44 results on '"T. Aniel"'
Search Results
2. Recent EUROfusion Achievements in Support of Computationally Demanding Multiscale Fusion Physics Simulations and Integrated Modeling
- Author
-
F. Robin, A. Maslennikov, Marcin Plociennik, D. Figat, T. T. Ribeiro, Frederic Imbeaux, Everton Ferreira Rossi, S. D. Pinches, L. Fleury, M. Hölzl, Irina Voitsekhovitch, K. S. Kang, D. Kaljun, T.-M. Tran, H. Leggate, T. B. Feher, Roman Hatzky, José Maria N. David, D. P. Coster, Stéphane Heuraux, David Tskhakaya, Albert Gutierrez-Milla, Bartek Palak, J. Signoret, F. Iannone, D. Yadykin, S. Mochalskyy, M. Martone, D. C. McDonald, J. Hollocombe, Giovanni Bracco, C. Vouland, Richard Leopold Kamendje, J. Noe, X. Sáez, Michal Owsiak, O. Hoenen, F. da Silva, V. Pais, T. Aniel, Gabriele Manduchi, and Barcelona Supercomputing Center
- Subjects
Nuclear and High Energy Physics ,Tokamak ,Speedup ,Infrastructure for integrated modeling ,infrastructure for integrated modeling ,Code optimization and parallelization ,01 natural sciences ,7. Clean energy ,010305 fluids & plasmas ,law.invention ,code optimization and parallelization ,Physics::Plasma Physics ,law ,0103 physical sciences ,Fusió nuclear ,General Materials Science ,Magnetohydrodynamic drive ,Aerospace engineering ,010306 general physics ,Civil and Structural Engineering ,Física [Àrees temàtiques de la UPC] ,business.industry ,Mechanical Engineering ,Suite ,Magnetic reconnection ,Supercomputer ,Nuclear Energy and Engineering ,Nuclear fusion ,Transient (oscillation) ,Enhanced Data Rates for GSM Evolution ,business ,High-performance computer - Abstract
Integrated modeling (IM) of present experiments and future tokamak reactors requires the provision of computational resources and numerical tools capable of simulating multiscale spatial phenomena as well as fast transient events and relatively slow plasma evolution within a reasonably short computational time. Recent progress in the implementation of the new computational resources for fusion applications in Europe based on modern supercomputer technologies (supercomputer MARCONI-FUSION), in the optimization and speedup of the EU fusion-related first-principle codes, and in the development of a basis for physics codes/modules integration into a centrally maintained suite of IM tools achieved within the EUROfusion Consortium is presented. Physics phenomena that can now be reasonably modelled in various areas (core turbulence and magnetic reconnection, edge and scrape-off layer physics, radio-frequency heating and current drive, magnetohydrodynamic model, reflectometry simulations) following successful code optimizations and parallelization are briefly described. Development activities in support to IM are summarized. They include support to (1) the local deployment of the IM infrastructure and access to experimental data at various host sites, (2) the management of releases for sophisticated IM workflows involving a large number of components, and (3) the performance optimization of complex IM workflows. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014 to 2018 under grant agreement 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission or ITER.
- Published
- 2018
- Full Text
- View/download PDF
3. Recent EUROfusion achievements in support to computationally demanding multi-scale fusion physics simulations and integrated modelling
- Author
-
Voitsekhovitch I., R. Hatzky, D. Coster, F. Imbeaux, D. C. McDonald, T. B. Fehér, K. S. Kang, H. Leggate, M. Martone, S. Mochalskyy, X. Sáez, T. Ribeiro, T.-M. Tran, A. Gutierrez-Milla, S. Heuraux, M. Hölzl, S. D. Pinches, F. da Silva, D. Tskhakaya, T. Aniel, D. Figat, L. Fleury, O. Hoenen, J. Hollocombe, D. Kaljun, G. Manduchi, M. Owsiak, V. Pais, B. Palak, M. Plociennik, J. Signoret, C. Vouland, and D. Yadykin
- Abstract
Integrated Modelling (IM) of present experiments and future tokamak-reactor requires numerical tools which could simulate spatially multi-scale phenomena as well as dynamically fast transient events and relatively slow plasma evolution within a reasonably fast computational time. The progress in the optimisation and speedup of the EU first-principle codes and in the development of a basis for their integration into a centrally maintained suite of IM tools achieved by the EUROfusion High Level Support Team (HLST) and Core Programming Team (CPT) is presented. Physics phenomena which can be addressed in various areas (core turbulence and magnetic reconnection, edge and SOL physics, RF heating and current drive, MHD, reflectometry simulations) following code optimisation and parallelisation performed by HLST are briefly described. The CPT development activities in support to IM including a support to local deployment of the IM infrastructure and experimental data access, to the management of releases for sophisticated IM workflows involving a large number of components and to the performance optimization of complex IM workflows are briefly summarised.
- Published
- 2018
4. Tools, Methods and Services Enhancing the Usage of the Kepler-based Scientific Workflow Framework
- Author
-
Bartek Palak, Tomasz Żok, B. Guillerminet, Paweł Ciecieląg, Szymon Winczewski, Piotr Spyra, Michal Owsiak, T. Aniel, Frederic Imbeaux, Jarosław Rybicki, Marcin Plociennik, Wojciech Pych, and Philippe Huynh
- Subjects
business.industry ,Computer science ,Data manipulation language ,Kepler ,Workflow engine ,Kepler scientific workflow system ,Workflow technology ,World Wide Web ,Workflow ,General Earth and Planetary Sciences ,Software engineering ,business ,Workflow management system ,General Environmental Science - Abstract
Scientific workflow systems are designed to compose and execute either a series of computational or data manipulation steps, or workflows in a scientific application. They are usually a part of a larger eScience environment. The usage of workflow systems, however very beneficial, is mostly not irrelevant for scientists. There are many requirements for additional functionalities around scientific workflows systems that need to be taken into account, like the ability of sharing workflows, provision of the user-friendly GUI tools for automation of some tasks or submission to distributed computing infrastructures, etc. In this paper we present tools developed in response to the requirements of three different scientific communities. These tools simplify and empower their work with the Kepler scientific workflow system. The usage of such tools and services is presented on Nanotechnology, Astronomy and Fusion scenarios examples.
- Published
- 2014
- Full Text
- View/download PDF
5. Scaling of carbon erosion in Tore Supra
- Author
-
Yannick Marandet, G. Colledani, E. Tsitrone, C. Brosset, A. Beauté, M. Naiim-Habib, P. Genesio, J. P. Gunn, E. Delchambre, P. Monier-Garbet, R. Dachicourt, Yann Corre, M. Kubic, B. Pégourié, P. Börner, Detlev Reiter, T. Aniel, Eric Gauthier, and A. Martinez
- Subjects
Nuclear and High Energy Physics ,Scaling law ,Toroid ,chemistry.chemical_element ,Fusion power ,Tore Supra ,Nuclear physics ,Nuclear Energy and Engineering ,chemistry ,Limiter ,Erosion ,General Materials Science ,Scaling ,Carbon - Abstract
The scaling law for carbon erosion in Tore Supra previously established by Hogan et al. [1] (Φc(C/ s) = 5 × 1020 Pcond (MW), where Pcond is the conducted power) is revisited both from the experimental and the modelling point of view. New developments with the EIRENE code, that allow relating measured CII emission intensities to the total amount of carbon sputtered from the Toroidal Pumped Limiter, are presented. Recent measurements carried out at high input power show a good agreement with the database used to establish the scaling law.
- Published
- 2011
- Full Text
- View/download PDF
6. EUROfusion Integrated Modelling (EU-IM) Capabilities and Selected Physics Applications
- Author
-
Falchetto G.L., M.I. Airila, A. Alberto Morillas, E. Andersson Sundén, T. Aniel, J.-F. Artaud, O. Asunta, C.V. Atanasiu, M. Baelmans, V. Basiuk, R. Bilato, M. Blommaert, D. Borodin, C. Boulbe, S. Briguglio, J. Citrin, R. Coelho, S. Conroy, D. Coster, V. Doriæ, R. Dumont, E. Fable, B. Faugeras, J. Ferreira, L. Figini, A. Figueiredo, G. Fogaccia, C. Fuchs, E. Giovannozzi, V. Goloborod'ko, O. Hoenen, Ph. Huynh, F. Imbeaux, I. Ivanova-Stanik, T. Johnson, D. Kalupin, L. Kos, E. Lerche, J. Madsen, O. Maj, G. Manduchi, M. Mantsinen, Y. Marandet, S. Matejcik, R. Mayo-Garcia, P.J. McCarthy, A. Merle, E. Nardon, A.H. Nielsen, S. Nowak, M. O'Mullane, M. Owsiak, V. Pais, B. Palak, G. Pelka, M. Plociennik, G.I. Pokol, D. Poljak, H. Radhakrishnan, H. Reimerdes, D. Reiser, J. Romazanov, P. Rodrigues, X. Saez, D. Samaddar, O. Sauter, K. Schmid, B.D. Scott, S. ?esni?, J. Signoret, S.K. Sipilä, R. Stankiewicz, P. Strand, E. Suchkov, A. Susnjara, G. Szepesi, D. Tegnered, K. Tokési, D. Tskhakaya, J. Urban, P. Vallejos, D. Van Eester, L. Villard, F. Villone, B. Viola, G. Vlad, E. Westerhof, D. Yadykin, R. Zagorski, F. Zaitsev, T. Zok, W. Zwingmann, S. Äkäslompolo, the ASDEX Upgrade Team, and the EUROfusion-IM Team
- Subjects
Physics Applications ,EUROfusion Integrated Modelling ,EU-IM - Abstract
Recent developments and achievements of the EUROfusion Code Development for Integrated Modelling project (WPCD), which aim is to provide a validated integrated modelling suite for the simulation and prediction of complete plasma discharges in any tokamak, are presented. WPCD develops generic complex integrated simulations, workflows, for physics applications, using the standardized European Integrated Modelling (EU-IM) framework. Selected physics applications of EU-IM workflows are illustrated in this paper.
