, Nerurkar R, Nkereuwem E, Franke MF, Mousavian Z, Collins JM, Sigal GB, Segal MR, Kampman B, Wobudeya E, Cattamanchi A, Ernst JD, Zar HJ, and Swaney DL
- Abstract
Failure to rapidly diagnose tuberculosis disease (TB) and initiate treatment is a driving factor of TB as a leading cause of death in children. Current TB diagnostic assays have poor performance in children, and identifying novel non-sputum-based TB biomarkers to improve pediatric TB diagnosis is a global priority. We sought to develop a plasma biosignature for TB by probing the plasma proteome of 511 children stratified by TB diagnostic classification and HIV status from sites in four low- and middle-income countries, using high-throughput data-independent acquisition mass-spectrometry (DIA-PASEF-MS). We identified 47 proteins differentially regulated (BH adjusted p-values < 1%) between children with microbiologically confirmed TB and children with non-TB respiratory diseases (Unlikely TB). We further employed machine learning to derive three parsimonious biosignatures encompassing 4, 5, or 6 proteins that achieved AUCs of 0.86-0.88 all of which exceeded the minimum WHO target product profile accuracy thresholds for a TB screening test (70% specificity at 90% sensitivity, PPV 0.65-0.74, NPV 0.92-0.95). This work provides insights into the unique host response in pediatric TB disease, as well as a non-sputum biosignature that could reduce delays in TB diagnosis and improve detection and management of TB in children worldwide., Competing Interests: Conflicts of Interest The authors declare no conflicts of interest.
- Published
- 2024
- Full Text
- View/download PDF
6. CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis.
- Author
-
Samelson AJ, Ariqat N, McKetney J, Rohanitazangi G, Bravo CP, Bose R, Travaglini KJ, Lam VL, Goodness D, Dixon G, Marzette E, Jin J, Tian R, Tse E, Abskharon R, Pan H, Carroll EC, Lawrence RE, Gestwicki JE, Eisenberg D, Kanaan NM, Southworth DR, Gross JD, Gan L, Swaney DL, and Kampmann M
- Abstract
Aggregation of the protein tau defines tauopathies, which include Alzheimer's disease and frontotemporal dementia. Specific neuronal subtypes are selectively vulnerable to tau aggregation and subsequent dysfunction and death, but the underlying mechanisms are unknown. To systematically uncover the cellular factors controlling the accumulation of tau aggregates in human neurons, we conducted a genome-wide CRISPRi-based modifier screen in iPSC-derived neurons. The screen uncovered expected pathways, including autophagy, but also unexpected pathways, including UFMylation and GPI anchor synthesis. We discover that the E3 ubiquitin ligase CUL5
SOCS4 is a potent modifier of tau levels in human neurons, ubiquitinates tau, and is a correlated with vulnerability to tauopathies in mouse and human. Disruption of mitochondrial function promotes proteasomal misprocessing of tau, which generates tau proteolytic fragments like those in disease and changes tau aggregation in vitro . These results reveal new principles of tau proteostasis in human neurons and pinpoint potential therapeutic targets for tauopathies., Competing Interests: DECLARATION OF INTERESTS M. K. is an inventor on US Patent 11,254,933 related to CRISPRi and CRISPRa screening, a co-scientific founder of Montara Therapeutics and serves on the Scientific Advisory Boards of Engine Biosciences, Alector, and Montara Therapeutics, and is an advisor to Modulo Bio and Recursion Therapeutics. The other authors declare no competing interests.- Published
- 2024
- Full Text
- View/download PDF
7. Merlin S13 phosphorylation regulates meningioma Wnt signaling and magnetic resonance imaging features.
- Author
-
Eaton CD, Avalos L, Liu SJ, Chen Z, Zakimi N, Casey-Clyde T, Bisignano P, Lucas CG, Stevenson E, Choudhury A, Vasudevan HN, Magill ST, Young JS, Krogan NJ, Villanueva-Meyer JE, Swaney DL, and Raleigh DR
- Subjects
- Humans, Phosphorylation, Animals, Mice, Cell Line, Tumor, beta Catenin metabolism, beta Catenin genetics, Female, Serine metabolism, Male, Proteomics methods, Biomarkers, Tumor metabolism, Biomarkers, Tumor genetics, Meningioma diagnostic imaging, Meningioma metabolism, Meningioma pathology, Meningioma genetics, Wnt Signaling Pathway, Neurofibromin 2 metabolism, Neurofibromin 2 genetics, Magnetic Resonance Imaging methods, Meningeal Neoplasms diagnostic imaging, Meningeal Neoplasms metabolism, Meningeal Neoplasms pathology, Meningeal Neoplasms genetics
- Abstract
Meningiomas are associated with inactivation of NF2/Merlin, but approximately one-third of meningiomas with favorable clinical outcomes retain Merlin expression. Biochemical mechanisms underlying Merlin-intact meningioma growth are incompletely understood, and non-invasive biomarkers that may be used to guide treatment de-escalation or imaging surveillance are lacking. Here, we use single-cell RNA sequencing, proximity-labeling proteomic mass spectrometry, mechanistic and functional approaches, and magnetic resonance imaging (MRI) across meningioma xenografts and patients to define biochemical mechanisms and an imaging biomarker that underlie Merlin-intact meningiomas. We find Merlin serine 13 (S13) dephosphorylation drives meningioma Wnt signaling and tumor growth by attenuating inhibitory interactions with β-catenin and activating the Wnt pathway. MRI analyses show Merlin-intact meningiomas with S13 phosphorylation and favorable clinical outcomes are associated with high apparent diffusion coefficient (ADC). These results define mechanisms underlying a potential imaging biomarker that could be used to guide treatment de-escalation or imaging surveillance for patients with Merlin-intact meningiomas., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
8. EGFR and EGFRvIII coopt host defense pathways, promoting progression in glioblastoma.
- Author
-
An Z, Fan QW, Wang L, Yoda H, Barata MJ, Jimenez-Morales D, Phillips JJ, Swaney DL, Stevenson E, Lee E, Krogan N, and Weiss WA
- Abstract
Background: Co-amplification of EGFR and EGFRvIII, a tumor-specific truncation mutant of EGFR, represent hallmark genetic lesions in glioblastoma., Methods: We used phospho-proteomics, RNA-sequencing, TCGA data and glioblastoma cell culture and mouse models to study the signal transduction mediated by EGFR and EGFRvIII., Results: We report that EGFR and EGFRvIII stimulate the innate immune defense receptor Toll-like Receptor 2 (TLR2); and that knockout of TLR2 dramatically improved survival in orthotopic glioblastoma xenografts. EGFR and EGFRvIII activated TLR2 in a ligand-independent manner, promoting tumor growth and immune evasion. We show that EGFR and EGFRvIII cooperate to activate the Rho-associated protein kinase ROCK2, which modulated malignant progression both by activating TLR2 and WNT signaling, and through remodeling the tumor microenvironment., Conclusion: Together, our findings show that EGFR and EGFRvIII cooperate to drive tumor progression through ROCK2 and downstream WNT-β-catenin/TLR2 signaling pathways., (© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
9. The Mac1 ADP-ribosylhydrolase is a Therapeutic Target for SARS-CoV-2.
- Author
-
Suryawanshi RK, Jaishankar P, Correy GJ, Rachman MM, O'Leary PC, Taha TY, Zapatero-Belinchón FJ, McCavittMalvido M, Doruk YU, Stevens MGV, Diolaiti ME, Jogalekar MP, Richards AL, Montano M, Rosecrans J, Matthay M, Togo T, Gonciarz RL, Gopalkrishnan S, Neitz RJ, Krogan NJ, Swaney DL, Shoichet BK, Ott M, Renslo AR, Ashworth A, and Fraser JS
- Abstract
SARS-CoV-2 continues to pose a threat to public health. Current therapeutics remain limited to direct acting antivirals that lack distinct mechanisms of action and are already showing signs of viral resistance. The virus encodes an ADP-ribosylhydrolase macrodomain (Mac1) that plays an important role in the coronaviral lifecycle by suppressing host innate immune responses. Genetic inactivation of Mac1 abrogates viral replication in vivo by potentiating host innate immune responses. However, it is unknown whether this can be achieved by pharmacologic inhibition and can therefore be exploited therapeutically. Here we report a potent and selective lead small molecule, AVI-4206, that is effective in an in vivo model of SARS-CoV-2 infection. Cellular models indicate that AVI-4206 has high target engagement and can weakly inhibit viral replication in a gamma interferon- and Mac1 catalytic activity-dependent manner; a stronger antiviral effect for AVI-4206 is observed in human airway organoids. In an animal model of severe SARS-CoV-2 infection, AVI-4206 reduces viral replication, potentiates innate immune responses, and leads to a survival benefit. Our results provide pharmacological proof of concept that Mac1 is a valid therapeutic target via a novel immune-restoring mechanism that could potentially synergize with existing therapies targeting distinct, essential aspects of the coronaviral life cycle. This approach could be more widely used to target other viral macrodomains to develop antiviral therapeutics beyond COVID-19., Competing Interests: A.R.R, P.J., R.L.G., T.T., M.R., J.S.F., G.J.C., B.K.S., R.J.N, A.A., M.D., P.C.O., Y.D.P., N.K., M.O., T.Y.T., R.S., F.Z.B., and M.M. are listed as inventors on a patent application describing small molecule macrodomain inhibitors, which includes compounds described herein. T.Y.T and M.O. are listed as inventors on a patent application filed by the Gladstone Institutes that covers the use of pGLUE to generate SARS-CoV-2 infectious clones and replicons. The Krogan laboratory has received research support from Vir Biotechnology, F. Hoffmann-La Roche and Rezo Therapeutics. N.J.K. has financially compensated consulting agreements with Maze Therapeutics and Interline Therapeutics. He is on the Board of Directors and is President of Rezo Therapeutics and is a shareholder in Tenaya Therapeutics, Maze Therapeutics, Rezo Therapeutics, GEn1E Lifesciences and Interline Therapeutics. B.K.S is co-founder of BlueDolphin LLC, Epiodyne Inc, and Deep Apple Therapeutics, Inc., and serves on the SRB of Genentech, the SAB of Schrodinger LLC, and the SAB of Vilya Therapeutics. M.O. is a cofounder of Directbio and board member of InVisishield. A.R.R. is a co-founder of TheRas, Elgia Therapeutics, and Tatara Therapeutics, and receives sponsored research support from Merck, Sharp and Dohme. A.A. is a co-founder of Tango Therapeutics, Azkarra Therapeutics and Kytarro; a member of the board of Cytomx, Ovibio Corporation, Cambridge Science Corporation; a member of the scientific advisory board of Genentech, GLAdiator, Circle, Bluestar/Clearnote Health, Earli, Ambagon, Phoenix Molecular Designs, Yingli/280Bio, Trial Library, ORIC and HAP10; a consultant for ProLynx, Next RNA and Novartis; receives research support from SPARC; and holds patents on the use of PARP inhibitors held jointly with AstraZeneca from which he has benefited financially (and may do so in the future). J.S.F. is a consultant to, shareholder of, and receives sponsored research support from Relay Therapeutics.
- Published
- 2024
- Full Text
- View/download PDF
10. Multiscale photocatalytic proximity labeling reveals cell surface neighbors on and between cells.
- Author
-
Lin Z, Schaefer K, Lui I, Yao Z, Fossati A, Swaney DL, Palar A, Sali A, and Wells JA
- Subjects
- Humans, Catalysis, Cell Membrane metabolism, Cell Membrane chemistry, ErbB Receptors metabolism, Light, Photochemical Processes, Protein Interaction Maps, Receptors, Chimeric Antigen metabolism, T-Lymphocytes immunology, Proteomics methods, Staining and Labeling methods, Eosine Yellowish-(YS) chemistry, Fluorescent Dyes chemistry
- Abstract
Proximity labeling proteomics (PLP) strategies are powerful approaches to yield snapshots of protein neighborhoods. Here, we describe a multiscale PLP method with adjustable resolution that uses a commercially available photocatalyst, Eosin Y, which upon visible light illumination activates different photo-probes with a range of labeling radii. We applied this platform to profile neighborhoods of the oncogenic epidermal growth factor receptor and orthogonally validated more than 20 neighbors using immunoassays and AlphaFold-Multimer prediction. We further profiled the protein neighborhoods of cell-cell synapses induced by bispecific T cell engagers and chimeric antigen receptor T cells. This integrated multiscale PLP platform maps local and distal protein networks on and between cell surfaces, which will aid in the systematic construction of the cell surface interactome, revealing horizontal signaling partners and reveal new immunotherapeutic opportunities.
