10 results on '"Sylvia Meunier Della Gatta"'
Search Results
2. Achieving high circularly polarized luminescence with push–pull helicenic systems: from rationalized design to top-emission CP-OLED applications
- Author
-
Bassem Jamoussi, Laura Abella, Benoit Racine, Sylvia Meunier-Della-Gatta, Thierry Roisnel, Nicolas Vanthuyne, Etienne Quesnel, Ludovic Favereau, Grégory Pieters, Kais Dhbaibi, Jeanne Crassous, Jochen Autschbach, Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Synthèse Caractérisation Analyse de la Matière (ScanMAT), Université de Rennes (UR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), University at Buffalo [SUNY] (SUNY Buffalo), State University of New York (SUNY), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut des Sciences Moléculaires de Marseille (ISM2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), King Abdulaziz University, Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), National Science Foundation, NSF: CHE-1855470, University at Buffalo, UB, University of Gabès, UNIVGB, Campus France, Université de Rennes 1, Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut de Chimie du CNRS (INC)
- Subjects
Dipole transition moment ,Luminescence ,Exciton ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,chemistry.chemical_compound ,Crucial parameters ,Stereochemistry ,Theoretical investigations ,OLED ,[CHIM]Chemical Sciences ,Relative orientation ,Circular polarization ,Luminescence process ,business.industry ,Excited states ,General Chemistry ,021001 nanoscience & nanotechnology ,Molecular orientation ,0104 chemical sciences ,Organic light emitting diodes (OLED) ,Chemistry ,Chiroptical properties ,Dipole ,Circularly polarized luminescence ,Helicene ,chemistry ,Excited state ,Optoelectronics ,Mutual orientation ,0210 nano-technology ,business ,Magnetic dipole - Abstract
While the development of chiral molecules displaying circularly polarized luminescence (CPL) has received considerable attention, the corresponding CPL intensity, glum, hardly exceeds 10−2 at the molecular level owing to the difficulty in optimizing the key parameters governing such a luminescence process. To address this challenge, we report here the synthesis and chiroptical properties of a new family of π-helical push–pull systems based on carbo[6]helicene, where the latter acts as either a chiral electron acceptor or a donor unit. This comprehensive experimental and theoretical investigation shows that the magnitude and relative orientation of the electric (μe) and magnetic (μm) dipole transition moments can be tuned efficiently with regard to the molecular chiroptical properties, which results in high glum values, i.e. up to 3–4 × 10−2. Our investigations revealed that the optimized mutual orientation of the electric and magnetic dipoles in the excited state is a crucial parameter to achieve intense helicene-mediated exciton coupling, which is a major contributor to the obtained strong CPL. Finally, top-emission CP-OLEDs were fabricated through vapor deposition, which afforded a promising gEl of around 8 × 10−3. These results bring about further molecular design guidelines to reach high CPL intensity and offer new insights into the development of innovative CP-OLED architectures., A CPL intensity of up to 3 × 10−2 is achieved in π-extended 6-helicene derivatives, owing to an intense helicene-mediated exciton coupling. Corresponding top-emission CP-OLEDs afforded a promising gEl of around 8 × 10−3.
- Published
- 2021
3. Experimental validation of dynamic activation of pixelated holograms for retinal projection display
- Author
-
Matthias Colard, Paul Legentil, Sylvia Meunier-Della-Gatta, Fabian Rainouard, Yann Lee, Olivier Haeberlé, and Christophe Martinez
- Published
- 2022
4. Study of a liquid crystal impregnated diffraction grating for active waveguide addressing
- Author
-
Matthias Colard, Benoit Racine, Sylvia Meunier-Della-Gatta, David Grosso, Badre Kerzabi, Kyllian Millard, Yann Lee, Aurélien Shum, Olivier Haeberlé, and Christophe Martinez
- Published
- 2022
5. P‐183: Ag:WO 3 Cermet as a Stable Cathode with Low and Tunable Reflectance for Top‐Emission OLED
- Author
-
Nicolas Vaxelaire, Etienne Quesnel, Baptiste Caron, Benoit Racine, Tony Maindron, and Sylvia Meunier-Della-Gatta
- Subjects
Materials science ,law ,business.industry ,OLED ,Optoelectronics ,Cermet ,business ,Reflectivity ,Cathode ,law.invention - Published
- 2019
6. Maximizing Chiral Perturbation on Thermally Activated Delayed Fluorescence Emitters and Elaboration of the First Top‐Emission Circularly Polarized OLED
- Author
-