- Published
- 2016
7. Experimental observation ofm/n= 1/1 mode behaviour during sawtooth activity and its manifestations in tokamak plasmas
- Author
-
V S Udintsev, M Ottaviani, P Maget, G Giruzzi, J-L Ségui, T Aniel, J F Artaud, F Clairet, M Goniche, G T Hoang, G T A Huysmans, F Imbeaux, E Joffrin, D Mazon, A L Pecquet, R Sabot, A Sirinelli, L Vermare, Tore Supra Team, A Krämer-Flecken, H R Koslowski, TEXTOR Team, A J H Donné, F C Schüller, C W Domier, N C Luhmann, and S V Mirnov
- Subjects
Physics ,Tokamak ,Magnetic confinement fusion ,Magnetic reconnection ,Sawtooth wave ,Tore Supra ,Kink instability ,Condensed Matter Physics ,law.invention ,Nuclear Energy and Engineering ,law ,Electron temperature ,ddc:530 ,Plasma diagnostics ,Atomic physics - Abstract
To shed some light on the development of the fast m/n = 1/1 precursor to the sawtooth crash and its influence on plasma transport properties in the vicinity of the q = 1 surface, series of dedicated experiments have been conducted on the Tore Supra and TEXTOR tokamaks. It has been concluded that, before a crash, the hot core gets displaced with respect to the magnetic axis, drifts outwards by as much as 8–10 cm and may change its shape. Observation of the magnetic reconnection process has been made by means of electron cyclotron emission diagnostics. The heat pulse is seen far outside the inversion radius. The colder plasma develops a magnetic island on the former magnetic axis, after the hot core expulsion. Different kinds of behaviour of the m = 1 precursor before the crash, with respect to the displacement of the hot core and the duration of the oscillating phase, have been observed. An ideal kink model alone cannot be used for explanation; therefore, resistive effects play an important role in the mode development. Possible mechanisms that lead an m = 1 mode to such behaviour, and their links to the change in the central q-profile, are discussed. Results have been discussed in the light of various theoretical models of the sawtooth.
- Published
- 2005
- Full Text
- View/download PDF
8. Lower hybrid current drive experiments on Tore Supra in the ergodic divertor configuration
- Author
-
Didier Mazon, A. Grosman, J.C. Vallet, C. De Michelis, B. Schunke, T. Aniel, M. Goniche, J. P. Gunn, and J. L. Segui
- Subjects
Coupling ,Materials science ,Nuclear Energy and Engineering ,Heat flux ,Physics::Plasma Physics ,Divertor ,Limiter ,Magnetic confinement fusion ,Electron ,Plasma ,Atomic physics ,Tore Supra ,Condensed Matter Physics - Abstract
Lower hybrid current drive experiments in the ergodic divertor (ED) configuration have been carried out on Tore Supra for 9 years (1991-1999). This paper gives an overview of the results regarding both the current drive and the divertor efficiencies: waves coupling, current drive efficiency and fast particle confinement, energy confinement, thermal load on the ED plasma facing components, impurity screening. It is shown that the coupling remains good enough for high power transmission up to 26 MW m -2 . The current drive efficiency, measured on not fully non-inductive discharges, is only marginally affected by the loss of fast electrons due to the perturbed magnetic structure which is documented from hard x-ray measurements. Electron confinement follows, as in the limiter case, the Rebut-Lallia-Watkins scaling without any losses related to the width of the ergodic layer extending to 15% of the minor radius. The heat flux on the divertor neutralizers from both thermal particles and fast electrons accelerated near the antennae is detailed. Plasma contamination due to carbon and oxygen is analysed from a large database: it is shown that, for a large enough gap between the ED modules and the antennae, the contamination by these species is reduced by a factor of ∼3 with respect to the limiter case.
- Published
- 2004
- Full Text
- View/download PDF
9. Status of and prospects for advanced tokamak regimes from multi-machine comparisons using the 'International Tokamak Physics Activity' database
- Author
-
X Litaudon, E Barbato, A Bécoulet, E J Doyle, T Fujita, P Gohil, F Imbeaux, O Sauter, G Sips, for the International Tokamak Physi Physics, J W Connor, Yu Esipchuk, T Fukuda, J Kinsey, N Kirneva, S Lebedev, V Mukhovatov, J Rice, E Synakowski, K Toi, B Unterberg, V Vershkov, M Wakatani, for the International ITB Database regimes, T Aniel, Yu F Baranov, R Behn, C Bourdelle, G Bracco, R V Budny, P Buratti, B Esposito, S Ide, A R Field, C Gormezano, C Greenfield, M Greenwald, T S Hahm, G T Hoang, J Hobirk, D Hogeweij, A Isayama, E Joffrin, Y Kamada, T C Luce, M Murakami, V Parail, Y-K M Peng, F Ryter, Y Sakamoto, H Shirai, T Suzuki, H Takenaga, T Takizuka, T Tala, M R Wade, and J Weiland
- Subjects
Thermonuclear fusion ,Tokamak ,fusion reactors ,Tore Supra ,Collisionality ,computer.software_genre ,law.invention ,Bootstrap current ,ASDEX Upgrade ,Physics::Plasma Physics ,law ,ITER ,ddc:530 ,tokamak ,plasma ,Physics ,Database ,Magnetic confinement fusion ,Fusion power ,Condensed Matter Physics ,fusion energy ,Nuclear Energy and Engineering ,JET ,internal transport barriers ,computer - Abstract
Advanced tokamak regimes obtained in ASDEX Upgrade, DIII-D, FT-U, JET, JT-60U, TCV and Tore Supra experiments are assessed both in terms of their fusion performance and capability for ultimately reaching steady-state using data from the international internal transport barrier database. These advanced modes of tokamak operation are characterized by an improved core confinement and a modified current profile compared to the relaxed Ohmically driven one. The present results obtained in these experiments are studied in view of their prospect for achieving either long pulses ('hybrid' scenario with inductive and non-inductive current drive) or ultimately steady-state purely non-inductive current drive operation in next step devices such as ITER. A new operational diagram for advanced tokamak operation is proposed where the figure of merit characterizing the fusion performances and confinement, H × βN / q 295, is drawn versus the fraction of the plasma current driven by the bootstrap effect. In this diagram, present day advanced tokamak regimes have now reached an operational domain that is required in the non-inductive ITER current drive operation with typically 50% of the plasma current driven by the bootstrap effect (Green et al 2003 Plasma Phys. Control. Fusion 45 587). In addition, the existence domain of the advanced mode regimes is also mapped in terms of dimensionless plasmas physics quantities such as normalized Larmor radius, normalized collisionality, Mach number and ratio of ion to electron temperature. The gap between present day and future advanced tokamak experiments is quantitatively assessed in terms of these dimensionless parameters.
- Published
- 2004
- Full Text
- View/download PDF
10. Investigations of LHCD induced plasma rotation in Tore Supra
- Author
-
J. Decker, B. Baiocchi, Clarisse Bourdelle, B. Chouli, M. Irishkin, C. Fenzi, M. Schneider, T. Aniel, J. E. Rice, P. Cottier, J.F. Artaud, Frederic Imbeaux, Didier Mazon, Yanick Sarazin, V. Basiuk, and Xavier Garbet
- Subjects
Physics ,Toroid ,Reynolds number ,Reynolds stress ,Plasma ,Tore Supra ,Condensed Matter Physics ,Rotation ,Momentum ,symbols.namesake ,Nuclear Energy and Engineering ,Physics::Plasma Physics ,symbols ,Diamagnetism ,Atomic physics - Abstract
Theoretical investigations are performed in order to explain the plasma rotation increments induced by lower hybrid current drive (LHCD) in Tore Supra and the results are compared to the experimental observations. The intrinsic toroidal rotation is governed by several mechanisms in concert. The impact of the LHCD on each involved mechanism is analyzed. The neoclassical toroidal rotation is always in the counter-current direction. The toroidal diamagnetic velocity is of the order of the experimental toroidal velocity. At high plasma current the rotation evolution in the lower hybrid (LH) phase is controlled by the neoclassical friction force due to the trapped ions in banana trajectories through the toroidal diamagnetic velocity. This force results in the counter-current increment as observed in the experimental measurement of toroidal rotation. At low plasma current the rotation is dominated by momentum turbulent transport when the LH waves are applied. The Reynolds stress grows strongly compared to the high plasma current case and acts as a co-current force through its residual stress contribution. Momentum transport simulations are also performed with CRONOS (Artaud et al 2010) in order to assess the rotation increments induced by LHCD.
- Published
- 2015
- Full Text
- View/download PDF
11. An international database for the study of the formation of ITBs in tokamaks
- Author
-
J. E. Kinsey, X. Litaudon, D. Hogeweij, T. Hoang, Martin Greenwald, A. C. C. Sips, N. Kirneva, Shunsuke Ide, T. Suzuki, Hiroshi Shirai, P. Buratti, T. Fukuda, Patrick Maget, A. G. Peeters, Yoshiteru Sakamoto, Xavier Garbet, E. Barbato, Giovanni Bracco, C. M. Greenfield, F. Imbeaux, B. Esposito, N. V. Ivanov, T. Aniel, P. Gohil, Tomonori Takizuka, Torbjörn Hellsten, Takaaki Fujita, T.S. Hahm, L.-G. Eriksson, A. Becoulet, E. J. Synakowski, Robert Wolf, F. Ryter, Y. Baranov, Yu. V. Esipchuk, Yutaka Kamada, E. J. Doyle, and K. A. Razumova
- Subjects
Physics ,Electron density ,Tokamak ,Toroid ,Magnetic confinement fusion ,Plasma ,Radius ,Condensed Matter Physics ,law.invention ,Magnetic field ,Ion ,Nuclear Energy and Engineering ,Physics::Plasma Physics ,law ,Atomic physics - Abstract
For the first time, data from eight different tokamaks have been combined in an international database for internal transport barriers (ITBs). An analysis of the data for the formation of an ITB with dominant ion heating shows a clear dependence of the threshold power on the minor radius and line-averaged electron density for the formation of ion ITBs. The dependence of ITB formation on the toroidal magnetic field is weak. For the formation of ITBs with dominant electron heating, the database is smaller, but for the threshold power a strong increase with plasma size and a weak toroidal field dependence could also be identified. Based on these results, an expression for the power required to form an ITB is given using global variables only. These results give a basis for the analysis of the database using local values (like magnetic shear) and a detailed comparison with theory-based models.
- Published
- 2002
- Full Text
- View/download PDF
12. q-profile evolution and improved core electron confinement in the full current drive operation on Tore Supra
- Author
-
E. Joffrin, M. Zabiego, Yves Peysson, Frederic Imbeaux, Ph. Lotte, Guillaume Tresset, X. Litaudon, J. Lasalle, B. Schunke, T. Aniel, J. L. Segui, and G. T. A. Huysmans
- Subjects
Materials science ,Nuclear Energy and Engineering ,Core electron ,Bremsstrahlung ,Electron temperature ,Magnetic confinement fusion ,Plasma ,Electron ,Atomic physics ,Magnetohydrodynamics ,Tore Supra ,Condensed Matter Physics - Abstract
The formation of a core region with improved electron confinement is reported in the recent full current drive operation of Tore Supra, where the plasma current is sustained with the lower hybrid (LH) wave. Current profile evolution and thermal electron transport coefficients are assessed directly by using the data of the new fast electron bremsstrahlung tomography that provides the most accurate determination of the LH current and power deposition profiles. The spontaneous rise of the core electron temperature observed a few seconds after the application of the LH power is ascribed to a bifurcation towards a state of reduced electron transport. The role of the magnetic shear is invoked to partly stabilize the anomalous electron turbulence. The electron temperature transition occurs when the q-profile evolves towards a non-inductive state with a non-monotonic shape, i.e. when the magnetic shear in the plasma core is reduced to close to zero. The improved core confinement phase is often terminated by a sudden MHD activity when the minimum q approaches 2.
- Published
- 2001
- Full Text
- View/download PDF
13. Internal Transport Barrier with Ion-Cyclotron-Resonance Minority Heating on Tore Supra
- Author
-
G. T. Hoang, C. Bourdelle, X. Garbet, G. Antar, R. V. Budny, T. Aniel, V. Basiuk, A. Bécoulet, P. Devynck, J. Lasalle, G. Martin, F. Saint-Laurent, and null the Tore Supra Team
- Subjects
Nuclear physics ,Shear (sheet metal) ,Materials science ,Physics::Plasma Physics ,Drop (liquid) ,General Physics and Astronomy ,Electron ,Current (fluid) ,Transport barrier ,Tore Supra ,Atomic physics ,Ion cyclotron resonance - Abstract
Recently, reversed magnetic shear operation was performed using only ion-cyclotron-resonance frequency minority heating (ICRH) during current ramp-up. A wide region of reversed magnetic shear has been obtained. For the first time, an electron internal transport barrier sustained by ICRH is observed, with a dramatical drop of density fluctuations. This barrier was maintained, on the current flat top, for about 2 s.
- Published
- 2000
- Full Text
- View/download PDF
14. Electron transport in Tore Supra with fast wave electron heating
- Author
-
T. Aniel, Wendell Horton, Ping Zhu, G. T. Hoang, M. Ottaviani, and Xavier Garbet
- Subjects
Physics ,Steady state ,Physics::Plasma Physics ,Turbulence ,Nuclear fusion ,Electron ,Plasma ,Tore Supra ,Atomic physics ,Condensed Matter Physics ,Thermal diffusivity ,Electron transport chain - Abstract
The hot electron plasmas (Te>2Ti) in Tore Supra (Equipe Tore Supra (presented by R. Aymar) in Plasma Physics and Controlled Nuclear Fusion Research [Proc. 12th Int. Conf., Nice, 1988 (IAEA, Vienna, 1989), Vol. 1, p. 9]) driven by fast wave electron heating (FWEH) are analyzed for thermal transport. Both neoclassical and anomalous transport processes are taken into account. The dominant power flow is through the electron channel of anomalous thermal diffusivity. The electron and ion temperature gradient driven instabilities are analyzed for a well documented discharge and shown to explain the diffusivities inferred from the steady state power balance analysis. The discharges are maintained in a quasi-steady state for periods up to 100 global energy replacement times. A large Tore Supra database is tested against two models for the turbulent electron thermal conductivity. Good correlation is obtained with an updated version of the collisionless skin depth formula. The electrostatic turbulence-based formula ...
- Published
- 2000
- Full Text
- View/download PDF
15. An H minority heating regime in Tore Supra showing improved L mode confinement
- Author
-
P. Monier-Garbet, L.-G. Eriksson, T. Aniel, P. Platz, Clarisse Bourdelle, J.C. Vallet, R.V. Budny, Christian Grisolia, F. Clairet, Xavier Garbet, and G.T. Hoang
- Subjects
Nuclear and High Energy Physics ,Materials science ,Tokamak ,Hydrogen ,Cyclotron ,Mode (statistics) ,chemistry.chemical_element ,Plasma ,Tore Supra ,Condensed Matter Physics ,law.invention ,Ion ,chemistry ,Physics::Plasma Physics ,law ,Atomic physics ,Beam (structure) - Abstract
Tore Supra experiments are at present devoted to the study of high density regimes with radiofrequency heating. Recently, an improved L mode confinement regime has been observed in plasmas heated by ion cyclotron hydrogen minority heating, at relatively high densities up to 80% of the Greenwald limit. The quality of energy confinement is as good as that of ELMy H mode. The main physical mechanism of this regime has not been clearly identified. However, some features very similar to those of previous improved confinement modes using neutral beam heating in other tokamaks have been observed.
- Published
- 2000
- Full Text
- View/download PDF
16. Limiter heat load and consequences on impurity source and transport
- Author
-
T Aniel, R. Mitteau, J.T. Hogan, Roger Reichle, D. Guilhem, C. Grisolia, S Boddeker, J.C. Vallet, T. Hoang, B. Meslin, and G. Martin
- Subjects
Nuclear and High Energy Physics ,Steady state ,Tokamak ,Chemistry ,Ripple ,Analytical chemistry ,Plasma ,Mechanics ,Fusion power ,Temperature measurement ,law.invention ,symbols.namesake ,Nuclear Energy and Engineering ,law ,symbols ,Limiter ,Langmuir probe ,General Materials Science - Abstract
Power deposition and consequences during short pulse operation t t > 20 s (plasma limited by the inner wall) are reported. Infrared surface temperature measurements, thermocouples and Langmuir probes are used to diagnose the inner wall front face. They are presented for the first time and are complemented by measurements of a reciprocating Langmuir probe located at the top of the machine. A diagram of injected energy versus power shows how difficult it is to run high power long pulses in steady state conditions, which is one of the main goals for the next step fusion machine. An uncontrolled density rise is observed during long pulse operation ( P LHCD 20 s). It is believed that it is due to recessed elements heated by plasma or due to fast particle losses due to the ripple . The CIEL project will implement in Tore-Supra a set of actively cooled plasma facing components so that the performance of long pulse, high power shots should be improved.
- Published
- 1999
- Full Text
- View/download PDF
17. Electron and ion internal transport barriers in Tore Supra and JET
- Author
-
I. Voitsekhovitch, D.V. Bartlett, Y. Baranov, G.A. Cottrell, Yves Peysson, W. Zwingmann, C. Gormezano, B.J.D. Tubbing, A. Becoulet, V.V. Parail, F. Imbeaux, C. D. Challis, F. Rochard, G. T. Hoang, P. Schild, M. J. Mantsinen, G. T. A. Huysmans, E. Joffrin, T. Aniel, M. Erba, G. D. Conway, F. X. Söldner, L.-G. Eriksson, X. Litaudon, A. C. C. Sips, Annika Ekedahl, and D.J. Ward
- Subjects
Jet (fluid) ,Materials science ,Tokamak ,Plasma ,Fusion power ,Tore Supra ,Condensed Matter Physics ,Neutral beam injection ,Ion ,law.invention ,Nuclear Energy and Engineering ,Physics::Plasma Physics ,law ,Electron temperature ,Atomic physics - Abstract
Formation of core regions in Tore Supra and JET tokamaks with reduced transport coefficients is reported. Characteristics of the enhanced confinement regions and the physics process involved in their formation and maintenance should be considered separately when the electron or ion components are predominantly heated. In Tore Supra and JET, central electron temperature transitions are observed by injecting lower hybrid waves at modest power levels during the current ramp-up phase of the discharges. Transport analyses stress the importance of the low magnetic shear in the core to explain the anomalous electron transport reduction. With high-power dominant ion heating schemes in JET (neutral beam injection and ion cyclotron resonance heating), internal transport barriers have been obtained in plasmas fuelled with a mixture of deuterium-tritium (D-T) ions leading to a successful production of fusion power (8.2 MW) in this regime. Similar additional power levels to those applied in pure deuterium (D-D) plasmas are required to establish internal transport barriers in D-T plasmas. In D-D and D-T plasmas, ion thermal diffusivities are reduced close to their neoclassical levels in the plasma core and electron thermal diffusivities decrease by one order of magnitude at midplasma radius. The combined role of magnetic shear and velocity shear can explain the formation and evolution of plasma core regions with low energy transport coefficients.
- Published
- 1999
- Full Text
- View/download PDF
18. Thermal electron transport in regimes with low and negative magnetic shear in Tore Supra
- Author
-
F. Kazarian-Vibert, A. Bécoulet, I. Voitsekhovitch, E. Joffrin, D. Moreau, M. Erba, X. Litaudon, Y. Peysson, and T. Aniel
- Subjects
Nuclear and High Energy Physics ,Materials science ,Extrapolation ,Electron ,Plasma ,Tore Supra ,Fusion power ,Condensed Matter Physics ,Thermal diffusivity ,Nuclear physics ,Shear (sheet metal) ,Physics::Plasma Physics ,Electron temperature ,Atomic physics - Abstract
The magnetic shear effect on thermal electron transport is studied in a large variety of non-inductive plasmas in Tore Supra. An improved confinement in the region of low and negative shear was observed and quantified with an exponential dependence on the magnetic shear (Litaudon, et al., Fusion Energy 1996 (Proc. 16th Int; Conf. Montreal, 1996), vol. 1, IAEA, Vienna (1997) 669). This is interpreted as a consequence of a decoupling of the global modes (Romanelli and Zonca, Phys. Fluids B 5 (1993) 4081) that are thought to be responsible for anomalous transport. This dependence is proposed in order to complete the Bohm-like L mode local electron thermal diffusivity so as to describe the transition from Bohm-like to gyroBohm transport in the plasma core. The good agreement between the predictive simulations of the different Tore Supra regimes (hot core lower hybrid enhanced performance, reversed shear plasmas and combined lower hybrid current drive and fast wave electron heating) and experimental data provides a basis for extrapolation of this magnetic shear dependence in the local transport coefficients to future machines. As an example, a scenario for non-inductive current profile optimization and control in ITER is presented
- Published
- 1997
- Full Text
- View/download PDF
19. Convective Velocity Reversal Caused by Turbulence Transition in Tokamak Plasma
- Author
-
X. L. Zou, Wulyu Zhong, S. D. Song, T. Aniel, Jean-Francois Artaud, X.R. Duan, and Clarisse Bourdelle
- Subjects
Physics ,Tokamak ,Turbulence ,General Physics and Astronomy ,Plasma ,Convective velocity ,Electron ,Tore Supra ,Atmospheric sciences ,Instability ,law.invention ,Physics::Plasma Physics ,law ,Particle ,Atomic physics - Abstract
Particle transport has been studied in the Tore Supra tokamak by using modulated ion cyclotron resonance heating to generate perturbations of density and temperature. For the first time, a reversal of the particle convective velocity and a strong increase in the turbulent particle flux have been clearly observed. When the mixed critical gradient ${\ensuremath{\zeta}}_{c}=R/{L}_{T}+4(R/{L}_{n})=22$ is exceeded, the particle flux increases sharply and the convective velocity reverses from inward to outward. These observations are in agreement with quasilinear, gyrokinetic calculations. The critical gradient corresponds to a transition from an instability driven by the ion temperature gradient to the onset of another instability caused by trapped electrons.
- Published
- 2013
- Full Text
- View/download PDF
20. Principles of the non-linear tuning of beam expanders
- Author
-
Francois Méot and T Aniel
- Subjects
Physics ,Nuclear and High Energy Physics ,business.industry ,Linear particle accelerator ,law.invention ,Lens (optics) ,Transverse plane ,Nonlinear system ,Optics ,law ,Physics::Accelerator Physics ,Beam expander ,Multipole expansion ,business ,Instrumentation ,Beam (structure) ,Gaussian beam - Abstract
It is now common to consider employing non-linear multipole lenses to achieve transverse uniformization of particle beams used for the irradiation of extended targets in high intensity linac installations. In a previous report [F. Meot and T. Aniel, On beam uniformization by non-linear optics, Internal report CEA/DSM/GECA/GT/95-05, CEA Saclay, July 1995] we gave an analytical treatment of the uniformization of transverse beam densities by an octupole lens, in terms of the transport of random variables and their probability density functions, in the frame of a very basic optical scheme built up to two straight sections on both sides of the non-linear lens, following a pioneering work [P.F. Meads, A nonlinear lens system to smooth the intensity distribution of a Gaussian beam, IEEE Trans. Nucl. Sci. NS- 30 (1983)]. In the present paper, we extend the method to the more realistic configuration where the non-linear lens is preceded and followed by regular first order imaging optics, which leads to analytical expressions that provide the tuning of the non-linear lens w.r.t. the dimensions and nominal uniformization of the extended beam footprint at the target. This formalism is finally applied to the computation of the particle populations in the transverse tail distributions.
- Published
- 1996
- Full Text
- View/download PDF
21. Numerical analysis of JET discharges with the European Transport Simulator
- Author
-
Olivier Sauter, F. Köchl, Irena Ivanova-Stanik, Jorge Ferreira, Itm-Tf Contributors, Bruce D. Scott, Luís L Alves, R. Stankiewicz, L. Garzotti, A. Czarnecka, J.F. Artaud, A. Figueiredo, Ph. Huynh, Pär Strand, Jet-Efda Contributors, João P. S. Bizarro, Frederic Imbeaux, V. Basiuk, R. Coelho, T. Aniel, I. Voitsekhovitch, Denis Kalupin, G. V. Pereverzev, D. P. Coster, M. F. F. Nave, J. Garcia, ITM-TF Contributors, and JET-EFDA Contributors
- Subjects
Coupling ,Nuclear and High Energy Physics ,Jet (fluid) ,Tokamak ,business.industry ,Numerical analysis ,Solver ,Modular design ,Condensed Matter Physics ,Data structure ,law.invention ,Workflow ,law ,business ,Simulation - Abstract
The 'European Transport Simulator' (ETS) (Coster et al 2010 IEEE Trans. Plasma Sci. 38 2085-92, Kalupin et al 2011 Proc. 38th EPS Conf. on Plasma Physics (Strasbourg, France, 2011) vol 35G (ECA) P. 4.111) is the new modular package for 1D discharge evolution developed within the EFDA Integrated Tokamak Modelling (ITM) Task Force. It consists of precompiled physics modules combined into a workflow through standardized input/output data structures. Ultimately, the ETS will allow for an entire discharge simulation from the start up until the current termination phase, including controllers and sub-systems. The paper presents the current status of the ETS towards this ultimate goal. It discusses the design of the workflow, the validation and verification of its components on the example of impurity solver and demonstrates a proof-of-principles coupling of a local gyrofluid model for turbulent transport to the ETS. It also presents the first results on the application of the ETS to JET tokamak discharges with the ITER like wall. It studies the correlations of the radiation from impurity to the choice of the sources and transport coefficients.
- Published
- 2013
22. Contribution of Tore Supra in preparation of ITER
- Author
-
B. Saoutic, J. Abiteboul, L. Allegretti, S. Allfrey, J.M. Ané, T. Aniel, A. Argouarch, J.F. Artaud, M.H. Aumenier, S. Balme, V. Basiuk, O. Baulaigue, P. Bayetti, A. Bécoulet, M. Bécoulet, M.S. Benkadda, F. Benoit, G. Berger-by, J.M. Bernard, B. Bertrand, P. Beyer, A. Bigand, J. Blum, D. Boilson, G. Bonhomme, H. Bottollier-Curtet, C. Bouchand, F. Bouquey, C. Bourdelle, S. Bourmaud, C. Brault, S. Brémond, C. Brosset, J. Bucalossi, Y. Buravand, P. Cara, V. Catherine-Dumont, A. Casati, M. Chantant, M. Chatelier, G. Chevet, D. Ciazynski, G. Ciraolo, F. Clairet, M. Coatanea-Gouachet, L. Colas, L. Commin, E. Corbel, Y. Corre, X. Courtois, R. Dachicourt, M. Dapena Febrer, M. Davi Joanny, R. Daviot, H. De Esch, J. Decker, P. Decool, P. Delaporte, E. Delchambre, E. Delmas, L. Delpech, C. Desgranges, P. Devynck, T. Dittmar, L. Doceul, D. Douai, H. Dougnac, J.L. Duchateau, B. Dugué, N. Dumas, R. Dumont, A. Durocher, F.X. Duthoit, A. Ekedahl, D. Elbeze, M. El Khaldi, F. Escourbiac, F. Faisse, G. Falchetto, M. Farge, J.L. Farjon, M. Faury, N. Fedorczak, C. Fenzi-Bonizec, M. Firdaouss, Y. Frauel, X. Garbet, J. Garcia, J.L. Gardarein, L. Gargiulo, P. Garibaldi, E. Gauthier, O. Gaye, A. Géraud, M. Geynet, P. Ghendrih, I. Giacalone, S. Gibert, C. Gil, G. Giruzzi, M. Goniche, V. Grandgirard, C. Grisolia, G. Gros, A. Grosman, R. Guigon, D. Guilhem, B. Guillerminet, R. Guirlet, J. Gunn, O. Gurcan, S. Hacquin, J.C. Hatchressian, P. Hennequin, C. Hernandez, P. Hertout, S. Heuraux, J. Hillairet, G.T. Hoang, C. Honore, M. Houry, T. Hutter, P. Huynh, G. Huysmans, F. Imbeaux, E. Joffrin, J. Johner, L. Jourd'Heuil, Y.S. Katharria, D. Keller, S.H. Kim, M. Kocan, M. Kubic, B. Lacroix, V. Lamaison, G. Latu, Y. Lausenaz, C. Laviron, F. Leroux, L. Letellier, M. Lipa, X. Litaudon, T. Loarer, P. Lotte, S. Madeleine, P. Magaud, P. Maget, R. Magne, L. Manenc, Y. Marandet, G. Marbach, J.L. Maréchal, L. Marfisi, C. Martin, G. Martin, V. Martin, A. Martinez, J.P. Martins, R. Masset, D. Mazon, N. Mellet, L. Mercadier, A. Merle, D. Meshcheriakov, O. Meyer, L. Million, M. Missirlian, P. Mollard, V. Moncada, P. Monier-Garbet, D. Moreau, P. Moreau, L. Morini, M. Nannini, M. Naiim Habib, E. Nardon, H. Nehme, C. Nguyen, S. Nicollet, R. Nouilletas, T. Ohsako, M. Ottaviani, S. Pamela, H. Parrat, P. Pastor, A.L. Pecquet, B. Pégourié, Y. Peysson, I. Porchy, C. Portafaix, M. Preynas, M. Prou, J.M. Raharijaona, N. Ravenel, C. Reux, P. Reynaud, M. Richou, H. Roche, P. Roubin, R. Sabot, F. Saint-Laurent, S. Salasca, F. Samaille, A. Santagiustina, Y. Sarazin, A. Semerok, J. Schlosser, M. Schneider, M. Schubert, F. Schwander, J.L. Ségui, G. Selig, P. Sharma, J. Signoret, A. Simonin, S. Song, E. Sonnendruker, F. Sourbier, P. Spuig, P. Tamain, M. Tena, J.M. Theis, D. Thouvenin, A. Torre, J.M. Travère, E. Tsitrone, J.C. Vallet, E. Van Der Plas, A. Vatry, J.M. Verger, L. Vermare, F. Villecroze, D. Villegas, R. Volpe, K. Vulliez, J. Wagrez, T. Wauters, L. Zani, D. Zarzoso, X.L. Zou, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Dept. Accelerateurs - XFEL, Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Institut universitaire des systèmes thermiques industriels (IUSTI), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Matériaux et Mécanique des Composants (EDF R&D MMC), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Association EURATOM-CEA (CEA/DSM/DRFC), Département de Recherche sur la Fusion Contrôlée (DRFC), Laboratoire d'Interaction Laser Matière (LILM), Département de Physico-Chimie (DPC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Département de Physique Nucléaire (ex SPhN) (DPHN), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Ngee Ann Polytechnic, School of Engineering, Mechanical Engineering Division, ITER organization (ITER), CEA Cadarache, Centre de Thermique de Lyon (CETHIL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), CEA ISIS, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Chimie de Clermont-Ferrand (ICCF), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-SIGMA Clermont (SIGMA Clermont)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche en Sciences et Techniques de la Ville - FR 2488 (IRSTV), Université de Nantes (UN)-École Centrale de Nantes (ECN)-EC. ARCHIT. NANTES-Université d'Angers (UA)-Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS), Eau et Environnement (IFSTTAR/GERS/EE), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-PRES Université Nantes Angers Le Mans (UNAM), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Centre of Molecular and Structural Biomedicine (CBME)/Institute of Biotechnology and Bioengineering (IBB), University of Algarve [Portugal], Laboratoire Lasers, Plasmas et Procédés photoniques (LP3), Centre d'Histoire 'Espaces et Cultures' (CHEC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP), École des hautes études en sciences sociales (EHESS), Centre hospitalier universitaire de Nantes (CHU Nantes), Centre de Recherche en Cancérologie Nantes-Angers (CRCNA), Centre Hospitalier Universitaire d'Angers (CHU Angers), PRES Université Nantes Angers Le Mans (UNAM)-PRES Université Nantes Angers Le Mans (UNAM)-Hôtel-Dieu de Nantes-Institut National de la Santé et de la Recherche Médicale (INSERM)-Hôpital Laennec-Centre National de la Recherche Scientifique (CNRS)-Faculté de Médecine d'Angers-Centre hospitalier universitaire de Nantes (CHU Nantes), Centre d'investigation clinique en cancérologie (CI2C), IFP Energies nouvelles (IFPEN), Matériaux, ingénierie et science [Villeurbanne] (MATEIS), Ecologie Systématique et Evolution (ESE), Centre National de la Recherche Scientifique (CNRS)-AgroParisTech-Université Paris-Sud - Paris 11 (UP11), Laboratoire d'Etude des Matériaux en Milieux Agressifs (LEMMA), Université de La Rochelle (ULR), CMCR des Massues, Croix rouge française, Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Réserve Naturelle Nationale Baie St-Brieuc, Réserves Naturelles de France-Réserves Naturelles de France, Géoazur (GEOAZUR 6526), Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Direction des Jardins botaniques et zoologiques, Muséum national d'Histoire naturelle (MNHN), Department of Information Technology (INTEC), Ghent University [Belgium] (UGENT), Dipartimento di Ingegneria dell'Ambiente e per lo Sviluppo Sostenibile (DIASS), Dipartimento Ingn Ambiente & Sviluppo Soste, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2), Equipe Dynamique des Systemes Complexes, Université de Provence - Aix-Marseille 1, Technische Universität Braunschweig [Braunschweig], Laboratoire de physique des milieux ionisés et applications (LPMIA), Université Henri Poincaré - Nancy 1 (UHP)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Lyon (UNICANCER/CRCL), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon], Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Service de Chimie Physique (SCP), Laboratoire des Adaptations Physiologiques aux Activités Physiques (LAPHAP), Université de Poitiers, Institut d'Electronique du Solide et des Systèmes ( InESS ), Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherche sur la Fusion par confinement Magnétique ( IRFM ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Science et Ingénierie des Matériaux et Procédés ( SIMaP ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut polytechnique de Grenoble - Grenoble Institute of Technology ( Grenoble INP ) -Institut National Polytechnique de Grenoble ( INPG ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ), Laboratoire de l'Accélérateur Linéaire ( LAL ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Météorologie Dynamique (UMR 8539) ( LMD ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -École polytechnique ( X ) -École des Ponts ParisTech ( ENPC ) -Centre National de la Recherche Scientifique ( CNRS ) -Département des Géosciences - ENS Paris, École normale supérieure - Paris ( ENS Paris ) -École normale supérieure - Paris ( ENS Paris ), Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies ( FEMTO-ST ), Université de Technologie de Belfort-Montbeliard ( UTBM ) -Ecole Nationale Supérieure de Mécanique et des Microtechniques ( ENSMM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Franche-Comté ( UFC ), Institut universitaire des systèmes thermiques industriels ( IUSTI ), Centre National de la Recherche Scientifique ( CNRS ) -Aix Marseille Université ( AMU ), EDF - R&D Department MMC and MAI, EDF R&D ( EDF R&D ), EDF ( EDF ) -EDF ( EDF ), Association EURATOM-CEA ( CEA/DSM/DRFC ), Département de Recherche sur la Fusion Contrôlée ( DRFC ), Laboratoire d'Interaction Laser Matière ( LILM ), Département de Physico-Chimie ( DPC ), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Laboratoire de Physique des Plasmas ( LPP ), Université Paris-Sud - Paris 11 ( UP11 ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Observatoire de Paris-École polytechnique ( X ) -Sorbonne Universités-PSL Research University ( PSL ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Institut Jean Lamour ( IJL ), Centre National de la Recherche Scientifique ( CNRS ) -Université de Lorraine ( UL ), Département de Physique Nucléaire (ex SPhN) ( DPHN ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, ITER [St. Paul-lez-Durance], ITER, Centre de Thermique de Lyon ( CETHIL ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Electronique et des Technologies de l'Information ( CEA-LETI ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Grenoble Alpes [Saint Martin d'Hères], Institut de Chimie de Clermont-Ferrand ( ICCF ), Université Blaise Pascal - Clermont-Ferrand 2 ( UBP ) -Sigma CLERMONT ( Sigma CLERMONT ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherche en Sciences et Techniques de la Ville ( IRSTV ), Université d'Angers ( UA ) -Université de Nantes ( UN ) -École Centrale de Nantes ( ECN ) -Université de La Rochelle ( ULR ) -EC. ARCHIT. NANTES-Centre National de la Recherche Scientifique ( CNRS ), Eau et Environnement ( IFSTTAR/GERS/EE ), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux ( IFSTTAR ) -PRES Université Nantes Angers Le Mans ( UNAM ), Physique des interactions ioniques et moléculaires ( PIIM ), Aix Marseille Université ( AMU ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Intégration des Systèmes et des Technologies ( LIST ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Institut des Sciences de l'Evolution de Montpellier ( ISEM ), Université de Montpellier ( UM ) -Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Lasers, Plasmas et Procédés photoniques ( LP3 ), Centre d'Histoire 'Espaces et Cultures' ( CHEC ), Université Blaise Pascal - Clermont-Ferrand 2 ( UBP ), École des hautes études en sciences sociales ( EHESS ), Centre hospitalier universitaire de Nantes ( CHU Nantes ), Centre de Recherche en Cancérologie / Nantes - Angers ( CRCNA ), CHU Angers-Centre hospitalier universitaire de Nantes ( CHU Nantes ) -Hôtel-Dieu de Nantes-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Hôpital Laennec-Centre National de la Recherche Scientifique ( CNRS ) -Faculté de Médecine d'Angers, Centre d'investigation clinique en cancérologie ( CI2C ), IFP Energies nouvelles ( IFPEN ), Matériaux, ingénierie et science [Villeurbanne] ( MATEIS ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ) -Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ), Ecologie Systématique et Evolution ( ESE ), Université Paris-Sud - Paris 11 ( UP11 ) -AgroParisTech-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Etude des Matériaux en Milieux Agressifs ( LEMMA ), Université de La Rochelle ( ULR ), Institut des Sciences Chimiques de Rennes ( ISCR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Ecole Nationale Supérieure de Chimie de Rennes-Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Croix-rouge française, Procédés et Ingénierie en Mécanique et Matériaux [Paris] ( PIMM ), Centre National de la Recherche Scientifique ( CNRS ) -Conservatoire National des Arts et Métiers [CNAM] ( CNAM ), Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation ( IMEP-LAHC ), Centre National de la Recherche Scientifique ( CNRS ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Institut National Polytechnique de Grenoble ( INPG ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut polytechnique de Grenoble - Grenoble Institute of Technology ( Grenoble INP ) -Université Grenoble Alpes ( UGA ), Laboratoire de Mécanique, Modélisation et Procédés Propres ( M2P2 ), Aix Marseille Université ( AMU ) -Ecole Centrale de Marseille ( ECM ) -Centre National de la Recherche Scientifique ( CNRS ), Géoazur ( GEOAZUR ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de la Côte d'Azur, Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Réserve de la Haute Touche, Muséum National d'Histoire Naturelle ( MNHN ), Department of Information Technology ( INTEC ), Ghent University [Belgium] ( UGENT ), Dipartimento di Ingegneria dell'Ambiente e per lo Sviluppo Sostenibile ( DIASS ), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier ( ICGM ICMMM ), Université Montpellier 1 ( UM1 ) -Université Montpellier 2 - Sciences et Techniques ( UM2 ) -Ecole Nationale Supérieure de Chimie de Montpellier ( ENSCM ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Physique des milieux ionisés et applications ( LPMIA ), Université Henri Poincaré - Nancy 1 ( UHP ) -Centre National de la Recherche Scientifique ( CNRS ), Centre de Recherche en Cancérologie de Lyon ( CRCL ), Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon]-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Bureau de Recherches Géologiques et Minières (BRGM) ( BRGM ), Catalyse par les métaux, Institut de Chimie des Milieux et Matériaux de Poitiers ( IC2MP ), Université de Poitiers-Centre National de la Recherche Scientifique ( CNRS ) -Université de Poitiers-Centre National de la Recherche Scientifique ( CNRS ), Service de Chimie Physique ( SCP ), Laboratoire des Adaptations Physiologiques aux Activités Physiques ( LAPHAP ), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Centre Léon Bérard [Lyon]-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Université d'Angers (UA)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Université de La Rochelle (ULR)-EC. ARCHIT. NANTES-Centre National de la Recherche Scientifique (CNRS), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226, Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS)
- Subjects
Physics ,[PHYS]Physics [physics] ,Nuclear and High Energy Physics ,[ PHYS ] Physics [physics] ,Plasma parameters ,Ripple ,Plasma ,Tore Supra ,Collisionality ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,Computational physics ,symbols.namesake ,Nuclear magnetic resonance ,Physics::Plasma Physics ,0103 physical sciences ,symbols ,Langmuir probe ,Electron temperature ,010306 general physics ,Power density - Abstract
International audience; Tore Supra routinely addresses the physics and technology of very long-duration plasma discharges, thus bringing precious information on critical issues of long pulse operation of ITER. A new ITER relevant lower hybrid current drive (LHCD) launcher has allowed coupling to the plasma a power level of 2.7 MW for 78 s, corresponding to a power density close to the design value foreseen for an ITER LHCD system. In accordance with the expectations, long distance (10 cm) power coupling has been obtained. Successive stationary states of the plasma current pro le have been controlled in real-time featuring (i) control of sawteeth with varying plasma parameters, (ii) obtaining and sustaining a `hot core' plasma regime, (iii) recovery from a voluntarily triggered deleterious magnetohydrodynamic regime. The scrape-off layer (SOL) parameters and power deposition have been documented during L-mode ramp-up phase, a crucial point for ITER before the X-point formation. Disruption mitigation studies have been conducted with massive gas injection, evidencing the difference between He and Ar and the possible role of the q = 2 surface in limiting the gas penetration. ICRF assisted wall conditioning in the presence of magnetic eld has been investigated, culminating in the demonstration that this conditioning scheme allows one to recover normal operation after disruptions. The effect of the magnetic eld ripple on the intrinsic plasma rotation has been studied, showing the competition between turbulent transport processes and ripple toroidal friction. During dedicated dimensionless experiments, the effect of varying the collisionality on turbulence wavenumber spectra has been documented, giving new insight into the turbulence mechanism. Turbulence measurements have also allowed quantitatively comparing experimental results with predictions by 5D gyrokinetic codes: numerical results simultaneously match the magnitude of effective heat diffusivity, rms values of density uctuations and wavenumber spectra. A clear correlation between electron temperature gradient and impurity transport in the very core of the plasma has been observed, strongly suggesting the existence of a threshold above which transport is dominated by turbulent electron modes. Dynamics of edge turbulent uctuations has been studied by correlating data from fast imaging cameras and Langmuir probes, yielding a coherent picture of transport processes involved in the SOL.
- Published
- 2011
- Full Text
- View/download PDF
23. Investigation of steady-state tokamak issues by long pulse experiments on Tore Supra
- Author
-
Nicolas Crouseilles, R. Guirlet, J. Hourtoule, W. Xiao, J. L. Gardarein, Frédéric Schwander, E. Delchambre, A. Martinez, F. Bouquey, D. Boilson, M. Richou, L. Allegretti, V. Lamaison, T. Loarer, B. Lacroix, A. Vatry, W. Zwingmann, D. Ciazynski, J. Decker, P. Hertout, A. Bécoulet, R. Abgrall, M. Chatelier, B. Guillerminet, J. Lasalle, Yannick Marandet, M. Lipa, S. Nicollet, C. Reux, F. Benoit, E. Delmas, P. Reynaud, J. Y. Journeaux, F. Jullien, H. Bottollier-Curtet, Y. Buranvand, M. Schneider, D. Moreau, Karl Vulliez, M. Tena, P. Pastor, C. Le Niliot, S. Balme, G. Falchetto, V. Martin, L. Svensson, S. H. Hong, C. Laviron, M. Houry, J. M. Theis, S. Madeleine, T. Hutter, T. Salmon, L. Manenc, C. Bouchand, M. Davi, S. Rosanvallon, N. Dolgetta, Pascale Roubin, Eric Nardon, L.-G. Eriksson, B. Pégourié, D. Douai, O. Chaibi, Patrick Mollard, Didier Mazon, J. P. Gunn, Marie Farge, M. Prou, M. Thonnat, L. Begrambekov, J. Garcia, Philippe Ghendrih, L. Colas, Jacques Blum, J. Clary, P. Spuig, C. Gil, M. Kocan, Ph. Lotte, Paolo Angelino, B. Saoutic, M. Ottaviani, P. Devynck, X. Courtois, L. Doceul, Gilles Berger-By, Patrick Tamain, Marc Missirlian, K. Schneider, Yanick Sarazin, Lena Delpech, J.M. Ané, Pascale Hennequin, A. Durocher, Patrick Maget, P. Huynh, David Henry, P. Decool, Marc Goniche, F. Clairet, Julien Hillairet, A. Geraud, J. Signoret, Stéphane Heuraux, P. Bayetti, T. Gerbaud, X. L. Zou, Y. Peysson, H. Parrat, L. Million, Jérôme Bucalossi, S. Hacquin, Clarisse Bourdelle, F. Samaille, Bernard Bertrand, E. Sonnendruker, G. Chevet, A. Simonin, Ph. Cara, J. L. Maréchal, J. Johner, M. S. Benkadda, J. C. Hatchressian, R. Magne, J. Schlosser, A. Grosman, F. Brémond, R. Masset, Estelle Gauthier, S. Song, G. Giruzzi, M. Nannini, Caroline Hernandez, H.P.L. de Esch, P. Garibaldi, R. J. Dumont, Stanislas Pamela, M. Geynet, C. Nguyen, L. Zani, A. Casati, Cyrille Honoré, G. Gros, Fabrice Rigollet, A. Argouarch, Yann Corre, A. Marcor, H. Dougnac, E. Tsitrone, C. Grisolia, D. Pacella, Guillaume Latu, Céline Martin, T. Aniel, G. Darmet, R. Daviot, J.P. Martins, J. L. Farjon, P. Magaud, A. Ekedahl, Francesca Turco, D. Elbeze, P. Beyer, S. Carpentier, Roger Reichle, F. Faisse, X. Litaudon, R. Guigon, F.G. Rimini, F. Linez, L. Gargiulo, C. Fenzi-Bonizec, G. Marbach, Alexandre Torre, P. Monier-Garbet, N. Ravenel, Laure Vermare, J.-M. Travere, Xavier Garbet, R. Mitteau, H. Roche, C. Desgranges, V. Moncada, F. Villecroze, Jean-François Luciani, G. Ciraolo, F. Kazarian, J. Roth, C. Brosset, F. Saint-Laurent, H. Nehme, T. Parisot, Nicolas Fedorczak, F. Escourbiac, D. Guilhem, J. L. Duchateau, P. Moreau, O. Meyer, D. Yu, A. L. Pecquet, V. Petrzilka, E. Trier, Roland Sabot, G. T. A. Huysmans, G. T. Hoang, E. Joffrin, L. Meunier, P. Chantant, C. Portafaix, D. Voyer, J. C. Vallet, S. Salasca, J. L. Segui, A. Santagiustina, J.F. Artaud, G. Dunand, M. Lennholm, Frederic Imbeaux, V. Grandgirard, A. Escarguel, F. Leroux, Y. Lausenaz, P. Chappuis, V. Basiuk, F. Lott, Hinrich Lütjens, Sylvain Brémond, D. Villegas, Marina Becoulet, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Association EURATOM-CEA (CEA/DSM/DRFC), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,fusion ,Tokamak ,MHD ,Nuclear engineering ,Cyclotron ,Ultra-high vacuum ,Electron ,Tore Supra ,01 natural sciences ,7. Clean energy ,010305 fluids & plasmas ,law.invention ,Nuclear physics ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,52.35 ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Physics ,Magnetic confinement fusion ,plasma heating ,Plasma ,Condensed Matter Physics ,Magnetohydrodynamics - Abstract
The main results of the Tore Supra experimental programme in the years 2007–2008 are reported. They document significant progress achieved in the domain of steady-state tokamak research, as well as in more general issues relevant for ITER and for fusion physics research. Three areas are covered: ITER relevant technology developments and tests in a real machine environment, tokamak operational issues for high power and long pulses, and fusion plasma physics. Results presented in this paper include test and validation of a new, load-resilient concept of ion cycotron resonance heating antenna and of an inspection robot operated under ultra-high vacuum and high temperature conditions; an extensive experimental campaign (5 h of plasma) aiming at deuterium inventory and carbon migration studies; real-time control of sawteeth by electron cyclotron current drive in the presence of fast ion tails; ECRH-assisted plasma start-up studies; dimensionless scalings of transport and turbulence; transport experiments using active perturbation methods; resistive and fast-particle driven MHD studies. The potential role of Tore Supra in the worldwide fusion programme before the start of ITER operation is also discussed.
- Published
- 2009
- Full Text
- View/download PDF
24. Lower hybrid current drive efficiency on Tore Supra and JET
- Author
-
W. Zwingman, G. Giruzzi, Jet Efda contributors, Y. Peysson, Didier Mazon, V. Basiuk, T. Aniel, J. Mailloux, A. Ekedahl, J.F. Artaud, Frederic Imbeaux, and M. Goniche
- Subjects
Physics ,Jet (fluid) ,Electron ,Plasma ,Electric current ,Atomic physics ,Tore Supra ,Electromagnetic radiation ,Ohmic contact ,Effective nuclear charge - Abstract
The lower hybrid current drive efficiency of 66 Tore Supra pulses has been investigated. The ohmic part of the plasma current (0.6–0.9 MA) is very small (Vloop
- Published
- 2005
- Full Text
- View/download PDF
25. Experimental Determination of Critical Threshold in Electron Transport on Tore Supra
- Author
-
C. Bourdelle, Xavier Garbet, Robert Budny, T. Aniel, Ping Zhu, M. Ottaviani, G. Giruzzi, Wendell Horton, and G. T. Hoang
- Subjects
Shear (sheet metal) ,Nuclear physics ,Materials science ,Heat flux ,Physics::Plasma Physics ,Plasma parameters ,General Physics and Astronomy ,Electron temperature ,Plasma ,Electron ,Tore Supra ,Atomic physics ,Thermal diffusivity - Abstract
In Tore Supra plasmas with fast wave electron heating, a critical threshold in the electron temperature gradient (inverted DeltaT(e)) is clearly observed, i.e., a finite value of inverted DeltaT(e) for which the turbulent heat diffusivity vanishes. The radial profile of this critical gradient is experimentally determined from a set of discharges characterized by similar plasma parameters with fast wave powers ranging from 0.75 to 7.4 MW. The dependence of the electron heat flux on the gradient length is found to be offset linearly. The offset term increases linearly with the ratio of the local magnetic shear to the safety factor.
- Published
- 2001
- Full Text
- View/download PDF
26. Lower hybrid current drive efficiency and power deposition profile during MHD activity in tore supra
- Author
-
M. Ju, T. Aniel, G. T. A. Huysmans, X. Litaudon, B. Schunke, F. Imbeaux, G. Giruzzi, F. Rimini, R. Dumont, Y. Peysson, Ph. Bibet, G. Martin, V. Basiuk, M. Zabiego, C. Bourdelle, R. Mitteau, X. Garbet, and A. Ekedahl
- Subjects
Physics ,Bremsstrahlung ,Astrophysics::Solar and Stellar Astrophysics ,Perturbation (astronomy) ,Electron ,Tore Supra ,Atomic physics ,Magnetohydrodynamics ,Shear flow ,Current density ,Flattening - Abstract
When the magnetic shear vanishes over a wide spatial region close to the q=2 surface, a strong MHD activity ascribed to a global tearing mode m/n=2/1 is observed, corresponding to a 15% reduction of the current drive efficiency, and a significant flattening of the HXR profile localized in the vicinity of the island. Calculations of the HXR bremsstrahlung and the LH current drive efficiency are reported based on Fokker-Planck calculations to assess the role played by the fastest electrons of the tail, and identify the fraction which is lost by the MHD perturbation.
- Published
- 2001
- Full Text
- View/download PDF
27. Reversed magnetic shear operation with ICRF minority heating on Tore Supra
- Author
-
G. Antar, A. Becoulet, J. Lasalle, F. Saint-Laurent, G. Martin, T. Aniel, V. Basiuk, G. T. Hoang, and Pascal Devynck
- Subjects
Resistive touchscreen ,Chemistry ,Cyclotron resonance ,Analytical chemistry ,Atmospheric-pressure plasma ,Plasma ,Atomic physics ,Electric current ,Tore Supra ,Diffusion (business) ,Ion cyclotron resonance - Abstract
mid-radius increases from 0.5 MA/m 2 to 1.2 MA/m 2 and becomes higher than the central value which is almost constant (less than 1 MA/m 2 ). In the case 2, an opposite behaviour of the current diffusion is observed. The resistive current rapidly diffuses to the core region: the central value rises from 0.6 MA/m 2 to 1.8 MA/m 2 , exceeding the mid-radius value which weakly increases.
- Published
- 1999
- Full Text
- View/download PDF
28. Multimessenger Characterization of Markarian 501 during Historically Low X-Ray and γ-Ray Activity
- Author
-
H. Abe, S. Abe, V. A. Acciari, I. Agudo, T. Aniello, S. Ansoldi, L. A. Antonelli, A. Arbet-Engels, C. Arcaro, M. Artero, K. Asano, D. Baack, A. Babić, A. Baquero, U. Barres de Almeida, J. A. Barrio, I. Batković, J. Baxter, J. Becerra González, W. Bednarek, E. Bernardini, M. Bernardos, A. Berti, J. Besenrieder, W. Bhattacharyya, C. Bigongiari, A. Biland, O. Blanch, G. Bonnoli, Ž. Bošnjak, I. Burelli, G. Busetto, R. Carosi, M. Carretero-Castrillo, A. J. Castro-Tirado, G. Ceribella, Y. Chai, A. Chilingarian, S. Cikota, E. Colombo, J. L. Contreras, J. Cortina, S. Covino, G. D’Amico, V. D’Elia, P. Da Vela, F. Dazzi, A. De Angelis, B. De Lotto, A. Del Popolo, M. Delfino, J. Delgado, C. Delgado Mendez, D. Depaoli, F. Di Pierro, L. Di Venere, E. Do Souto Espiñeira, D. Dominis Prester, A. Donini, D. Dorner, M. Doro, D. Elsaesser, G. Emery, J. Escudero, V. Fallah Ramazani, L. Fariña, A. Fattorini, L. Foffano, L. Font, C. Fruck, S. Fukami, Y. Fukazawa, R. J. García López, M. Garczarczyk, S. Gasparyan, M. Gaug, J. G. Giesbrecht Paiva, N. Giglietto, F. Giordano, P. Gliwny, N. Godinović, R. Grau, D. Green, J. G. Green, D. Hadasch, A. Hahn, T. Hassan, L. Heckmann, J. Herrera, D. Hrupec, M. Hütten, R. Imazawa, T. Inada, R. Iotov, K. Ishio, I. Jiménez Martínez, J. Jormanainen, D. Kerszberg, Y. Kobayashi, H. Kubo, J. Kushida, A. Lamastra, D. Lelas, F. Leone, E. Lindfors, L. Linhoff, S. Lombardi, F. Longo, R. López-Coto, M. López-Moya, A. López-Oramas, S. Loporchio, A. Lorini, E. Lyard, B. Machado de Oliveira Fraga, P. Majumdar, M. Makariev, G. Maneva, N. Mang, M. Manganaro, S. Mangano, K. Mannheim, M. Mariotti, M. Martínez, A. Mas-Aguilar, D. Mazin, S. Menchiari, S. Mender, S. Mićanović, D. Miceli, T. Miener, J. M. Miranda, R. Mirzoyan, E. Molina, H. A. Mondal, A. Moralejo, D. Morcuende, V. Moreno, T. Nakamori, C. Nanci, L. Nava, V. Neustroev, M. Nievas Rosillo, C. Nigro, K. Nilsson, K. Nishijima, T. Njoh Ekoume, K. Noda, S. Nozaki, Y. Ohtani, T. Oka, A. Okumura, J. Otero-Santos, S. Paiano, M. Palatiello, D. Paneque, R. Paoletti, J. M. Paredes, L. Pavletić, M. Persic, M. Pihet, G. Pirola, F. Podobnik, P. G. Prada Moroni, E. Prandini, G. Principe, C. Priyadarshi, W. Rhode, M. Ribó, J. Rico, C. Righi, A. Rugliancich, N. Sahakyan, T. Saito, S. Sakurai, K. Satalecka, F. G. Saturni, B. Schleicher, K. Schmidt, F. Schmuckermaier, J. L. Schubert, T. Schweizer, J. Sitarek, V. Sliusar, D. Sobczynska, A. Spolon, A. Stamerra, J. Strišković, D. Strom, M. Strzys, Y. Suda, T. Surić, H. Tajima, M. Takahashi, R. Takeishi, F. Tavecchio, P. Temnikov, K. Terauchi, T. Terzić, M. Teshima, L. Tosti, S. Truzzi, A. Tutone, S. Ubach, J. van Scherpenberg, M. Vazquez Acosta, S. Ventura, V. Verguilov, I. Viale, C. F. Vigorito, V. Vitale, I. Vovk, R. Walter, M. Will, C. Wunderlich, T. Yamamoto, D. Zarić, The MAGIC Collaboration, M. Cerruti, J. A. Acosta-Pulido, G. Apolonio, R. Bachev, M. Baloković, E. Benítez, I. Björklund, V. Bozhilov, L. F. Brown, A. Bugg, W. Carbonell, M. I. Carnerero, D. Carosati, C. Casadio, W. Chamani, W. P. Chen, R. A. Chigladze, G. Damljanovic, K. Epps, A. Erkenov, M. Feige, J. Finke, A. Fuentes, K. Gazeas, M. Giroletti, T. S. Grishina, A. C. Gupta, M. A. Gurwell,, E. Heidemann, D. Hiriart, W. J. Hou, T. Hovatta, S. Ibryamov, M. D. Joner, S. G. Jorstad, J. Kania, S. Kiehlmann, G. N. Kimeridze, E. N. Kopatskaya, M. Kopp, M. Korte, B. Kotas, S. Koyama, J. A. Kramer, L. Kunkel, S. O. Kurtanidze, O. M. Kurtanidze, A. Lähteenmäki, J. M. López, V. M. Larionov, E. G. Larionova, L. V. Larionova, C. Leto, C. Lorey, R. Mújica, G. M. Madejski, N. Marchili, A. P. Marscher, M. Minev, A. Modaressi, D. A. Morozova, T. Mufakharov, I. Myserlis, A. A. Nikiforova, M. G. Nikolashvili, E. Ovcharov, M. Perri, C. M. Raiteri, A. C. S. Readhead, A. Reimer, D. Reinhart, S. Righini, K. Rosenlehner, A. C. Sadun, S. S. Savchenko, A. Scherbantin, L. Schneider, K. Schoch, D. Seifert, E. Semkov, L. A. Sigua, C. Singh, P. Sola, Y. Sotnikova, M. Spencer, R. Steineke, M. Stojanovic, A. Strigachev, M. Tornikoski, E. Traianou, A. Tramacere, Yu. V. Troitskaya, I. S. Troitskiy, J. B. Trump, A. Tsai, A. Valcheva, A. A. Vasilyev, F. Verrecchia, M. Villata, O. Vince, K. Vrontaki, Z. R. Weaver, E. Zaharieva, and N. Zottmann
- Subjects
Active galaxies ,BL Lacertae objects ,Markarian galaxies ,Active galactic nuclei ,Blazars ,Astrophysics ,QB460-466 - Abstract
We study the broadband emission of Mrk 501 using multiwavelength observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi's Large Area Telescope (LAT), NuSTAR, Swift, GASP-WEBT, and the Owens Valley Radio Observatory. Mrk 501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Nonetheless, significant flux variations are detected at all wave bands, with the highest occurring at X-rays and very-high-energy (VHE) γ -rays. A significant correlation (>3 σ ) between X-rays and VHE γ -rays is measured, supporting leptonic scenarios to explain the variable parts of the emission, also during low activity. This is further supported when we extend our data from 2008 to 2020, and identify, for the first time, significant correlations between the Swift X-Ray Telescope and Fermi-LAT. We additionally find correlations between high-energy γ -rays and radio, with the radio lagging by more than 100 days, placing the γ -ray emission zone upstream of the radio-bright regions in the jet. Furthermore, Mrk 501 showed a historically low activity in X-rays and VHE γ -rays from mid-2017 to mid-2019 with a stable VHE flux (>0.2 TeV) of 5% the emission of the Crab Nebula. The broadband spectral energy distribution (SED) of this 2 yr long low state, the potential baseline emission of Mrk 501, can be characterized with one-zone leptonic models, and with (lepto)-hadronic models fulfilling neutrino flux constraints from IceCube. We explore the time evolution of the SED toward the low state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock.
- Published
- 2023
- Full Text
- View/download PDF
29. Current profile optimisation during RF-assisted current ramp-up in Tore Supra
- Author
-
E. Joffrin, T. Aniel, V. Basiuk, Y. Peysson, F. Imbeaux, X. Litaudon, A. Bécoulet, M. Erba, D. Moreau, and I. Voitsekhovitch
- Subjects
Shear (sheet metal) ,Safety factor ,business.industry ,Chemistry ,Phase (waves) ,Electrical engineering ,Electron temperature ,Current (fluid) ,Atomic physics ,Tore Supra ,business ,Electromagnetic radiation ,Current density - Abstract
Non-inductive current ramp-up experiments have been performed on Tore Supra to enhance the core confinement by creating a central weak magnetic shear region with the safety factor above one. Just after the Lower Hybrid assisted current ramp-up phase, electron temperature transitions have been obtained for the first time at low edge safety factor (qa≈3.5, Ip≈1.6 MA) with 3.5MW of additional power. The improved confinement region concerns the central part of the discharge (r/a⩽0.3) where the q-profile is flat or marginally reversed. In fully driven 0.8 MA discharges preceded by a fast current ramp-up phase, regular central electron temperature relaxations between a high and a low confinement state are sometimes observed and are analysed.