- Published
- 2024
- Full Text
- View/download PDF
11. Characterization of a lipid-based jumbo phage compartment as a hub for early phage infection.
- Author
-
Mozumdar D, Fossati A, Stevenson E, Guan J, Nieweglowska E, Rao S, Agard D, Swaney DL, and Bondy-Denomy J
- Subjects
- Viral Proteins metabolism, Viral Proteins genetics, Bacteriophages genetics, Bacteriophages physiology, Virion metabolism, Virus Replication, DNA-Directed RNA Polymerases metabolism, DNA-Directed RNA Polymerases genetics, Lipids, DNA Replication, Pseudomonas aeruginosa virology, Genome, Viral, Pseudomonas Phages genetics, Pseudomonas Phages metabolism, DNA, Viral genetics
- Abstract
Viral genomes are most vulnerable to cellular defenses at the start of the infection. A family of jumbo phages related to phage ΦKZ, which infects Pseudomonas aeruginosa, assembles a protein-based phage nucleus to protect replicating phage DNA, but how it is protected prior to phage nucleus assembly is unclear. We find that host proteins related to membrane and lipid biology interact with injected phage protein, clustering in an early phage infection (EPI) vesicle. The injected virion RNA polymerase (vRNAP) executes early gene expression until phage genome separation from the vRNAP and the EPI vesicle, moving into the nascent proteinaceous phage nucleus. Enzymes involved in DNA replication and CRISPR/restriction immune nucleases are excluded by the EPI vesicle. We propose that the EPI vesicle is rapidly constructed with injected phage proteins, phage DNA, host lipids, and host membrane proteins to enable genome protection, early transcription, localized translation, and to ensure faithful genome transfer to the proteinaceous nucleus., Competing Interests: Declaration of interests J.B.-D. is a scientific advisory board member of SNIPR Biome and Excision Biotherapeutics, a consultant to LeapFrog Bio and BiomX, and a scientific advisory board member and co-founder of Acrigen Biosciences. The Bondy-Denomy lab received research support from Felix Biotechnology. D.L.S. has financially compensated consulting agreements with Maze Therapeutics and Rezo Therapeutics., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
12. The Chlamydia trachomatis Inc Tri1 interacts with TRAF7 to displace native TRAF7 interacting partners.
- Author
-
Herrera CM, McMahon E, Swaney DL, Sherry J, Pha K, Adams-Boone K, Johnson JR, Krogan NJ, Stevers M, Solomon D, Elwell C, and Engel J
- Subjects
- Humans, HeLa Cells, Signal Transduction, Tumor Necrosis Factor Receptor-Associated Peptides and Proteins metabolism, Tumor Necrosis Factor Receptor-Associated Peptides and Proteins genetics, Immunity, Innate, Protein Binding, Membrane Proteins metabolism, Membrane Proteins genetics, HEK293 Cells, Chlamydia trachomatis metabolism, Chlamydia trachomatis genetics, Chlamydia trachomatis immunology, Host-Pathogen Interactions, Bacterial Proteins metabolism, Bacterial Proteins genetics, Chlamydia Infections microbiology, Chlamydia Infections metabolism, Chlamydia Infections immunology
- Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections in the USA and of preventable blindness worldwide. This obligate intracellular pathogen replicates within a membrane-bound inclusion, but how it acquires nutrients from the host while avoiding detection by the innate immune system is incompletely understood. C. trachomatis accomplishes this in part through the translocation of a unique set of effectors into the inclusion membrane, the inc lusion membrane proteins (Incs). Incs are ideally positioned at the host-pathogen interface to reprogram host signaling by redirecting proteins or organelles to the inclusion. Using a combination of co-affinity purification, immunofluorescence confocal imaging, and proteomics, we characterize the interaction between an early-expressed Inc of unknown function, Tri1, and tumor necrosis factor receptor-associated factor 7 (TRAF7). TRAF7 is a multi-domain protein with a RING finger ubiquitin ligase domain and a C-terminal WD40 domain. TRAF7 regulates several innate immune signaling pathways associated with C. trachomatis infection and is mutated in a subset of tumors. We demonstrate that Tri1 and TRAF7 specifically interact during infection and that TRAF7 is recruited to the inclusion. We further show that the predicted coiled-coil domain of Tri1 is necessary to interact with the TRAF7 WD40 domain. Finally, we demonstrate that Tri1 displaces the native TRAF7 binding partners, mitogen-activated protein kinase kinase kinase 2 (MEKK2), and MEKK3. Together, our results suggest that by displacing TRAF7 native binding partners, Tri1 has the capacity to alter TRAF7 signaling during C. trachomatis infection.IMPORTANCE Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections in the USA and preventable blindness worldwide. Although easily treated with antibiotics, the vast majority of infections are asymptomatic and therefore go untreated, leading to infertility and blindness. This obligate intracellular pathogen evades the immune response, which contributes to these outcomes. Here, we characterize the interaction between a C. trachomatis -secreted effector, Tri1, and a host protein involved in innate immune signaling, TRAF7. We identified host proteins that bind to TRAF7 and demonstrated that Tri1 can displace these proteins upon binding to TRAF7. Remarkably, the region of TRAF7 to which these host proteins bind is often mutated in a subset of human tumors. Our work suggests a mechanism by which Tri1 may alter TRAF7 signaling and has implications not only in the pathogenesis of C. trachomatis infections but also in understanding the role of TRAF7 in cancer., Competing Interests: The authors declare no conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
13. Targeting a lineage-specific PI3Kɣ-Akt signaling module in acute myeloid leukemia using a heterobifunctional degrader molecule.
- Author
-
Kelly LM, Rutter JC, Lin KH, Ling F, Duchmann M, Latour E, Arang N, Pasquer H, Ho Nhat D, Charles J, Killarney ST, Ang HX, Namor F, Culeux C, Lombard B, Loew D, Swaney DL, Krogan NJ, Brunel L, Carretero É, Verdié P, Amblard M, Fodil S, Huynh T, Sebert M, Adès L, Raffoux E, Fenouille N, Itzykson R, Lobry C, Benajiba L, Forget A, Martin AR, Wood KC, and Puissant A
- Subjects
- Humans, Animals, Mice, Cell Line, Tumor, Xenograft Model Antitumor Assays, Sulfonamides pharmacology, Sulfonamides therapeutic use, Proteolysis drug effects, Female, Bridged Bicyclo Compounds, Heterocyclic pharmacology, Bridged Bicyclo Compounds, Heterocyclic therapeutic use, Leukemia, Myeloid, Acute drug therapy, Leukemia, Myeloid, Acute metabolism, Leukemia, Myeloid, Acute genetics, Signal Transduction drug effects, Proto-Oncogene Proteins c-akt metabolism, Class Ib Phosphatidylinositol 3-Kinase metabolism, Class Ib Phosphatidylinositol 3-Kinase genetics
- Abstract
Dose-limiting toxicity poses a major limitation to the clinical utility of targeted cancer therapies, often arising from target engagement in nonmalignant tissues. This obstacle can be minimized by targeting cancer dependencies driven by proteins with tissue-restricted and/or tumor-restricted expression. In line with another recent report, we show here that, in acute myeloid leukemia (AML), suppression of the myeloid-restricted PIK3CG/p110γ-PIK3R5/p101 axis inhibits protein kinase B/Akt signaling and compromises AML cell fitness. Furthermore, silencing the genes encoding PIK3CG/p110γ or PIK3R5/p101 sensitizes AML cells to established AML therapies. Importantly, we find that existing small-molecule inhibitors against PIK3CG are insufficient to achieve a sustained long-term antileukemic effect. To address this concern, we developed a proteolysis-targeting chimera (PROTAC) heterobifunctional molecule that specifically degrades PIK3CG and potently suppresses AML progression alone and in combination with venetoclax in human AML cell lines, primary samples from patients with AML and syngeneic mouse models., (© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.)
- Published
- 2024
- Full Text
- View/download PDF
14. The disease-causing tau V337M mutation induces tau hypophosphorylation and perturbs axon morphology pathways.
- Author
-
Mohl GA, Dixon G, Marzette E, McKetney J, Samelson AJ, Serras CP, Jin J, Li A, Boggess SC, Swaney DL, and Kampmann M
- Abstract
Tau aggregation is a hallmark of several neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia. There are disease-causing variants of the tau-encoding gene, MAPT , and the presence of tau aggregates is highly correlated with disease progression. However, the molecular mechanisms linking pathological tau to neuronal dysfunction are not well understood due to our incomplete understanding of the normal functions of tau in development and aging and how these processes change in the context of causal disease variants of tau. To address these questions in an unbiased manner, we conducted multi-omic characterization of iPSC-derived neurons harboring the MAPT V337M mutation. RNA-seq and phosphoproteomics revealed that both V337M tau and tau knockdown consistently perturbed levels of transcripts and phosphorylation of proteins related to axonogenesis or axon morphology. Surprisingly, we found that neurons with V337M tau had much lower tau phosphorylation than neurons with WT tau. We conducted functional genomics screens to uncover regulators of tau phosphorylation in neurons and found that factors involved in axonogenesis modified tau phosphorylation in both MAPT WT and MAPT V337M neurons. Intriguingly, the p38 MAPK pathway specifically modified tau phosphorylation in MAPT V337M neurons. We propose that V337M tau might perturb axon morphology pathways and tau hypophosphorylation via a "loss of function" mechanism, which could contribute to previously reported cognitive changes in preclinical MAPT gene carriers., Competing Interests: Competing interests M.K. is a co-scientific founder of Montara Therapeutics and serves on the Scientific Advisory Boards of Engine Biosciences, Casma Therapeutics, Cajal Neuroscience, Alector, and Montara Therapeutics, and is an advisor to Modulo Bio and Recursion Therapeutics. M.K. is an inventor on US Patent 11,254,933 related to CRISPRi and CRISPRa screening, and on a US Patent application on in vivo screening methods.
- Published
- 2024
- Full Text
- View/download PDF
15. Mapping Differential Protein-Protein Interaction Networks using Affinity Purification Mass Spectrometry.
- Author
-
Kaushal P, Ummadi MR, Jang GM, Delgado Y, Makanani SK, Blanc SF, Winters DM, Xu J, Polacco B, Zhou Y, Stevenson E, Eckhardt M, Zuliani-Alvarez L, Kaake R, Swaney DL, Krogan N, and Bouhaddou M
- Abstract
Proteins congregate into complexes to perform fundamental cellular functions. Phenotypic outcomes, in health and disease, are often mechanistically driven by the remodeling of protein complexes by protein-coding mutations or cellular signaling changes in response to molecular cues. Here, we present an affinity purification-mass spectrometry (APMS) proteomics protocol to quantify and visualize global changes in protein-protein interaction (PPI) networks between pairwise conditions. We describe steps for expressing affinity-tagged "bait" proteins in mammalian cells, identifying purified protein complexes, quantifying differential PPIs, and visualizing differential PPI networks. Specifically, this protocol details steps for designing affinity-tagged "bait" gene constructs, transfection, affinity purification, mass spectrometry sample preparation, data acquisition, database search, data quality control, PPI confidence scoring, cross-run normalization, statistical data analysis, and differential PPI visualization. Our protocol discusses caveats and limitations with applicability across cell types and biological areas. For complete details on the use and execution of this protocol, please refer to Bouhaddou et al. 2023
1 ., Competing Interests: DECLARATION OF INTERESTS The Krogan Laboratory has received research support from Vir Biotechnology, F. Hoffmann-La Roche, and Rezo Therapeutics. N.J.K. has a financially compensated consulting agreement with Maze Therapeutics. N.J.K. is the President and is on the Board of Directors of Rezo Therapeutics, and he is a shareholder in Tenaya Therapeutics, Maze Therapeutics, Rezo Therapeutics, and Interline Therapeutics. M.B. is a scientific advisor for Gen1e LifeSciences.- Published
- 2024
16. CRISPR-Cas9 screen of E3 ubiquitin ligases identifies TRAF2 and UHRF1 as regulators of HIV latency in primary human T cells.
- Author
-
Rathore U, Haas P, Easwar Kumar V, Hiatt J, Haas KM, Bouhaddou M, Swaney DL, Stevenson E, Zuliani-Alvarez L, McGregor MJ, Turner-Groth A, Ochieng' Olwal C, Bediako Y, Braberg H, Soucheray M, Ott M, Eckhardt M, Hultquist JF, Marson A, Kaake RM, and Krogan NJ
- Subjects
- Humans, CD4-Positive T-Lymphocytes, CRISPR-Cas Systems, Ubiquitins metabolism, Virus Replication, CCAAT-Enhancer-Binding Proteins metabolism, HIV Infections, TNF Receptor-Associated Factor 2 metabolism, Ubiquitin-Protein Ligases metabolism, Virus Latency, HIV physiology
- Abstract
During HIV infection of CD4+ T cells, ubiquitin pathways are essential to viral replication and host innate immune response; however, the role of specific E3 ubiquitin ligases is not well understood. Proteomics analyses identified 116 single-subunit E3 ubiquitin ligases expressed in activated primary human CD4+ T cells. Using a CRISPR-based arrayed spreading infectivity assay, we systematically knocked out 116 E3s from activated primary CD4+ T cells and infected them with NL4-3 GFP reporter HIV-1. We found 10 E3s significantly positively or negatively affected HIV infection in activated primary CD4+ T cells, including UHRF1 (pro-viral) and TRAF2 (anti-viral). Furthermore, deletion of either TRAF2 or UHRF1 in three JLat models of latency spontaneously increased HIV transcription. To verify this effect, we developed a CRISPR-compatible resting primary human CD4+ T cell model of latency. Using this system, we found that deletion of TRAF2 or UHRF1 initiated latency reactivation and increased virus production from primary human resting CD4+ T cells, suggesting these two E3s represent promising targets for future HIV latency reversal strategies., Importance: HIV, the virus that causes AIDS, heavily relies on the machinery of human cells to infect and replicate. Our study focuses on the host cell's ubiquitination system which is crucial for numerous cellular processes. Many pathogens, including HIV, exploit this system to enhance their own replication and survival. E3 proteins are part of the ubiquitination pathway that are useful drug targets for host-directed therapies. We interrogated the 116 E3s found in human immune cells known as CD4+ T cells, since these are the target cells infected by HIV. Using CRISPR, a gene-editing tool, we individually removed each of these enzymes and observed the impact on HIV infection in human CD4+ T cells isolated from healthy donors. We discovered that 10 of the E3 enzymes had a significant effect on HIV infection. Two of them, TRAF2 and UHRF1, modulated HIV activity within the cells and triggered an increased release of HIV from previously dormant or "latent" cells in a new primary T cell assay. This finding could guide strategies to perturb hidden HIV reservoirs, a major hurdle to curing HIV. Our study offers insights into HIV-host interactions, identifies new factors that influence HIV infection in immune cells, and introduces a novel methodology for studying HIV infection and latency in human immune cells.
- Published
- 2024
- Full Text
- View/download PDF
17. ATG7(2) Interacts With Metabolic Proteins and Regulates Central Energy Metabolism.
- Author
-
Ostacolo K, López García de Lomana A, Larat C, Hjaltalin V, Holm KY, Hlynsdóttir SS, Soucheray M, Sooman L, Rolfsson O, Krogan NJ, Steingrimsson E, Swaney DL, and Ogmundsdottir MH
- Subjects
- Humans, Autophagosomes metabolism, Autophagy-Related Proteins metabolism, Microtubule-Associated Proteins metabolism, Protein Isoforms metabolism, Autophagy, Energy Metabolism
- Abstract
Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein-protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene., (© 2024 The Authors. Traffic published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
18. Cross-family small GTPase ubiquitination by the intracellular pathogen Legionella pneumophila .
- Author
-
Steinbach A, Bhadkamkar V, Jimenez-Morales D, Stevenson E, Jang GM, Krogan NJ, Swaney DL, and Mukherjee S
- Subjects
- Animals, Bacterial Proteins metabolism, Ubiquitination, Ubiquitin metabolism, Vacuoles metabolism, Ligases metabolism, Mammals metabolism, Legionella pneumophila metabolism, Monomeric GTP-Binding Proteins metabolism
- Abstract
The intracellular bacterial pathogen Legionella pneumophila ( L.p. ) manipulates eukaryotic host ubiquitination machinery to form its replicative vacuole. While nearly 10% of L.p. 's ∼330 secreted effector proteins are ubiquitin ligases or deubiquitinases, a comprehensive measure of temporally resolved changes in the endogenous host ubiquitinome during infection has not been undertaken. To elucidate how L.p. hijacks host cell ubiquitin signaling, we generated a proteome-wide analysis of changes in protein ubiquitination during infection. We discover that L.p. infection increases ubiquitination of host regulators of subcellular trafficking and membrane dynamics, most notably ∼40% of mammalian Ras superfamily small GTPases. We determine that these small GTPases undergo nondegradative ubiquitination at the Legionella -containing vacuole (LCV) membrane. Finally, we find that the bacterial effectors SidC/SdcA play a central role in cross-family small GTPase ubiquitination, and that these effectors function upstream of SidE family ligases in the polyubiquitination and retention of GTPases in the LCV membrane. This work highlights the extensive reconfiguration of host ubiquitin signaling by bacterial effectors during infection and establishes simultaneous ubiquitination of small GTPases across the Ras superfamily as a novel consequence of L.p. infection. Our findings position L.p. as a tool to better understand how small GTPases can be regulated by ubiquitination in uninfected contexts.
- Published
- 2024
- Full Text
- View/download PDF
19. Spatial control of sensory adaptation modulates mechanosensing in Pseudomonas aeruginosa .
- Author
-
Patino R, Kühn MJ, Macmillan H, Inclan YF, Chavez I, Von Dollen J, Johnson JR, Swaney DL, Krogan NJ, Persat A, and Engel JN
- Abstract
Sensory signaling pathways use adaptation to dynamically respond to changes in their environment. Here, we report the mechanism of sensory adaptation in the Pil-Chp mechanosensory system, which the important human pathogen Pseudomonas aeruginosa uses to sense mechanical stimuli during surface exploration. Using biochemistry, genetics, and cell biology, we discovered that the enzymes responsible for adaptation, a methyltransferase and a methylesterase, are segregated to opposing cell poles as P. aeruginosa explore surfaces. By coordinating the localization of both enzymes, we found that the Pil-Chp response regulators influence local receptor methylation, the molecular basis of bacterial sensory adaptation. We propose a model in which adaptation during mechanosensing spatially resets local receptor methylation, and thus Pil-Chp signaling, to modulate the pathway outputs, which are involved in P. aeruginosa virulence. Despite decades of bacterial sensory adaptation studies, our work has uncovered an unrecognized mechanism that bacteria use to achieve adaptation to sensory stimuli.
- Published
- 2024
- Full Text
- View/download PDF
20. A foundational atlas of autism protein interactions reveals molecular convergence.
- Author
-
Wang B, Vartak R, Zaltsman Y, Naing ZZC, Hennick KM, Polacco BJ, Bashir A, Eckhardt M, Bouhaddou M, Xu J, Sun N, Lasser MC, Zhou Y, McKetney J, Guiley KZ, Chan U, Kaye JA, Chadha N, Cakir M, Gordon M, Khare P, Drake S, Drury V, Burke DF, Gonzalez S, Alkhairy S, Thomas R, Lam S, Morris M, Bader E, Seyler M, Baum T, Krasnoff R, Wang S, Pham P, Arbalaez J, Pratt D, Chag S, Mahmood N, Rolland T, Bourgeron T, Finkbeiner S, Swaney DL, Bandyopadhay S, Ideker T, Beltrao P, Willsey HR, Obernier K, Nowakowski TJ, Hüttenhain R, State MW, Willsey AJ, and Krogan NJ
- Abstract
Translating high-confidence (hc) autism spectrum disorder (ASD) genes into viable treatment targets remains elusive. We constructed a foundational protein-protein interaction (PPI) network in HEK293T cells involving 100 hcASD risk genes, revealing over 1,800 PPIs (87% novel). Interactors, expressed in the human brain and enriched for ASD but not schizophrenia genetic risk, converged on protein complexes involved in neurogenesis, tubulin biology, transcriptional regulation, and chromatin modification. A PPI map of 54 patient-derived missense variants identified differential physical interactions, and we leveraged AlphaFold-Multimer predictions to prioritize direct PPIs and specific variants for interrogation in Xenopus tropicalis and human forebrain organoids. A mutation in the transcription factor FOXP1 led to reconfiguration of DNA binding sites and altered development of deep cortical layer neurons in forebrain organoids. This work offers new insights into molecular mechanisms underlying ASD and describes a powerful platform to develop and test therapeutic strategies for many genetically-defined conditions.
- Published
- 2024
- Full Text
- View/download PDF
21. Epigenetic reprogramming shapes the cellular landscape of schwannoma.
- Author
-
Liu SJ, Casey-Clyde T, Cho NW, Swinderman J, Pekmezci M, Dougherty MC, Foster K, Chen WC, Villanueva-Meyer JE, Swaney DL, Vasudevan HN, Choudhury A, Pak J, Breshears JD, Lang UE, Eaton CD, Hiam-Galvez KJ, Stevenson E, Chen KH, Lien BV, Wu D, Braunstein SE, Sneed PK, Magill ST, Lim D, McDermott MW, Berger MS, Perry A, Krogan NJ, Hansen MR, Spitzer MH, Gilbert L, Theodosopoulos PV, and Raleigh DR
- Subjects
- Humans, Epigenesis, Genetic, Cellular Reprogramming genetics, Tumor Microenvironment genetics, Neurilemmoma genetics, Neurilemmoma pathology
- Abstract
Mechanisms specifying cancer cell states and response to therapy are incompletely understood. Here we show epigenetic reprogramming shapes the cellular landscape of schwannomas, the most common tumors of the peripheral nervous system. We find schwannomas are comprised of 2 molecular groups that are distinguished by activation of neural crest or nerve injury pathways that specify tumor cell states and the architecture of the tumor immune microenvironment. Moreover, we find radiotherapy is sufficient for interconversion of neural crest schwannomas to immune-enriched schwannomas through epigenetic and metabolic reprogramming. To define mechanisms underlying schwannoma groups, we develop a technique for simultaneous interrogation of chromatin accessibility and gene expression coupled with genetic and therapeutic perturbations in single-nuclei. Our results elucidate a framework for understanding epigenetic drivers of tumor evolution and establish a paradigm of epigenetic and metabolic reprograming of cancer cells that shapes the immune microenvironment in response to radiotherapy., (© 2023. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
22. Molecular determinants of the crosstalk between endosomal microautophagy and chaperone-mediated autophagy.
- Author
-
Krause GJ, Kirchner P, Stiller B, Morozova K, Diaz A, Chen KH, Krogan NJ, Agullo-Pascual E, Clement CC, Lindenau K, Swaney DL, Dilipkumar S, Bravo-Cordero JJ, Santambrogio L, and Cuervo AM
- Subjects
- Microautophagy, Autophagy, Endosomes metabolism, Lysosomes metabolism, Molecular Chaperones metabolism, Chaperone-Mediated Autophagy
- Abstract
Chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI) are pathways for selective degradation of cytosolic proteins in lysosomes and late endosomes, respectively. These autophagic processes share as a first step the recognition of the same five-amino-acid motif in substrate proteins by the Hsc70 chaperone, raising the possibility of coordinated activity of both pathways. In this work, we show the existence of a compensatory relationship between CMA and eMI and identify a role for the chaperone protein Bag6 in triage and internalization of eMI substrates into late endosomes. Association and dynamics of Bag6 at the late endosome membrane change during starvation, a stressor that, contrary to other autophagic pathways, causes a decline in eMI activity. Collectively, these results show a coordinated function of eMI with CMA, identify the interchangeable subproteome degraded by these pathways, and start to elucidate the molecular mechanisms that facilitate the switch between them., Competing Interests: Declaration of interests A.M.C. is a co-founder and advisor to Selphagy (a Life Biosciences program) and consults for Generian Pharmaceuticals and Cognition Therapeuticals. The lab of N.J.K. has received support from Vir Biotechnology and F. Hoffmann-La Roche. N.J.K. consults for Mount Sinai, Maze Therapeutics, and Interline Therapeutics; is a shareholder in Tenaya Therapeutics; and has received stocks from Maze Therapeutics and Interline Therapeutics., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
23. In vivo protein turnover rates in varying oxygen tensions nominate MYBBP1A as a mediator of the hyperoxia response.
- Author
-
Chen X, Haribowo AG, Baik AH, Fossati A, Stevenson E, Chen YR, Reyes NS, Peng T, Matthay MA, Traglia M, Pico AR, Jarosz DF, Buchwalter A, Ghaemmaghami S, Swaney DL, and Jain IH
- Subjects
- Animals, Mice, Brain metabolism, Hypoxia metabolism, Lung metabolism, Hyperoxia genetics, Hyperoxia metabolism, Oxygen metabolism
- Abstract
Oxygen deprivation and excess are both toxic. Thus, the body's ability to adapt to varying oxygen tensions is critical for survival. While the hypoxia transcriptional response has been well studied, the post-translational effects of oxygen have been underexplored. In this study, we systematically investigate protein turnover rates in mouse heart, lung, and brain under different inhaled oxygen tensions. We find that the lung proteome is the most responsive to varying oxygen tensions. In particular, several extracellular matrix (ECM) proteins are stabilized in the lung under both hypoxia and hyperoxia. Furthermore, we show that complex 1 of the electron transport chain is destabilized in hyperoxia, in accordance with the exacerbation of associated disease models by hyperoxia and rescue by hypoxia. Moreover, we nominate MYBBP1A as a hyperoxia transcriptional regulator, particularly in the context of rRNA homeostasis. Overall, our study highlights the importance of varying oxygen tensions on protein turnover rates and identifies tissue-specific mediators of oxygen-dependent responses.
