1. Interleukin-38 ameliorates myocardial Ischemia-Reperfusion injury via inhibition of NLRP3 inflammasome activation in fibroblasts through the IL-1R8/SYK axis.
- Author
-
Pan C, Shen R, Ding Y, Li Z, Dong C, Zhang J, Zhu R, Yu K, and Zeng Q
- Subjects
- Animals, Mice, Male, Disease Models, Animal, Cells, Cultured, Interleukin-1 metabolism, Humans, NLR Family, Pyrin Domain-Containing 3 Protein metabolism, Myocardial Reperfusion Injury metabolism, Myocardial Reperfusion Injury drug therapy, Myocardial Reperfusion Injury immunology, Myocardial Reperfusion Injury pathology, Fibroblasts drug effects, Inflammasomes metabolism, Syk Kinase metabolism, Syk Kinase antagonists & inhibitors, Mice, Inbred C57BL, Signal Transduction drug effects, Mice, Knockout
- Abstract
Objective: Although IL-38 is recognized for its regulatory role in a spectrum of chronic inflammatory diseases, investigations into its cardiac physiological and pathophysiological functions are nascent. Our aim was to delineate the biological impact of IL-38 in the context of myocardial ischemia-reperfusion injury (MIRI) and to uncover the mechanisms through which it exerts its effects., Methods and Results: In this study, we used an MIRI mouse model, LPS/ATP stimulation, and a hypoxia/reoxygenation cell model to determine the regulatory influence of IL-38 on MIRI. We observed that the administration of recombinant IL-38 to mice led to a reduction in infarct size, an enhancement in cardiac function, and a suppression of NLRP3 inflammasome activation. In contrast, genetic deletion of IL-38 was associated with an increase in infarct size, worsening of cardiac function, and upregulation of NLRP3 inflammasome activity. The detrimental effects associated with the absence of IL-38 were mitigated by the administration of a specific NLRP3 inhibitor, suggesting that the inhibition of NLRP3 is a critical component of the protective effect mediated by IL-38 in MIRI. In vitro assays revealed that IL-38 inhibited NLRP3 inflammasome activation in cardiac fibroblasts through the engagement of IL-1R8 and the modulation of SYK phosphorylation. Silencing of IL-1R8 negated the suppressive effect of IL-38 on the NLRP3 inflammasome., Conclusion: IL-38 acts as a potent negative regulator of inflammasome activation after MIRI. It achieves this regulatory effect within cardiac fibroblasts by inhibiting SYK phosphorylation, a process mediated by IL-1R8., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF