1. Bootstrapping traceless symmetric $O(N)$ scalars
- Author
-
Reehorst, Marten, Refinetti, Maria, Vichi, Alessandro, Institut des Hautes Etudes Scientifiques (IHES), IHES, Systèmes Désordonnés et Applications, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and HEP, INSPIRE
- Subjects
High Energy Physics - Theory ,family ,[PHYS.PHYS.PHYS-GEN-PH] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,FOS: Physical sciences ,General Physics and Astronomy ,[PHYS.HLAT] Physics [physics]/High Energy Physics - Lattice [hep-lat] ,singlet: scalar ,Condensed Matter - Strongly Correlated Electrons ,effective field theory ,High Energy Physics - Lattice ,correlation function ,bootstrap ,Condensed Matter - Statistical Mechanics ,lattice ,kink ,Statistical Mechanics (cond-mat.stat-mech) ,Strongly Correlated Electrons (cond-mat.str-el) ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat] ,High Energy Physics - Lattice (hep-lat) ,operator: dimension ,critical phenomena ,O(N) ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,High Energy Physics - Theory (hep-th) ,fixed point ,[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th] - Abstract
We use numerical bootstrap techniques to study correlation functions of traceless symmetric tensors of $O(N)$ with two indexes $t_{ij}$. We obtain upper bounds on operator dimensions for all the relevant representations and several values of $N$. We discover several families of kinks, which do not correspond to any known model and we discuss possible candidates. We then specialize to the case $N=4$, which has been conjectured to describe a phase transition in the antiferromagnetic real projective model ARP$^{3}$. Lattice simulations provide strong evidence for the existence of a second order phase transition, while an effective field theory approach does not predict any fixed point. We identify a set of assumptions that constrain operator dimensions to a closed region overlapping with the lattice prediction. The region is still present after pushing the numerics in the single correlator case or when considering a mixed system involving $t$ and the lowest dimension scalar singlet., 49 pages, 27 figures Fixed minor typos. Added a subsection on "External operator as the lowest dimensional operator of its kind". Included bounds using this additional assumption in figures 8a and 8b
- Published
- 2023