- Published
- 2023
- Full Text
- View/download PDF
24. High-throughput chemogenetic drug screening reveals PKC-RhoA/PKN as a targetable signaling vulnerability in GNAQ-driven uveal melanoma.
- Author
-
Arang N, Lubrano S, Ceribelli M, Rigiracciolo DC, Saddawi-Konefka R, Faraji F, Ramirez SI, Kim D, Tosto FA, Stevenson E, Zhou Y, Wang Z, Bogomolovas J, Molinolo AA, Swaney DL, Krogan NJ, Yang J, Coma S, Pachter JA, Aplin AE, Alessi DR, Thomas CJ, and Gutkind JS
- Subjects
- Animals, Mice, GTP-Binding Protein alpha Subunits genetics, GTP-Binding Protein alpha Subunits metabolism, GTP-Binding Protein alpha Subunits, Gq-G11 genetics, GTP-Binding Protein alpha Subunits, Gq-G11 metabolism, GTP-Binding Protein alpha Subunits, Gq-G11 therapeutic use, Drug Evaluation, Preclinical, Protein Kinase Inhibitors pharmacology, Melanoma drug therapy, Melanoma genetics, Melanoma pathology, Skin Neoplasms, Uveal Neoplasms drug therapy, Uveal Neoplasms genetics, Uveal Neoplasms metabolism
- Abstract
Uveal melanoma (UM) is the most prevalent cancer of the eye in adults, driven by activating mutation of GNAQ/GNA11; however, there are limited therapies against UM and metastatic UM (mUM). Here, we perform a high-throughput chemogenetic drug screen in GNAQ-mutant UM contrasted with BRAF-mutant cutaneous melanoma, defining the druggable landscape of these distinct melanoma subtypes. Across all compounds, darovasertib demonstrates the highest preferential activity against UM. Our investigation reveals that darovasertib potently inhibits PKC as well as PKN/PRK, an AGC kinase family that is part of the "dark kinome." We find that downstream of the Gαq-RhoA signaling axis, PKN converges with ROCK to control FAK, a mediator of non-canonical Gαq-driven signaling. Strikingly, darovasertib synergizes with FAK inhibitors to halt UM growth and promote cytotoxic cell death in vitro and in preclinical metastatic mouse models, thus exposing a signaling vulnerability that can be exploited as a multimodal precision therapy against mUM., Competing Interests: Declaration of interests J.S.G. reports consulting fees from Domain Pharmaceuticals, Pangea Therapeutics, and io9 and is founder of Kadima Pharmaceuticals, all unrelated to the current study. J.S.G. and N.A. hold patent US11679113B2 related in part to this work. The Krogan Laboratory has received research support from Vir Biotechnology, F. Hoffmann-La Roche, and Rezo Therapeutics. N.J.K. has financially compensated consulting agreements with the Icahn School of Medicine at Mount Sinai, New York, Maze Therapeutics, Interline Therapeutics, Rezo Therapeutics, Gen1E Lifesciences, Inc., and Twist Bioscience Corp. He is on the Board of Directors of Rezo Therapeutics and is a shareholder in Tenaya Therapeutics, Maze Therapeutics, Rezo Therapeutics, and Interline Therapeutics. D.L.S. has a consulting agreement with Maze Therapeutics. J.B. is a consultant for Rocket Pharma. J.A.P. and S.C. are employees of Verastem, which has not influenced this study. Other authors declare no competing financial interests., (Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
25. A Legionella toxin exhibits tRNA mimicry and glycosyl transferase activity to target the translation machinery and trigger a ribotoxic stress response.
- Author
-
Subramanian A, Wang L, Moss T, Voorhies M, Sangwan S, Stevenson E, Pulido EH, Kwok S, Chalkley RJ, Li KH, Krogan NJ, Swaney DL, Burlingame AL, Floor SN, Sil A, Walter P, and Mukherjee S
- Subjects
- Humans, Cryoelectron Microscopy, Transferases pharmacology, Bacterial Proteins genetics, Bacterial Proteins metabolism, Bacterial Proteins pharmacology, Legionella metabolism, Legionella pneumophila genetics, Legionella pneumophila metabolism, Legionnaires' Disease genetics, Legionnaires' Disease microbiology
- Abstract
A widespread strategy employed by pathogens to establish infection is to inhibit host-cell protein synthesis. Legionella pneumophila, an intracellular bacterial pathogen and the causative organism of Legionnaires' disease, secretes a subset of protein effectors into host cells that inhibit translation elongation. Mechanistic insights into how the bacterium targets translation elongation remain poorly defined. We report here that the Legionella effector SidI functions in an unprecedented way as a transfer-RNA mimic that directly binds to and glycosylates the ribosome. The 3.1 Å cryo-electron microscopy structure of SidI reveals an N-terminal domain with an 'inverted L' shape and surface-charge distribution characteristic of tRNA mimicry, and a C-terminal domain that adopts a glycosyl transferase fold that licenses SidI to utilize GDP-mannose as a sugar precursor. This coupling of tRNA mimicry and enzymatic action endows SidI with the ability to block protein synthesis with a potency comparable to ricin, one of the most powerful toxins known. In Legionella-infected cells, the translational pausing activated by SidI elicits a stress response signature mimicking the ribotoxic stress response, which is activated by elongation inhibitors that induce ribosome collisions. SidI-mediated effects on the ribosome activate the stress kinases ZAKα and p38, which in turn drive an accumulation of the protein activating transcription factor 3 (ATF3). Intriguingly, ATF3 escapes the translation block imposed by SidI, translocates to the nucleus and orchestrates the transcription of stress-inducible genes that promote cell death, revealing a major role for ATF3 in the response to collided ribosome stress. Together, our findings elucidate a novel mechanism by which a pathogenic bacterium employs tRNA mimicry to hijack a ribosome-to-nuclear signalling pathway that regulates cell fate., (© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
26. Multi-scale photocatalytic proximity labeling reveals cell surface neighbors on and between cells.
- Author
-
Lin Z, Schaefer K, Lui I, Yao Z, Fossati A, Swaney DL, Palar A, Sali A, and Wells JA
- Abstract
The cell membrane proteome is the primary biohub for cell communication, yet we are only beginning to understand the dynamic protein neighborhoods that form on the cell surface and between cells. Proximity labeling proteomics (PLP) strategies using chemically reactive probes are powerful approaches to yield snapshots of protein neighborhoods but are currently limited to one single resolution based on the probe labeling radius. Here, we describe a multi-scale PLP method with tunable resolution using a commercially available histological dye, Eosin Y, which upon visible light illumination, activates three different photo-probes with labeling radii ranging from ∼100 to 3000 Å. We applied this platform to profile neighborhoods of the oncogenic epidermal growth factor receptor (EGFR) and orthogonally validated >20 neighbors using immuno-assays and AlphaFold-Multimer prediction that generated plausible binary interaction models. We further profiled the protein neighborhoods of cell-cell synapses induced by bi-specific T-cell engagers (BiTEs) and chimeric antigen receptor (CAR)T cells at longer length scales. This integrated multi-scale PLP platform maps local and distal protein networks on cell surfaces and between cells. We believe this information will aid in the systematic construction of the cell surface interactome and reveal new opportunities for immunotherapeutics.
- Published
- 2023
- Full Text
- View/download PDF
27. SARS-CoV-2 variants evolve convergent strategies to remodel the host response.
- Author
-
Bouhaddou M, Reuschl AK, Polacco BJ, Thorne LG, Ummadi MR, Ye C, Rosales R, Pelin A, Batra J, Jang GM, Xu J, Moen JM, Richards AL, Zhou Y, Harjai B, Stevenson E, Rojc A, Ragazzini R, Whelan MVX, Furnon W, De Lorenzo G, Cowton V, Syed AM, Ciling A, Deutsch N, Pirak D, Dowgier G, Mesner D, Turner JL, McGovern BL, Rodriguez ML, Leiva-Rebollo R, Dunham AS, Zhong X, Eckhardt M, Fossati A, Liotta NF, Kehrer T, Cupic A, Rutkowska M, Mena I, Aslam S, Hoffert A, Foussard H, Olwal CO, Huang W, Zwaka T, Pham J, Lyons M, Donohue L, Griffin A, Nugent R, Holden K, Deans R, Aviles P, Lopez-Martin JA, Jimeno JM, Obernier K, Fabius JM, Soucheray M, Hüttenhain R, Jungreis I, Kellis M, Echeverria I, Verba K, Bonfanti P, Beltrao P, Sharan R, Doudna JA, Martinez-Sobrido L, Patel AH, Palmarini M, Miorin L, White K, Swaney DL, Garcia-Sastre A, Jolly C, Zuliani-Alvarez L, Towers GJ, and Krogan NJ
- Subjects
- Humans, Immunity, Innate genetics, Pandemics, COVID-19 virology, SARS-CoV-2 genetics
- Abstract
SARS-CoV-2 variants of concern (VOCs) emerged during the COVID-19 pandemic. Here, we used unbiased systems approaches to study the host-selective forces driving VOC evolution. We discovered that VOCs evolved convergent strategies to remodel the host by modulating viral RNA and protein levels, altering viral and host protein phosphorylation, and rewiring virus-host protein-protein interactions. Integrative computational analyses revealed that although Alpha, Beta, Gamma, and Delta ultimately converged to suppress interferon-stimulated genes (ISGs), Omicron BA.1 did not. ISG suppression correlated with the expression of viral innate immune antagonist proteins, including Orf6, N, and Orf9b, which we mapped to specific mutations. Later Omicron subvariants BA.4 and BA.5 more potently suppressed innate immunity than early subvariant BA.1, which correlated with Orf6 levels, although muted in BA.4 by a mutation that disrupts the Orf6-nuclear pore interaction. Our findings suggest that SARS-CoV-2 convergent evolution overcame human adaptive and innate immune barriers, laying the groundwork to tackle future pandemics., Competing Interests: Declaration of interests The Krogan Laboratory received research support from Vir Biotechnology, F. Hoffmann-La Roche, and Rezo Therapeutics. N.J.K. has previously held financially compensated consulting agreements with the Icahn School of Medicine at Mount Sinai, New York and Twist Bioscience Corp. He currently has financially compensated consulting agreements with Maze Therapeutics, Interline Therapeutics, Rezo Therapeutics, and GEn1E Lifesciences, Inc. He is on the Board of Directors of Rezo Therapeutics and is a shareholder in Tenaya Therapeutics, Maze Therapeutics, Rezo Therapeutics, and Interline Therapeutics. The A.G.-S. laboratory received research support from Pfizer, Senhwa Biosciences, Kenall Manufacturing, Blade Therapeutics, Avimex, Johnson & Johnson, Dynavax, 7Hills Pharma, PharmaMar, ImmunityBio, Accurius, Nanocomposix, Hexamer, N-fold LLC, Model Medicines, Atea Pharma, Applied Biological Laboratories, and Merck. A.G.-S. has consulting agreements for the following companies involving cash and/or stock: Castlevax, Amovir, Vivaldi Biosciences, Contrafect, 7Hills Pharma, Avimex, Vaxalto, Pagoda, Accurius, Esperovax, Farmak, Applied Biological Laboratories, PharmaMar, Paratus, CureLab Oncology, CureLab Veterinary, Synairgen, and Pfizer. A.G.-S. has been an invited speaker in meeting events organized by Seqirus, Janssen, Abbott, and Astrazeneca. A.G.-S. is inventor on patents and patent applications on the use of antivirals and vaccines for the treatment and prevention of virus infections and cancer, owned by the Icahn School of Medicine at Mount Sinai, New York. M.B. is a financially compensated scientific advisor for GEn1E Lifesciences. C.Y. and L.M.-S. are co-inventors on a patent application directed to reverse genetics approaches to generate recombinant SARS-CoV-2. The Regents of the University of California have patents issued and pending for CRISPR technologies on which J.A.D. is an inventor. J.A.D. is a co-founder of Caribou Biosciences, Editas Medicine, Scribe Therapeutics, Intellia Therapeutics, and Mammoth Biosciences. J.A.D. is a scientific advisory board member of Vertex, Caribou Biosciences, Intellia Therapeutics, Scribe Therapeutics, Mammoth Biosciences, Algen Biotechnologies, Felix Biosciences, The Column Group, and Inari. J.A.D. is Chief Science Advisor to Sixth Street, a Director at Johnson & Johnson, Altos, and Tempus, and has research projects sponsored by Apple Tree Partners and Roche. John Pham, Molly Lyons, Laura Donahue, Aliesha Griffin, Rebecca Nugent, Kevin Holden, and Robert Deans are employees and shareholders of Synthego Corporation. D.L.S. has financially compensated consulting agreements with Maze Therapeutics and Rezo Therapeutics. P.A., J.A.L.-M., and J.M.J. are employees and shareholders of Pharma Mar, S.A. (Madrid, Spain). J.A.L.-M. is a co-inventor of a patent for Plitidepsin (WO2008135793A1). J.M.J. holds stocks of Pangaea Oncology, has a non-remunerated role in the Scientific Advisory Board, and holds stocks of Promontory Therapeutics, and is a co-inventor of two patents for Plitidepsin (WO99-42125)., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
28. Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis.