Sylvia Meunier-Della-Gatta, Pierre Thuéry, Alaric Desmarchelier, Ludovic Favereau, Benoit Racine, Gilles Muller, Romain Plais, Etienne Quesnel, Lucas Frédéric, Jeanne Crassous, Leonid Lavnevich, Cassie Villafuerte, Jean-Pierre Dognon, Grégory Pieters, Gilles Clavier, Service de Chimie Bio-Organique et de Marquage (SCBM), Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Department of Chemistry [San José], San Jose State University [San José] (SJSU), Photophysique et Photochimie Supramoléculaires et Macromoléculaires (PPSM), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Structure et Dynamique par Résonance Magnétique (LCF) (LSDRM), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire de Chimie Moléculaire et de Catalyse pour l'Energie (ex LCCEF) (LCMCE), Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), 'Programme Transverse de Compétences du CEA' (POLEM project), ANR-11-IDEX-0003,IPS,Idex Paris-Saclay(2011), ANR-19-CE07-0040,iChiralight,Molécules Chirales Innovantes pour la Construction de Dispositifs Emetteurs de Lumière Circulairement Polarisée Performants(2019), San Jose State University [San Jose] (SJSU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Perturbation (astronomy) ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Article ,law.invention ,Biomaterials ,chemistry.chemical_compound ,law ,Electrochemistry ,OLED ,Aggregation-induced emission ,Common emitter ,Carbazole ,business.industry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Fluorescence ,Circularly Polarized Luminescence ,Aggregation induced emission ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,chemistry ,Optoelectronics ,0210 nano-technology ,Luminescence ,business ,Thermally Activated Delayed Fluorescence ,Light-emitting diode - Abstract
International audience; Molecular designs merging circularly polarized luminescence (CPL) and thermally activated delayed fluorescence (CP-TADF) using the concept of chiral perturbation appeared recently as a cornerstone for the development of efficient CP-organic light emitting diodes (CP-OLED). Such devices could strongly increase the energy efficiency and performances of conventional OLED displays, in which 50% of the emitted light is often lost due to the use of antiglare filters. In this context, herein, ten couples of enantiomers derived from novel chiral emitter designs are reported, exhibiting CPL, TADF, and aggregation induced enhancement emission properties (AIEE). Representing the first structure properties relationship investigation for CP-TADF materials, this thorough experimental and theoretical work brings crucial findings on the key structural and electronic parameters (isomerism, nature of the carbazole substituents) governing the synergy between CPL and TADF properties. To conclude this study, the first top emission CP-OLED is elaborated as a new approach of generating CP light in comparison with classical bottom-emission CP-OLED architecture. Indeed, the top-emission configuration represents the only relevant device architecture for future microdisplay applications. Thereby, in addition to offer molecular guidelines to combine efficiently TADF and CPL properties, this study opens new avenues toward practical applications for CP-OLEDs.
- Published
- 2020
7. Langmuir-Schaeffer Monolayers of Colloidal Nanocrystals for Cost-Efficient Quantum Dot Light-Emitting Diodes
- Author
-
Cécile Philippot, Sylvia Meunier-Della-Gatta, Stéphanie Le Calvez, Hani Kanaan, Hélène Bourvon, Peter Reiss, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Electronique Moléculaire Organique et Hybride (LEMOH), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Structures et propriétés d'architectures moléculaire (SPRAM - UMR 5819), Institut Nanosciences et Cryogénie (INAC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Langmuir ,Materials science ,business.industry ,Mechanical Engineering ,PDMS stamp ,Color ,Nanotechnology ,law.invention ,Nanocrystal ,Mechanics of Materials ,Quantum dot ,law ,Quantum Dots ,Monolayer ,OLED ,Nanoparticles ,[CHIM]Chemical Sciences ,Optoelectronics ,Deposition (phase transition) ,General Materials Science ,Colloids ,Dimethylpolysiloxanes ,business ,Lighting ,Light-emitting diode - Abstract
Quantum dot (QD) LEDs of high color purity, and low turn-on voltage and leakage current are prepared using a solvent free method. First, a monolayer of QDs is formed at the air/water interface, which is then transferred with a PDMS stamp onto the device. The method is applicable to large substrates and reduces materials consumption as compared to other deposition techniques.
- Published
- 2012
8. P.141L:Late-News Poster: ALD-based Multilayer Encapsulation of PIN OLED: On the Stability of the Organic Layer in 85°C / 85% RH Storage Conditions
- Author
-
Ahlem Ghazouani, Bernard Aventurier, Tony Jullien, Emilie Viasnoff, Tony Maindron, Sylvia Meunier Della Gatta, Jean-Yves Simon, and Dominique Lafond
- Subjects
Atomic layer deposition ,Materials science ,business.industry ,OLED ,Organic layer ,Optoelectronics ,Thin film ,Inorganic layer ,business ,Decoupling (electronics) ,Encapsulation (networking) ,Diode - Abstract
A multilayer thin-film encapsulation process based on the use of Atomic Layer Deposition of Al2O3 for organic light-emitting diodes (OLED) has been presented at the last SID Display Week 2012 by LETI. It is based on the use of a generic stack of the kind Al2O3/organic layer/inorganic layer. When comes the time to evaluate the performances of this stack in severe climatic storage conditions, it turns out that the intrinsic stability of the organic decoupling layer becomes of outmost importance. This work details the behavior of the thin film barrier stack when exposed to 85 °C / 85 %RH climatic conditions.
- Published
- 2013
9. A step by step strategy for solution-processed quantum dots light emitting diodes
- Author
-
David Vaufrey, Stéphanie Le Calvez, Hélène Bourvon, and Sylvia Meunier Della Gatta
- Subjects
Spin coating ,Materials science ,business.industry ,Layer by layer ,Nanotechnology ,engineering.material ,law.invention ,PEDOT:PSS ,Coating ,Quantum dot ,law ,engineering ,OLED ,Optoelectronics ,business ,Layer (electronics) ,Light-emitting diode - Abstract
Solution-based printing and coating processes have the potential to dramatically reduce the production costs of Organic Light Emitting Diodes. This is particularly true for Quantum Dots Light Emitting Diode (QDLEDs), the newborn in the field of LEDs, due to quantum dots price prohibiting wastage. Here, we report our latest results on the development of solutionprocessed QDLEDs. We have implemented a layer by layer strategy, from a whole evaporated small molecule based OLED to a hybrid QDLED developed by wet deposition techniques for the first layers and by evaporation for the last ones. Intermediate steps are discussed in this paper. First, we have worked on a poly(3,4-ethylenedioxythiophene poly(styrenesulfonate) (PEDOT:PSS) layer. The PEDOT:PSS formulation for inkjet printing and spin coating were optimised: wettability on an ITO substrate, jettability of the inkjet formulation and baking conditions were studied. Additives as surfactant and ethylene glycol were added to the commercial inkjet grade solution to improve the deposition process. As a consequence to this study, anisotropic conductivity of PEDOT:PSS was observed and is reported here. In particular, ethylene glycol demonstrated a strong ability to increase the parallel conductivity by several orders of magnitude, but not the vertical one. Then, inkjet-printed and spin-coated device performances are compared to complete this first study. Hybrid devices with an efficacy of 12cd/A at 4V were obtained, with 2.17 % of EQE, and a luminance of 4000 cd/m 2 at 4V. Finally, we succeeded in the development of our first QDLED based on CdSe core/ CdSZnS shell quantum dots emitting at a wavelength of 600nm. Quantum dots were inkjet printed, in order to waste as little as possible this very expensive material.
- Published
- 2011
10. On the way to wafer-level quantum dot light-emitting diodes
- Author
-
Peter Reiss, Cécile Philippot, Hélène Bourvon, Hani Kanaan, Sylvia Meunier Della Gatta, Stéphanie Le Calvez, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Electronique Moléculaire Organique et Hybride (LEMOH), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Structures et propriétés d'architectures moléculaire (SPRAM - UMR 5819), Institut Nanosciences et Cryogénie (INAC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
wet techniques ,Spin coating ,Materials science ,Renewable Energy, Sustainability and the Environment ,business.industry ,quantum dot ,engineering.material ,Electroluminescence ,Atomic and Molecular Physics, and Optics ,law.invention ,Coating ,Quantum dot ,law ,engineering ,organic light-emitting diode ,[CHIM]Chemical Sciences ,Optoelectronics ,Wafer ,Quantum efficiency ,business ,Light-emitting diode ,Diode - Abstract
Solution-processed quantum dot light-emitting diodes (QDLEDs) have recently paved the way for low-cost and color-saturated displays. Indeed, quantum dots (QDs) have the appealing property of emitting at a tunable wavelength determined by their chemical composition and diameter. Therefore, QDLED electroluminescent spectra exhibit a narrow bandwidth (FWHM at approximately 30 nm) and QD-based displays offer high color purity and saturation. Moreover, QDs may be deposited by spin coating, inkjet printing, and stamping, methods already implemented for polymer LEDs at the wafer level. We report the optimization steps and performances of our recent developed devices emitting in the visible range. We present pros and cons relative to each method of QD deposition and develop a strategy for realizing wafer-level QDLEDs.
- Published
- 2012
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.