- Author
-
Kehrer T, Cupic A, Ye C, Yildiz S, Bouhaddou M, Crossland NA, Barrall EA, Cohen P, Tseng A, Çağatay T, Rathnasinghe R, Flores D, Jangra S, Alam F, Mena I, Aslam S, Saqi A, Rutkowska M, Ummadi MR, Pisanelli G, Richardson RB, Veit EC, Fabius JM, Soucheray M, Polacco BJ, Ak B, Marin A, Evans MJ, Swaney DL, Gonzalez-Reiche AS, Sordillo EM, van Bakel H, Simon V, Zuliani-Alvarez L, Fontoura BMA, Rosenberg BR, Krogan NJ, Martinez-Sobrido L, García-Sastre A, and Miorin L
- Subjects
- Humans, Immunity, Innate, Interferons genetics, Interferons metabolism, COVID-19 virology, SARS-CoV-2 genetics, Viral Proteins genetics, Viral Proteins metabolism
- Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes several proteins that inhibit host interferon responses. Among these, ORF6 antagonizes interferon signaling by disrupting nucleocytoplasmic trafficking through interactions with the nuclear pore complex components Nup98-Rae1. However, the roles and contributions of ORF6 during physiological infection remain unexplored. We assessed the role of ORF6 during infection using recombinant viruses carrying a deletion or loss-of-function (LoF) mutation in ORF6. ORF6 plays key roles in interferon antagonism and viral pathogenesis by interfering with nuclear import and specifically the translocation of IRF and STAT transcription factors. Additionally, ORF6 inhibits cellular mRNA export, resulting in the remodeling of the host cell proteome, and regulates viral protein expression. Interestingly, the ORF6:D61L mutation that emerged in the Omicron BA.2 and BA.4 variants exhibits reduced interactions with Nup98-Rae1 and consequently impairs immune evasion. Our findings highlight the role of ORF6 in antagonizing innate immunity and emphasize the importance of studying the immune evasion strategies of SARS-CoV-2., Competing Interests: Declaration of interests The A.G.-S. laboratory has received research support from Pfizer, Senhwa Biosciences, Kenall Manufacturing, Blade Therapuetics, Avimex, Johnson & Johnson, Dynavax, 7Hills Pharma, Pharmamar, ImmunityBio, Accurius, Nanocomposix, Hexamer, N-fold LLC, Model Medicines, Atea Pharma, Applied Biological Laboratories and Merck, outside of the reported work. A.G.-S. has consulting agreements for the following companies involving cash and/or stock: Castlevax, Amovir, Vivaldi Biosciences, Contrafect, 7Hills Pharma, Avimex, Vaxalto, Pagoda, Accurius, Esperovax, Farmak, Applied Biological Laboratories, Pharmamar, Paratus, CureLab Oncology, CureLab Veterinary, Synairgen and Pfizer, outside of the reported work. A.G.-S. has been an invited speaker in meeting events organized by Seqirus, Janssen, Abbott, and Astrazeneca. A.G.-S. is inventor on patents and patent applications on the use of antivirals and vaccines for the treatment and prevention of virus infections and cancer, owned by ISMMS, New York. C.Y. and L. M.-S. are co-inventors on a patent application directed to reverse genetics approaches to generate recombinant SARS-CoV-2. The Krogan Laboratory has received research support from Vir Biotechnology, F. Hoffmann-La Roche, and Rezo Therapeutics. N.J.K. has previously held financially compensated consulting agreements with the Icahn School of Medicine at Mount Sinai, New York and Twist Bioscience Corp. He currently has financially compensated consulting agreements with Maze Therapeutics, Interline Therapeutics, Rezo Therapeutics, and GEn1E Lifesciences, Inc.. He is on the Board of Directors of Rezo Therapeutics and is a shareholder in Tenaya Therapeutics, Maze Therapeutics, Rezo Therapeutics, and Interline Therapeutics. A.M. is the creator of Omics Bioinformatics and owns all the stocks of this company. ISMMS has filed patent applications relating to SARS-CoV-2 serological assays which list V.S. as co-inventor., (Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
29. Lysosomal proteomics reveals mechanisms of neuronal apoE4associated lysosomal dysfunction.
- Author
-
Krogsaeter EK, McKetney J, Marquez A, Cakir Z, Stevenson E, Jang GM, Rao A, Zhou A, Huang Y, Krogan NJ, and Swaney DL
- Abstract
ApoE4 is the primary risk factor for Alzheimer's Disease. While apoE is primarily expressed by astrocytes, AD pathology including endosomal abnormalities and mitochondrial dysfunction first occurs in neurons. Lysosomes are poised at the convergence point between these features. We find that apoE4-expressing cells exhibit lysosomal alkalinization, reduced lysosomal proteolysis, and impaired mitophagy. To identify driving factors for this lysosomal dysfunction, we performed quantitative lysosomal proteome profiling. This revealed that apoE4 expression results in lysosomal depletion of Lgals3bp and accumulation of Tmed5 in both Neuro-2a cells and postmitotic human neurons. Modulating the expression of both proteins affected lysosomal function, with Tmed5 knockdown rescuing lysosomal alkalinization in apoE4 cells, and Lgals3bp knockdown causing lysosomal alkalinization and reduced lysosomal density in apoE3 cells. Taken together, our work reveals that apoE4 exerts gain-of-toxicity by alkalinizing the lysosomal lumen, pinpointing lysosomal Tmed5 accumulation and Lgals3bp depletion as apoE4-associated drivers for this phenotype., Competing Interests: Yadong Huang is a co-founder and scientific advisory board member of GABAeron. The Krogan Laboratory has received research support from Vir Biotechnology, F. Hoffmann-La Roche, and Rezo Therapeutics. Nevan J. Krogan has previously held financially compensated consulting agreements with the Icahn School of Medicine at Mount Sinai, New York, and Twist Bioscience Corp. He currently has financially compensated consulting agreements with Maze Therapeutics, Interline Therapeutics, Rezo Therapeutics, and GEn1E Lifesciences, Inc. He is on the Board of Directors of Rezo Therapeutics and is a shareholder in Tenaya Therapeutics, Maze Therapeutics, Rezo Therapeutics, and Interline Therapeutics. Danielle L. Swaney has financially compensated consulting agreements with Maze Therapeutics and Rezo Therapeutics. The other authors declare no competing interests.
- Published
- 2023
- Full Text
- View/download PDF
30. Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets.
- Author
-
Haas KM, McGregor MJ, Bouhaddou M, Polacco BJ, Kim EY, Nguyen TT, Newton BW, Urbanowski M, Kim H, Williams MAP, Rezelj VV, Hardy A, Fossati A, Stevenson EJ, Sukerman E, Kim T, Penugonda S, Moreno E, Braberg H, Zhou Y, Metreveli G, Harjai B, Tummino TA, Melnyk JE, Soucheray M, Batra J, Pache L, Martin-Sancho L, Carlson-Stevermer J, Jureka AS, Basler CF, Shokat KM, Shoichet BK, Shriver LP, Johnson JR, Shaw ML, Chanda SK, Roden DM, Carter TC, Kottyan LC, Chisholm RL, Pacheco JA, Smith ME, Schrodi SJ, Albrecht RA, Vignuzzi M, Zuliani-Alvarez L, Swaney DL, Eckhardt M, Wolinsky SM, White KM, Hultquist JF, Kaake RM, García-Sastre A, and Krogan NJ
- Subjects
- Humans, Influenza A Virus, H3N2 Subtype metabolism, Proteomics, Virus Replication genetics, SARS-CoV-2, Antiviral Agents metabolism, Host-Pathogen Interactions genetics, Influenza A virus genetics, Influenza, Human genetics, Influenza A Virus, H5N1 Subtype genetics, COVID-19
- Abstract
Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
31. Next-generation proteomics for quantitative Jumbophage-bacteria interaction mapping.
- Author
-
Fossati A, Mozumdar D, Kokontis C, Mèndez-Moran M, Nieweglowska E, Pelin A, Li Y, Guo B, Krogan NJ, Agard DA, Bondy-Denomy J, and Swaney DL
- Subjects
- Bacteria, Chemical Fractionation, Chromatography, Affinity, Proteomics, Bacteriophages genetics
- Abstract
Host-pathogen interactions are pivotal in regulating establishment, progression, and outcome of an infection. While affinity-purification mass spectrometry has become instrumental in characterizing such interactions, it suffers from limitations in scalability and biological authenticity. Here we present the use of co-fractionation mass spectrometry for high throughput analysis of host-pathogen interactions from native viral infections of two jumbophages (ϕKZ and ϕPA3) in Pseudomonas aeruginosa. This approach enabled the detection of > 6000 unique host-pathogen interactions for each phage, encompassing > 50% of their respective proteomes. This deep coverage provided evidence for interactions between KZ-like phage proteins and the host ribosome, and revealed protein complexes for previously undescribed phage ORFs, including a ϕPA3 complex showing strong structural and sequence similarity to ϕKZ non-virion RNA polymerase. Interactome-wide comparison across phages showed similar perturbed protein interactions suggesting fundamentally conserved mechanisms of phage predation within the KZ-like phage family. To enable accessibility to this data, we developed PhageMAP, an online resource for network query, visualization, and interaction prediction ( https://phagemap.ucsf.edu/ ). We anticipate this study will lay the foundation for the application of co-fractionation mass spectrometry for the scalable profiling of host-pathogen interactomes and protein complex dynamics upon infection., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
32. The microenvironment dictates glycocalyx construction and immune surveillance.
- Author
-
Tharp KM, Park S, Timblin GA, Richards AL, Berg JA, Twells NM, Riley NM, Peltan EL, Shon DJ, Stevenson E, Tsui K, Palomba F, Lefebvre AEYT, Soens RW, Ayad NME, Hoeve-Scott JT, Healy K, Digman M, Dillin A, Bertozzi CR, Swaney DL, Mahal LK, Cantor JR, Paszek MJ, and Weaver VM
- Abstract
Efforts to identify anti-cancer therapeutics and understand tumor-immune interactions are built with in vitro models that do not match the microenvironmental characteristics of human tissues. Using in vitro models which mimic the physical properties of healthy or cancerous tissues and a physiologically relevant culture medium, we demonstrate that the chemical and physical properties of the microenvironment regulate the composition and topology of the glycocalyx. Remarkably, we find that cancer and age-related changes in the physical properties of the microenvironment are sufficient to adjust immune surveillance via the topology of the glycocalyx, a previously unknown phenomenon observable only with a physiologically relevant culture medium., Competing Interests: Competing Interests J.R.C. is an inventor on an issued patent for Human Plasma-Like Medium (HPLM) assigned to the Whitehead Institute (Application number: PCT/US2017/061377. Patent number: 11453858. Issue date: 09/27/2022)
- Published
- 2023
- Full Text
- View/download PDF
33. Cross-family small GTPase ubiquitination by the intracellular pathogen Legionella pneumophila .
- Author
-
Steinbach AM, Bhadkamkar VL, Jimenez-Morales D, Stevenson E, Jang GM, Krogan NJ, Swaney DL, and Mukherjee S
- Abstract
The intracellular bacterial pathogen Legionella pneumophila (L.p.) manipulates eukaryotic host ubiquitination machinery to form its replicative vacuole. While nearly 10% of L.p. 's arsenal of ~330 secreted effector proteins have been biochemically characterized as ubiquitin ligases or deubiquitinases, a comprehensive measure of temporally resolved changes in the endogenous host ubiquitinome during infection has not been undertaken. To elucidate how L.p hijacks ubiquitin signaling within the host cell, we undertook a proteome-wide analysis of changes in protein ubiquitination during infection. We discover that L.p. infection results in increased ubiquitination of host proteins regulating subcellular trafficking and membrane dynamics, most notably 63 of ~160 mammalian Ras superfamily small GTPases. We determine that these small GTPases predominantly undergo non-degradative monoubiquitination, and link ubiquitination to recruitment to the Legionella -containing vacuole membrane. Finally, we find that the bacterial effectors SidC/SdcA play a central, but likely indirect, role in cross-family small GTPase ubiquitination. This work highlights the extensive reconfiguration of host ubiquitin signaling by bacterial effectors during infection and establishes simultaneous ubiquitination of small GTPases across the Ras superfamily as a novel consequence of L.p. infection. This work positions L.p. as a tool to better understand how small GTPases can be regulated by ubiquitination in uninfected contexts.
- Published
- 2023
- Full Text
- View/download PDF
34. Functional analysis of a common BAG3 allele associated with protection from heart failure.
- Author
-
Perez-Bermejo JA, Judge LM, Jensen CL, Wu K, Watry HL, Truong A, Ho JJ, Carter M, Runyon WV, Kaake RM, Pulido EH, Mandegar MA, Swaney DL, So PL, Krogan NJ, and Conklin BR
- Subjects
- Humans, Alleles, Genetic Predisposition to Disease, Phenotype, Haplotypes, Adaptor Proteins, Signal Transducing genetics, Adaptor Proteins, Signal Transducing metabolism, Heart Failure genetics, Heart Failure metabolism, Heart Failure prevention & control, Heart Failure pathology, Myocytes, Cardiac metabolism, Apoptosis Regulatory Proteins genetics, Apoptosis Regulatory Proteins metabolism, Induced Pluripotent Stem Cells metabolism
- Abstract
Multiple genetic association studies have correlated a common allelic block linked to the BAG3 gene with a decreased incidence of heart failure, but the molecular mechanism remains elusive. In this study, we used induced pluripotent stem cells to test if the only coding variant in this allele block, BAG3
C151R , alters protein and cellular function in human cardiomyocytes. Quantitative protein interaction analysis identified changes in BAG3C151R protein partners specific to cardiomyocytes. Knockdown of genes encoding for BAG3-interacting factors in cardiomyocytes followed by myofibrillar analysis revealed that BAG3C151R associates more strongly with proteins involved in the maintenance of myofibrillar integrity. Finally, we demonstrate that cardiomyocytes expressing the BAG3C151R variant have improved response to proteotoxic stress in a dose-dependent manner. This study suggests that BAG3C151R could be responsible for the cardioprotective effect of the haplotype block, by increasing cardiomyocyte protection from stress. Preferential binding partners of BAG3C151R may reveal potential targets for cardioprotective therapies., (© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2023
- Full Text
- View/download PDF
35. Deep learning from harmonized peptide libraries enables retention time prediction of diverse post translational modifications.
- Author
-
Wilburn DB, Shannon AE, Spicer V, Richards AL, Yeung D, Swaney DL, Krokhin OV, and Searle BC
- Abstract
In proteomics experiments, peptide retention time (RT) is an orthogonal property to fragmentation when assessing detection confidence. Advances in deep learning enable accurate RT prediction for any peptide from sequence alone, including those yet to be experimentally observed. Here we present Chronologer, an open-source software tool for rapid and accurate peptide RT prediction. Using new approaches to harmonize and false-discovery correct across independently collected datasets, Chronologer is built on a massive database with >2.2 million peptides including 10 common post-translational modification (PTM) types. By linking knowledge learned across diverse peptide chemistries, Chronologer predicts RTs with less than two-thirds the error of other deep learning tools. We show how RT for rare PTMs, such as OGlcNAc, can be learned with high accuracy using as few as 10-100 example peptides in newly harmonized datasets. This iteratively updatable workflow enables Chronologer to comprehensively predict RTs for PTM-marked peptides across entire proteomes.
- Published
- 2023
- Full Text
- View/download PDF
36. Quantitative Proteomic Analysis Reveals apoE4-Dependent Phosphorylation of the Actin-Regulating Protein VASP.
- Author
-
Cakir Z, Lord SJ, Zhou Y, Jang GM, Polacco BJ, Eckhardt M, Jimenez-Morales D, Newton BW, Orr AL, Johnson JR, da Cruz A, Mullins RD, Krogan NJ, Mahley RW, and Swaney DL
- Subjects
- Actins metabolism, Apolipoprotein E3 genetics, Apolipoprotein E3 metabolism, Apolipoproteins E genetics, Apolipoproteins E metabolism, Phosphorylation, Proteomics, Animals, Mice, Alzheimer Disease metabolism, Apolipoprotein E4 genetics, Apolipoprotein E4 metabolism
- Abstract
Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease. While neurons generally produce a minority of the apoE in the central nervous system, neuronal expression of apoE increases dramatically in response to stress and is sufficient to drive pathology. Currently, the molecular mechanisms of how apoE4 expression may regulate pathology are not fully understood. Here, we expand upon our previous studies measuring the impact of apoE4 on protein abundance to include the analysis of protein phosphorylation and ubiquitylation signaling in isogenic Neuro-2a cells expressing apoE3 or apoE4. ApoE4 expression resulted in a dramatic increase in vasodilator-stimulated phosphoprotein (VASP) S235 phosphorylation in a protein kinase A (PKA)-dependent manner. This phosphorylation disrupted VASP interactions with numerous actin cytoskeletal and microtubular proteins. Reduction of VASP S235 phosphorylation via PKA inhibition resulted in a significant increase in filopodia formation and neurite outgrowth in apoE4-expressing cells, exceeding levels observed in apoE3-expressing cells. Our results highlight the pronounced and diverse impact of apoE4 on multiple modes of protein regulation and identify protein targets to restore apoE4-related cytoskeletal defects., Competing Interests: Conflict of interest The N. J. K. laboratory has received research support from Vir Biotechnology, F. Hoffmann-La Roche, and Rezo Therapeutics. N. J. K. has financially compensated consulting agreements with the Icahn School of Medicine at Mount Sinai, New York, Maze Therapeutics, Interline Therapeutics, Rezo Therapeutics, GEn1E Lifesciences, Inc, and Twist Bioscience Corp. He is on the Board of Directors of Rezo Therapeutics and is a shareholder in Tenaya Therapeutics, Maze Therapeutics, Rezo Therapeutics, and Interline Therapeutics. D. L. S. has a consulting agreement with Maze Therapeutics and Rezo Therapeutics. R. W. M. is the cofounder and shareholder of Escape Bio, Inc. R. W. M. is the CEO, CSO, and shareholder of the stem cell company GABAeron, Inc. A. d. C. is an employee of GABAeron, Inc., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
37. Next-generation interaction proteomics for quantitative Jumbophage-bacteria interaction mapping.
- Author
-
Fossati A, Mozumdar D, Kokontis C, Mèndez-Moran M, Nieweglowska E, Pelin A, Li Y, Guo B, Krogan NJ, Agard DA, Bondy-Denomy J, and Swaney DL
- Abstract
Host-pathogen interactions (HPIs) are pivotal in regulating establishment, progression, and outcome of an infection. Affinity-purification mass spectrometry has become instrumental for the characterization of HPIs, however the targeted nature of exogenously expressing individual viral proteins has limited its utility to the analysis of relatively small pathogens. Here we present the use of co-fractionation mass spectrometry (SEC-MS) for the high-throughput analysis of HPIs from native viral infections of two jumbophages ( ϕ KZ and ϕ PA3) in Pseudomonas aeruginosa . This enabled the detection > 6000 unique host-pathogen and > 200 pathogen-pathogen interactions for each phage, encompassing > 50% of the phage proteome. Interactome-wide comparison across phages showed similar perturbed protein interactions suggesting fundamentally conserved mechanisms of phage predation within the KZ-like phage family. Prediction of novel ORFs revealed a ϕ PA3 complex showing strong structural and sequence similarity to ϕ KZ nvRNAp, suggesting ϕ PA3 also possesses two RNA polymerases acting at different stages of the infection cycle. We further expanded our understanding on the molecular organization of the virion packaged and injected proteome by identifying 23 novel virion components and 5 novel injected proteins, as well as providing the first evidence for interactions between KZ-like phage proteins and the host ribosome. To enable accessibility to this data, we developed PhageMAP, an online resource for network query, visualization, and interaction prediction ( https://phagemap.ucsf.edu/ ). We anticipate this study will lay the foundation for the application of co-fractionation mass spectrometry for the scalable profiling of hostpathogen interactomes and protein complex dynamics upon infection.
- Published
- 2023
- Full Text
- View/download PDF
38. Oncogenic PKA signaling increases c-MYC protein expression through multiple targetable mechanisms.
- Author
-
Chan GKL, Maisel S, Hwang YC, Pascual BC, Wolber RRB, Vu P, Patra KC, Bouhaddou M, Kenerson HL, Lim HC, Long D, Yeung RS, Sethupathy P, Swaney DL, Krogan NJ, Turnham RE, Riehle KJ, Scott JD, Bardeesy N, and Gordan JD
- Subjects
- Humans, Glycogen Synthase Kinase 3 metabolism, Signal Transduction, Proto-Oncogene Proteins c-myc genetics, Proto-Oncogene Proteins c-myc metabolism, Cell Line, Tumor, Cyclic AMP-Dependent Protein Kinases metabolism, Carcinoma, Hepatocellular genetics
- Abstract
Genetic alterations that activate protein kinase A (PKA) are found in many tumor types. Yet, their downstream oncogenic signaling mechanisms are poorly understood. We used global phosphoproteomics and kinase activity profiling to map conserved signaling outputs driven by a range of genetic changes that activate PKA in human cancer. Two signaling networks were identified downstream of PKA: RAS/MAPK components and an Aurora Kinase A (AURKA)/glycogen synthase kinase (GSK3) sub-network with activity toward MYC oncoproteins. Findings were validated in two PKA-dependent cancer models: a novel, patient-derived fibrolamellar carcinoma (FLC) line that expresses a DNAJ-PKAc fusion and a PKA-addicted melanoma model with a mutant type I PKA regulatory subunit. We identify PKA signals that can influence both de novo translation and stability of the proto-oncogene c-MYC. However, the primary mechanism of PKA effects on MYC in our cell models was translation and could be blocked with the eIF4A inhibitor zotatifin. This compound dramatically reduced c-MYC expression and inhibited FLC cell line growth in vitro. Thus, targeting PKA effects on translation is a potential treatment strategy for FLC and other PKA-driven cancers., Competing Interests: GC, SM, YH, BP, RW, PV, KP, MB, HK, HL, DL, RY, PS, DS, NK, RT, KR, JS, NB, JG No competing interests declared, (© 2023, Chan et al.)
- Published
- 2023
- Full Text
- View/download PDF
39. Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis.
- Author
-
Kehrer T, Cupic A, Ye C, Yildiz S, Bouhhadou M, Crossland NA, Barrall E, Cohen P, Tseng A, Çağatay T, Rathnasinghe R, Flores D, Jangra S, Alam F, Mena N, Aslam S, Saqi A, Marin A, Rutkowska M, Ummadi MR, Pisanelli G, Richardson RB, Veit EC, Fabius JM, Soucheray M, Polacco BJ, Evans MJ, Swaney DL, Gonzalez-Reiche AS, Sordillo EM, van Bakel H, Simon V, Zuliani-Alvarez L, Fontoura BMA, Rosenberg BR, Krogan NJ, Martinez-Sobrido L, García-Sastre A, and Miorin L
- Abstract
We and others have previously shown that the SARS-CoV-2 accessory protein ORF6 is a powerful antagonist of the interferon (IFN) signaling pathway by directly interacting with Nup98-Rae1 at the nuclear pore complex (NPC) and disrupting bidirectional nucleo-cytoplasmic trafficking. In this study, we further assessed the role of ORF6 during infection using recombinant SARS-CoV-2 viruses carrying either a deletion or a well characterized M58R loss-of-function mutation in ORF6. We show that ORF6 plays a key role in the antagonism of IFN signaling and in viral pathogenesis by interfering with karyopherin(importin)-mediated nuclear import during SARS-CoV-2 infection both in vitro , and in the Syrian golden hamster model in vivo . In addition, we found that ORF6-Nup98 interaction also contributes to inhibition of cellular mRNA export during SARS-CoV-2 infection. As a result, ORF6 expression significantly remodels the host cell proteome upon infection. Importantly, we also unravel a previously unrecognized function of ORF6 in the modulation of viral protein expression, which is independent of its function at the nuclear pore. Lastly, we characterized the ORF6 D61L mutation that recently emerged in Omicron BA.2 and BA.4 and demonstrated that it is able to disrupt ORF6 protein functions at the NPC and to impair SARS-CoV-2 innate immune evasion strategies. Importantly, the now more abundant Omicron BA.5 lacks this loss-of-function polymorphism in ORF6. Altogether, our findings not only further highlight the key role of ORF6 in the antagonism of the antiviral innate immune response, but also emphasize the importance of studying the role of non-spike mutations to better understand the mechanisms governing differential pathogenicity and immune evasion strategies of SARS-CoV-2 and its evolving variants., One Sentence Summary: SARS-CoV-2 ORF6 subverts bidirectional nucleo-cytoplasmic trafficking to inhibit host gene expression and contribute to viral pathogenesis.
- Published
- 2022
- Full Text
- View/download PDF
40. Resistance to ATR Inhibitors Is Mediated by Loss of the Nonsense-Mediated Decay Factor UPF2.
- Author
-
O'Leary PC, Chen H, Doruk YU, Williamson T, Polacco B, McNeal AS, Shenoy T, Kale N, Carnevale J, Stevenson E, Quigley DA, Chou J, Feng FY, Swaney DL, Krogan NJ, Kim M, Diolaiti ME, and Ashworth A
- Subjects
- Humans, Proteomics, Protein Kinase Inhibitors, Nonsense Mediated mRNA Decay, RNA-Binding Proteins, Ataxia Telangiectasia Mutated Proteins, Stomach Neoplasms
- Abstract
Over one million cases of gastric cancer are diagnosed each year globally, and the metastatic disease continues to have a poor prognosis. A significant proportion of gastric tumors have defects in the DNA damage response pathway, creating therapeutic opportunities through synthetic lethal approaches. Several small-molecule inhibitors of ATR, a key regulator of the DNA damage response, are now in clinical development as targeted agents for gastric cancer. Here, we performed a large-scale CRISPR interference screen to discover genetic determinants of response and resistance to ATR inhibitors (ATRi) in gastric cancer cells. Among the top hits identified as mediators of ATRi response were UPF2 and other components of the nonsense-mediated decay (NMD) pathway. Loss of UPF2 caused ATRi resistance across multiple gastric cancer cell lines. Global proteomic, phosphoproteomic, and transcriptional profiling experiments revealed that cell-cycle progression and DNA damage responses were altered in UPF2-mutant cells. Further studies demonstrated that UPF2-depleted cells failed to accumulate in G1 following treatment with ATRi. UPF2 loss also reduced transcription-replication collisions, which has previously been associated with ATRi response, thereby suggesting a possible mechanism of resistance. Our results uncover a novel role for NMD factors in modulating response to ATRi in gastric cancer, highlighting a previously unknown mechanism of resistance that may inform the clinical use of these drugs., Significance: Loss of NMD proteins promotes resistance to ATR inhibitors in gastric cancer cells, which may provide a combination of therapeutic targets and biomarkers to improve the clinical utility of these drugs., (©2022 American Association for Cancer Research.)
- Published
- 2022
- Full Text
- View/download PDF
41. Reduced endosomal microautophagy activity in aging associates with enhanced exocyst-mediated protein secretion.
- Author
-
Krause GJ, Diaz A, Jafari M, Khawaja RR, Agullo-Pascual E, Santiago-Fernández O, Richards AL, Chen KH, Dmitriev P, Sun Y, See SK, Abdelmohsen K, Mazan-Mamczarz K, Krogan NJ, Gorospe M, Swaney DL, Sidoli S, Bravo-Cordero JJ, Kampmann M, and Cuervo AM
- Subjects
- Aging, Animals, Autophagy physiology, Endosomes metabolism, Lysosomes metabolism, Mice, Protein Transport, Microautophagy, Proteome metabolism
- Abstract
Autophagy is essential for protein quality control and regulation of the functional proteome. Failure of autophagy pathways with age contributes to loss of proteostasis in aged organisms and accelerates the progression of age-related diseases. In this work, we show that activity of endosomal microautophagy (eMI), a selective type of autophagy occurring in late endosomes, declines with age and identify the sub-proteome affected by this loss of function. Proteomics of late endosomes from old mice revealed an aberrant glycation signature for Hsc70, the chaperone responsible for substrate targeting to eMI. Age-related Hsc70 glycation reduces its stability in late endosomes by favoring its organization into high molecular weight protein complexes and promoting its internalization/degradation inside late endosomes. Reduction of eMI with age associates with an increase in protein secretion, as late endosomes can release protein-loaded exosomes upon plasma membrane fusion. Our search for molecular mediators of the eMI/secretion switch identified the exocyst-RalA complex, known for its role in exocytosis, as a novel physiological eMI inhibitor that interacts with Hsc70 and acts directly at the late endosome membrane. This inhibitory function along with the higher exocyst-RalA complex levels detected in late endosomes from old mice could explain, at least in part, reduced eMI activity with age. Interaction of Hsc70 with components of the exocyst-RalA complex places this chaperone in the switch from eMI to secretion. Reduced intracellular degradation in favor of extracellular release of undegraded material with age may be relevant to the spreading of proteotoxicity associated with aging and progression of proteinopathies., (© 2022 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
42. Meningioma DNA methylation groups identify biological drivers and therapeutic vulnerabilities.
- Author
-
Choudhury A, Magill ST, Eaton CD, Prager BC, Chen WC, Cady MA, Seo K, Lucas CG, Casey-Clyde TJ, Vasudevan HN, Liu SJ, Villanueva-Meyer JE, Lam TC, Pu JK, Li LF, Leung GK, Swaney DL, Zhang MY, Chan JW, Qiu Z, Martin MV, Susko MS, Braunstein SE, Bush NAO, Schulte JD, Butowski N, Sneed PK, Berger MS, Krogan NJ, Perry A, Phillips JJ, Solomon DA, Costello JF, McDermott MW, Rich JN, and Raleigh DR
- Subjects
- DNA Methylation genetics, Humans, Neurofibromin 2 genetics, Proteomics, Meningeal Neoplasms genetics, Meningioma genetics
- Abstract
Meningiomas are the most common primary intracranial tumors. There are no effective medical therapies for meningioma patients, and new treatments have been encumbered by limited understanding of meningioma biology. Here, we use DNA methylation profiling on 565 meningiomas integrated with genetic, transcriptomic, biochemical, proteomic and single-cell approaches to show meningiomas are composed of three DNA methylation groups with distinct clinical outcomes, biological drivers and therapeutic vulnerabilities. Merlin-intact meningiomas (34%) have the best outcomes and are distinguished by NF2/Merlin regulation of susceptibility to cytotoxic therapy. Immune-enriched meningiomas (38%) have intermediate outcomes and are distinguished by immune infiltration, HLA expression and lymphatic vessels. Hypermitotic meningiomas (28%) have the worst outcomes and are distinguished by convergent genetic and epigenetic mechanisms driving the cell cycle and resistance to cytotoxic therapy. To translate these findings into clinical practice, we show cytostatic cell cycle inhibitors attenuate meningioma growth in cell culture, organoids, xenografts and patients., (© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.)
- Published
- 2022
- Full Text
- View/download PDF
43. The E3 ligase TRIM1 ubiquitinates LRRK2 and controls its localization, degradation, and toxicity.
- Author
-
Stormo AED, Shavarebi F, FitzGibbon M, Earley EM, Ahrendt H, Lum LS, Verschueren E, Swaney DL, Skibinski G, Ravisankar A, van Haren J, Davis EJ, Johnson JR, Von Dollen J, Balen C, Porath J, Crosio C, Mirescu C, Iaccarino C, Dauer WT, Nichols RJ, Wittmann T, Cox TC, Finkbeiner S, Krogan NJ, Oakes SA, and Hiniker A
- Subjects
- Cytoskeleton, Humans, Microtubule-Associated Proteins, Microtubules, Mutation, Phosphorylation, Transcription Factors, Ubiquitin-Protein Ligases genetics, Ubiquitin-Protein Ligases metabolism, Ubiquitination, rab GTP-Binding Proteins metabolism, Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 genetics, Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 metabolism, Parkinson Disease metabolism, Protein Serine-Threonine Kinases genetics, Tripartite Motif Proteins metabolism
- Abstract
Missense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD); however, pathways regulating LRRK2 subcellular localization, function, and turnover are not fully defined. We performed quantitative mass spectrometry-based interactome studies to identify 48 novel LRRK2 interactors, including the microtubule-associated E3 ubiquitin ligase TRIM1 (tripartite motif family 1). TRIM1 recruits LRRK2 to the microtubule cytoskeleton for ubiquitination and proteasomal degradation by binding LRRK2911-919, a nine amino acid segment within a flexible interdomain region (LRRK2853-981), which we designate the "regulatory loop" (RL). Phosphorylation of LRRK2 Ser910/Ser935 within LRRK2 RL influences LRRK2's association with cytoplasmic 14-3-3 versus microtubule-bound TRIM1. Association with TRIM1 modulates LRRK2's interaction with Rab29 and prevents upregulation of LRRK2 kinase activity by Rab29 in an E3-ligase-dependent manner. Finally, TRIM1 rescues neurite outgrowth deficits caused by PD-driving mutant LRRK2 G2019S. Our data suggest that TRIM1 is a critical regulator of LRRK2, controlling its degradation, localization, binding partners, kinase activity, and cytotoxicity., (© 2022 Stormo et al.)
- Published
- 2022
- Full Text
- View/download PDF
44. Data-Independent Acquisition Protease-Multiplexing Enables Increased Proteome Sequence Coverage Across Multiple Fragmentation Modes.
- Author
-
Richards AL, Chen KH, Wilburn DB, Stevenson E, Polacco BJ, Searle BC, and Swaney DL
- Subjects
- Amino Acid Sequence, Humans, Peptide Hydrolases genetics, Peptides chemistry, Proteome genetics, Proteomics methods
- Abstract
The use of multiple proteases has been shown to increase protein sequence coverage in proteomics experiments; however, due to the additional analysis time required, it has not been widely adopted in routine data-dependent acquisition (DDA) proteomic workflows. Alternatively, data-independent acquisition (DIA) has the potential to analyze multiplexed samples from different protease digests, but has been primarily optimized for fragmenting tryptic peptides. Here we evaluate a DIA multiplexing approach that combines three proteolytic digests (Trypsin, AspN, and GluC) into a single sample. We first optimize data acquisition conditions for each protease individually with both the canonical DIA fragmentation mode (beam type CID), as well as resonance excitation CID, to determine optimal consensus conditions across proteases. Next, we demonstrate that application of these conditions to a protease-multiplexed sample of human peptides results in similar protein identifications and quantitative performance as compared to trypsin alone, but enables up to a 63% increase in peptide detections, and a 45% increase in nonredundant amino acid detections. Nontryptic peptides enabled noncanonical protein isoform determination and resulted in 100% sequence coverage for numerous proteins, suggesting the utility of this approach in applications where sequence coverage is critical, such as protein isoform analysis.
- Published
- 2022
- Full Text
- View/download PDF
45. Publisher Correction: Evolution of enhanced innate immune evasion by SARS-CoV-2.
- Author
-
Thorne LG, Bouhaddou M, Reuschl AK, Zuliani-Alvarez L, Polacco B, Pelin A, Batra J, Whelan MVX, Hosmillo M, Fossati A, Ragazzini R, Jungreis I, Ummadi M, Rojc A, Turner J, Bischof ML, Obernier K, Braberg H, Soucheray M, Richards A, Chen KH, Harjai B, Memon D, Hiatt J, Rosales R, McGovern BL, Jahun A, Fabius JM, White K, Goodfellow IG, Takeuchi Y, Bonfanti P, Shokat K, Jura N, Verba K, Noursadeghi M, Beltrao P, Kellis M, Swaney DL, García-Sastre A, Jolly C, Towers GJ, and Krogan NJ
- Published
- 2022
- Full Text
- View/download PDF
46. Tau interactome maps synaptic and mitochondrial processes associated with neurodegeneration.
- Author
-
Tracy TE, Madero-Pérez J, Swaney DL, Chang TS, Moritz M, Konrad C, Ward ME, Stevenson E, Hüttenhain R, Kauwe G, Mercedes M, Sweetland-Martin L, Chen X, Mok SA, Wong MY, Telpoukhovskaia M, Min SW, Wang C, Sohn PD, Martin J, Zhou Y, Luo W, Trojanowski JQ, Lee VMY, Gong S, Manfredi G, Coppola G, Krogan NJ, Geschwind DH, and Gan L
- Subjects
- Alzheimer Disease genetics, Amino Acids metabolism, Biotinylation, Brain metabolism, Brain pathology, Cell Nucleus metabolism, Disease Progression, Energy Metabolism, Frontotemporal Dementia genetics, Humans, Induced Pluripotent Stem Cells metabolism, Mutant Proteins metabolism, Mutation genetics, Nerve Degeneration pathology, Neurons metabolism, Protein Binding, Protein Domains, Proteomics, Severity of Illness Index, Subcellular Fractions metabolism, Tauopathies genetics, tau Proteins chemistry, Mitochondria metabolism, Nerve Degeneration metabolism, Protein Interaction Maps, Synapses metabolism, tau Proteins metabolism
- Abstract
Tau (MAPT) drives neuronal dysfunction in Alzheimer disease (AD) and other tauopathies. To dissect the underlying mechanisms, we combined an engineered ascorbic acid peroxidase (APEX) approach with quantitative affinity purification mass spectrometry (AP-MS) followed by proximity ligation assay (PLA) to characterize Tau interactomes modified by neuronal activity and mutations that cause frontotemporal dementia (FTD) in human induced pluripotent stem cell (iPSC)-derived neurons. We established interactions of Tau with presynaptic vesicle proteins during activity-dependent Tau secretion and mapped the Tau-binding sites to the cytosolic domains of integral synaptic vesicle proteins. We showed that FTD mutations impair bioenergetics and markedly diminished Tau's interaction with mitochondria proteins, which were downregulated in AD brains of multiple cohorts and correlated with disease severity. These multimodal and dynamic Tau interactomes with exquisite spatial resolution shed light on Tau's role in neuronal function and disease and highlight potential therapeutic targets to block Tau-mediated pathogenesis., Competing Interests: Declaration of interests L.G. is a founder of Aeton Therapeutics. N.J.K. received research support from Vir Biotechnology and F. Hoffmann-La Roche; has consulting agreements with the Icahn School of Medicine at Mount Sinai, New York, Maze Therapeutics, and Interline Therapeutics; is a shareholder in Tenaya Therapeutics, Maze Therapeutics, and Interline Therapeutics; and is a financially compensated Scientific Advisory Board Member for GEn1E Life sciences., (Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
47. Therapeutic implications of activating noncanonical PIK3CA mutations in head and neck squamous cell carcinoma.
- Author
-
Jin N, Keam B, Cho J, Lee MJ, Kim HR, Torosyan H, Jura N, Ng PK, Mills GB, Li H, Zeng Y, Barbash Z, Tarcic G, Kang H, Bauman JE, Kim MO, VanLandingham NK, Swaney DL, Krogan NJ, Johnson DE, and Grandis JR
- Subjects
- Animals, Class I Phosphatidylinositol 3-Kinases antagonists & inhibitors, Class I Phosphatidylinositol 3-Kinases chemistry, Class I Phosphatidylinositol 3-Kinases physiology, Head and Neck Neoplasms drug therapy, Humans, Male, Mice, Middle Aged, Protein Domains, Squamous Cell Carcinoma of Head and Neck drug therapy, Class I Phosphatidylinositol 3-Kinases genetics, Head and Neck Neoplasms genetics, Mutation, Squamous Cell Carcinoma of Head and Neck genetics, Thiazoles therapeutic use
- Abstract
Alpelisib selectively inhibits the p110α catalytic subunit of PI3Kα and is approved for treatment of breast cancers harboring canonical PIK3CA mutations. In head and neck squamous cell carcinoma (HNSCC), 63% of PIK3CA mutations occur at canonical hotspots. The oncogenic role of the remaining 37% of PIK3CA noncanonical mutations is incompletely understood. We report a patient with HNSCC with a noncanonical PIK3CA mutation (Q75E) who exhibited a durable (12 months) response to alpelisib in a phase II clinical trial. Characterization of all 32 noncanonical PIK3CA mutations found in HNSCC using several functional and phenotypic assays revealed that the majority (69%) were activating, including Q75E. The oncogenic impact of these mutations was validated in 4 cellular models, demonstrating that their activity was lineage independent. Further, alpelisib exhibited antitumor effects in a xenograft derived from a patient with HNSCC containing an activating noncanonical PIK3CA mutation. Structural analyses revealed plausible mechanisms for the functional phenotypes of the majority of the noncanonical PIK3CA mutations. Collectively, these findings highlight the importance of characterizing the function of noncanonical PIK3CA mutations and suggest that patients with HNSCC whose tumors harbor activating noncanonical PIK3CA mutations may benefit from treatment with PI3Kα inhibitors.
- Published
- 2021
- Full Text
- View/download PDF
48. Systems-level effects of allosteric perturbations to a model molecular switch.
- Author
-
Perica T, Mathy CJP, Xu J, Jang GΜ, Zhang Y, Kaake R, Ollikainen N, Braberg H, Swaney DL, Lambright DG, Kelly MJS, Krogan NJ, and Kortemme T
- Subjects
- Binding Sites genetics, Catalytic Domain genetics, GTPase-Activating Proteins metabolism, Guanine Nucleotide Exchange Factors metabolism, Guanosine Triphosphate metabolism, Kinetics, Protein Binding genetics, Allosteric Regulation genetics, Monomeric GTP-Binding Proteins genetics, Monomeric GTP-Binding Proteins metabolism, Nuclear Proteins genetics, Nuclear Proteins metabolism, Point Mutation, Saccharomyces cerevisiae enzymology, Saccharomyces cerevisiae genetics, Saccharomyces cerevisiae Proteins genetics, Saccharomyces cerevisiae Proteins metabolism
- Abstract
Molecular switch proteins whose cycling between states is controlled by opposing regulators
1,2 are central to biological signal transduction. As switch proteins function within highly connected interaction networks3 , the fundamental question arises of how functional specificity is achieved when different processes share common regulators. Here we show that functional specificity of the small GTPase switch protein Gsp1 in Saccharomyces cerevisiae (the homologue of the human protein RAN)4 is linked to differential sensitivity of biological processes to different kinetics of the Gsp1 (RAN) switch cycle. We make 55 targeted point mutations to individual protein interaction interfaces of Gsp1 (RAN) and show through quantitative genetic5 and physical interaction mapping that Gsp1 (RAN) interface perturbations have widespread cellular consequences. Contrary to expectation, the cellular effects of the interface mutations group by their biophysical effects on kinetic parameters of the GTPase switch cycle and not by the targeted interfaces. Instead, we show that interface mutations allosterically tune the GTPase cycle kinetics. These results suggest a model in which protein partner binding, or post-translational modifications at distal sites, could act as allosteric regulators of GTPase switching. Similar mechanisms may underlie regulation by other GTPases, and other biological switches. Furthermore, our integrative platform to determine the quantitative consequences of molecular perturbations may help to explain the effects of disease mutations that target central molecular switches., (© 2021. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2021
- Full Text
- View/download PDF
49. Caveolin-1 and Sox-2 are predictive biomarkers of cetuximab response in head and neck cancer.
- Author
-
Bouhaddou M, Lee RH, Li H, Bhola NE, O'Keefe RA, Naser M, Zhu TR, Nwachuku K, Duvvuri U, Olshen AB, Roy R, Hechmer A, Bolen J, Keysar SB, Jimeno A, Mills GB, Vandenberg S, Swaney DL, Johnson DE, Krogan NJ, and Grandis JR
- Subjects
- Animals, Antineoplastic Agents, Immunological pharmacology, Cetuximab pharmacology, Head and Neck Neoplasms physiopathology, Humans, Mice, Antineoplastic Agents, Immunological therapeutic use, Biomarkers, Tumor metabolism, Caveolin 1 metabolism, Cetuximab therapeutic use, Head and Neck Neoplasms diagnosis, Head and Neck Neoplasms drug therapy, SOXB1 Transcription Factors metabolism
- Abstract
The epidermal growth factor receptor (EGFR) inhibitor cetuximab is the only FDA-approved oncogene-targeting therapy for head and neck squamous cell carcinoma (HNSCC). Despite variable treatment response, no biomarkers exist to stratify patients for cetuximab therapy in HNSCC. Here, we applied unbiased hierarchical clustering to reverse-phase protein array molecular profiles from patient-derived xenograft (PDX) tumors and revealed 2 PDX clusters defined by protein networks associated with EGFR inhibitor resistance. In vivo validation revealed unbiased clustering to classify PDX tumors according to cetuximab response with 88% accuracy. Next, a support vector machine classifier algorithm identified a minimalist biomarker signature consisting of 8 proteins - caveolin-1, Sox-2, AXL, STING, Brd4, claudin-7, connexin-43, and fibronectin - with expression that strongly predicted cetuximab response in PDXs using either protein or mRNA. A combination of caveolin-1 and Sox-2 protein levels was sufficient to maintain high predictive accuracy, which we validated in tumor samples from patients with HNSCC with known clinical response to cetuximab. These results support further investigation into the combined use of caveolin-1 and Sox-2 as predictive biomarkers for cetuximab response in the clinic.
- Published
- 2021
- Full Text
- View/download PDF
50. A protein network map of head and neck cancer reveals PIK3CA mutant drug sensitivity.
- Author
-
Swaney DL, Ramms DJ, Wang Z, Park J, Goto Y, Soucheray M, Bhola N, Kim K, Zheng F, Zeng Y, McGregor M, Herrington KA, O'Keefe R, Jin N, VanLandingham NK, Foussard H, Von Dollen J, Bouhaddou M, Jimenez-Morales D, Obernier K, Kreisberg JF, Kim M, Johnson DE, Jura N, Grandis JR, Gutkind JS, Ideker T, and Krogan NJ
- Subjects
- Animals, Carcinoma, Squamous Cell genetics, Cell Line, Tumor, Cell Movement, Female, Head and Neck Neoplasms genetics, Humans, Intracellular Signaling Peptides and Proteins metabolism, Mice, Mice, Nude, Microfilament Proteins metabolism, Mutation, Receptor, Fibroblast Growth Factor, Type 3 metabolism, Xenograft Model Antitumor Assays, Carcinoma, Squamous Cell metabolism, Class I Phosphatidylinositol 3-Kinases genetics, Class I Phosphatidylinositol 3-Kinases metabolism, Drug Resistance, Neoplasm genetics, Head and Neck Neoplasms metabolism, Protein Interaction Maps
- Abstract
We outline a framework for elucidating tumor genetic complexity through multidimensional protein-protein interaction maps and apply it to enhancing our understanding of head and neck squamous cell carcinoma. This network uncovers 771 interactions from cancer and noncancerous cell states, including WT and mutant protein isoforms. Prioritization of cancer-enriched interactions reveals a previously unidentified association of the fibroblast growth factor receptor tyrosine kinase 3 with Daple, a guanine-nucleotide exchange factor, resulting in activation of Gαi- and p21-activated protein kinase 1/2 to promote cancer cell migration. Additionally, we observe mutation-enriched interactions between the human epidermal growth factor receptor 3 (HER3) receptor tyrosine kinase and PIK3CA (the alpha catalytic subunit of phosphatidylinositol 3-kinase) that can inform the response to HER3 inhibition in vivo. We anticipate that the application of this framework will be valuable for translating genetic alterations into a molecular and clinical understanding of the underlying biology of many disease areas.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.