- Published
- 1997
- Full Text
- View/download PDF
30. Comparative modelling of lower hybrid current drive with two launcher designs in the Tore Supra tokamak
- Author
-
Annika Ekedahl, Y. Peysson, E. Nilsson, Didier Mazon, Julien Hillairet, J.F. Artaud, Frederic Imbeaux, M. Goniche, V. Basiuk, Joan Decker, T. Aniel, and Pankaj Sharma
- Subjects
Physics ,Coupling ,Nuclear and High Energy Physics ,Tokamak ,Wave propagation ,Bremsstrahlung ,Tore Supra ,Condensed Matter Physics ,Directivity ,Computational physics ,law.invention ,Nuclear magnetic resonance ,law ,Landau damping ,Antenna (radio) - Abstract
Fully non-inductive operation with lower hybrid current drive (LHCD) in the Tore Supra tokamak is achieved using either a fully active multijunction (FAM) launcher or a more recent ITER-relevant passive active multijunction (PAM) launcher, or both launchers simultaneously. While both antennas show comparable experimental efficiencies, the analysis of stability properties in long discharges suggest different current profiles. We present comparative modelling of LHCD with the two different launchers to characterize the effect of the respective antenna spectra on the driven current profile. The interpretative modelling of LHCD is carried out using a chain of codes calculating, respectively, the global discharge evolution (tokamak simulator METIS), the spectrum at the antenna mouth (LH coupling code ALOHA), the LH wave propagation (ray-tracing code C3PO), and the distribution function (3D Fokker-Planck code LUKE). Essential aspects of the fast electron dynamics in time, space and energy are obtained from hard x-ray measurements of fast electron bremsstrahlung emission using a dedicated tomographic system. LHCD simulations are validated by systematic comparisons between these experimental measurements and the reconstructed signal calculated by the code R5X2 from the LUKE electron distribution. An excellent agreement is obtained in the presence of strong Landau damping (found under low density and high-power conditions in Tore Supra) for which the ray-tracing model is valid for modelling the LH wave propagation. Two aspects of the antenna spectra are found to have a significant effect on LHCD. First, the driven current is found to be proportional to the directivity, which depends upon the respective weight of the main positive and main negative lobes and is particularly sensitive to the density in front of the antenna. Second, the position of the main negative lobe in the spectrum is different for the two launchers. As this lobe drives a counter-current, the resulting driven current profile is also different for the FAM and PAM launchers.
- Published
- 2013
- Full Text
- View/download PDF
31. Analysis of electron heat transport with off-axis modulated ECRH in Tore Supra
- Author
-
D. Elbeze, F. Clairet, E. Corbel, Xuantong Ding, R. Magne, W.W. Xiao, F. Bouquey, X.L. Zou, V. Basiuk, C. Fenzi, Bojiang Ding, J. L. Segui, S. Song, T. Aniel, J.F. Artaud, and G. Giruzzi
- Subjects
Convection ,Nuclear and High Energy Physics ,Tokamak ,Materials science ,Condensed matter physics ,Electron ,Tore Supra ,Condensed Matter Physics ,Thermal diffusivity ,Electron cyclotron resonance ,law.invention ,Physics::Plasma Physics ,law ,Pinch ,Atomic physics ,Transport phenomena - Abstract
Experiments to study inward heat transport phenomena have been performed in the Tore Supra tokamak with off-axis electron cyclotron resonance heating (ECRH). Both power balance and perturbation transport analysis have been done for low-frequency (1 Hz) ECRH modulation experiments. Heat diffusivity and heat pinch have been separately determined by fitting the experimental data of the amplitude and phase of the Fourier transform of the modulated temperature with a linear transport model including convection term. Comparison with the critical gradient model has shown that the heat pinch previously obtained could include a pseudo-pinch due to the non-linearity of the diffusivity and an additional non-diffusive heat pinch. The pinch effect is reduced for higher densities.
- Published
- 2012
- Full Text
- View/download PDF
32. Radiative power in Tore Supra and its link with Zeff
- Author
-
T. Aniel, Jérôme Bucalossi, P. Monier-Garbet, P. Devynck, J.C. Vallet, E. Delchambre, O. Meyer, and T. Wauters
- Subjects
Physics ,Nuclear and High Energy Physics ,chemistry.chemical_element ,Plasma ,Tore Supra ,Radiation ,Condensed Matter Physics ,Effective nuclear charge ,chemistry ,Limiter ,Radiative transfer ,Atomic physics ,Scaling ,Helium - Abstract
In this paper, a database of L-mode plasmas with Greenwald density fractions smaller than 0.8 is used to analyse the parametric dependences of the radiative power and the effective charge Z eff. It is found that the radiative power has a linear dependence on the total power and a linear fit is derived. In order to understand this parametric dependence, the changes in the radial extension of the radiation are studied with the help of bolometry measurements and it is found that the increase in P rad with P tot can be explained by an increase in the neutral source of impurities (basically carbon erosion) during additional heating. A comparison of deuterium and helium plasmas shows that they radiate the same amount at the same total power. Significant positive deviations from the fit of the radiative power are observed for high ratios of Cu XIX/⟨n e⟩. Z eff is also found to depend roughly linearly on the total power. The link found between Z eff and P rad is compatible with that of multimachine scaling (Matthews et al 1997 J. Nucl. Mater. 241–243 450). These results are obtained in a limiter machine, running in L-mode in the case where carbon is the dominant impurity.
- Published
- 2012
- Full Text
- View/download PDF
33. Real-time control of the safety factor profile diagnosed by magneto-hydrodynamic activity on the Tore Supra tokamak
- Author
-
P. Moreau, P. Devynck, P. Pastor, Didier Mazon, David Zarzoso, J. Decker, Antoine Merle, M. Lennholm, D. Molina, Frederic Imbeaux, J. L. Segui, Sylvain Brémond, R. J. Dumont, F. Saint-Laurent, G. Giruzzi, T. Aniel, A. Ekedahl, and Patrick Maget
- Subjects
Physics ,Nuclear and High Energy Physics ,Safety factor ,Tokamak ,Plasma parameters ,Plasma ,Electron ,Mechanics ,Tore Supra ,Condensed Matter Physics ,law.invention ,Physics::Plasma Physics ,law ,Physics::Space Physics ,Magnetohydrodynamics ,Stationary state - Abstract
Real-time control is essential for many aspects of tokamak operation. A key parameter to control is the current profile, since both confinement properties and magneto-hydrodynamic (MHD) activity depend on it in quite a sensitive way. The long pulse capability of the Tore Supra tokamak has allowed a unique type of experiment, where successive stationary states of the safety factor profile, defined by their MHD activity, are established and controlled in real time. Multiple target stationary states could be requested and reached during the main heating phase of a single plasma discharge. Experiments have been carried out featuring (i) control of the presence/absence of sawteeth with varying plasma parameters, (ii) obtaining and sustaining a ‘hot core’ plasma regime without MHD activity and (iii) recovery from a voluntarily triggered deleterious MHD regime. During these experiments, the influence of fast ions on MHD stability could be observed and characterized, as well as indications of an enhanced ‘hot core’ confinement in electron heat transport during quiescent MHD states.
- Published
- 2011
- Full Text
- View/download PDF
34. Radial electric field measurement in a tokamak with magnetic field ripple
- Author
-
G. Falchetto, E. Trier, L.-G. Eriksson, C. Fenzi, Pascale Hennequin, T. Aniel, Xavier Garbet, Roland Sabot, C. Bourdelle, and F. Clairet
- Subjects
Physics ,Nuclear and High Energy Physics ,Tokamak ,Ripple ,Magnetic confinement fusion ,Tore Supra ,Condensed Matter Physics ,Magnetic field ,law.invention ,Momentum ,law ,Electric field ,Plasma diagnostics ,Atomic physics - Abstract
In the regions of the Tore Supra tokamak with significant ripple it is expected that a radial electric field (E r ) ensures the ambipolarity of fluxes of thermal particles trapped in ripple wells. A neoclassical calculation (Connor and Hastie 1973 Nucl. Fusion 13 221, Stringer 1972 Nucl. Fusion 12 689) shows that E r is related to ion temperature and density gradients. The validity of this relation is investigated in a series of Tore Supra L-mode discharges without external momentum input. Doppler reflectometry measurements of fluctuations perpendicular velocity, which is dominated by the E r × B drift, are found to be in good agreement with the predicted neoclassical E r .
- Published
- 2008
- Full Text
- View/download PDF
35. Experimental observation of m/n = 1/1 mode behaviour during sawtooth activity and its manifestations in tokamak plasmas[This is an extended version of the paper presented at the 31st EPS Conf. on Plasma Physics (London, 28 June2 July 2004).].
- Author
-
V S Udintsev, M Ottaviani, P Maget, G Giruzzi, J-L Ségui, T Aniel, J F Artaud, F Clairet, M Goniche, G T Hoang, G T A Huysmans, F Imbeaux, E Joffrin, D Mazon, A L Pecquet, R Sabot, A Sirinelli, L Vermare, Tore Supra Team, and A Krämer-Flecken
- Published
- 2005
36. POLARIZED PARTICLES AT SATURNE
- Author
-
T. Aniel, J. L. Laclare, A. Ropert, G. Leleux, and A. Nakach
- Subjects
Physics ,General Engineering - Published
- 1985
- Full Text
- View/download PDF
37. The CRONOS suite of codes for integrated tokamak modelling
- Author
-
B. Pégourié, P. R. Thomas, R. J. Dumont, Clarisse Bourdelle, M. Schneider, P. Huynh, Y. Peysson, A. Casati, Patrick Maget, Francesca Turco, F. Köchl, A. Bécoulet, G. Giruzzi, G.T. Hoang, J. Decker, P. Hertout, T. Aniel, R. Guirlet, E. Joffrin, S.H. Kim, X. Litaudon, L. Colas, L.-G. Eriksson, G. T. A. Huysmans, R. Masset, Wayne A Houlberg, J.B. Lister, E. Tsitrone, J.M. Ané, F. Albajar, J.F. Artaud, Xavier Garbet, Frederic Imbeaux, J. Garcia, and V. Basiuk
- Subjects
Nuclear and High Energy Physics ,Transport Simulations ,Tokamak ,Modular structure ,Computer science ,Nuclear engineering ,Suite ,Tore-Supra ,Mhd Stability ,Current Drive Operation ,Solver ,Tore Supra ,Condensed Matter Physics ,Electron-Cyclotron ,law.invention ,Momentum ,Workflow ,Steady-State ,Heated Plasmas ,law ,Lower-Hybrid Waves ,Noninductive Discharges ,Profile - Abstract
CRONOS is a suite of numerical codes for the predictive/interpretative simulation of a full tokamak discharge. It integrates, in a modular structure, a 1D transport solver with general 2D magnetic equilibria, several heat, particle and impurities transport models, as well as heat, particle and momentum sources. This paper gives a first comprehensive description of the CRONOS suite: overall structure of the code, main available models, details on the simulation workflow and numerical implementation. Some examples of applications to the analysis of experimental discharges and the predictions of ITER scenarios are also given.
38. Science and technology research and development in support to ITER and the Broader Approach at CEA
- Author
-
A. Bécoulet, G.T. Hoang, J. Abiteboul, J. Achard, T. Alarcon, J. Alba-Duran, L. Allegretti, S. Allfrey, S. Amiel, J.M. Ané, T. Aniel, G. Antar, A. Argouarch, A. Armitano, J. Arnaud, D. Arranger, J.F. Artaud, D. Audisio, M. Aumeunier, E. Autissier, L. Azcona, A. Back, A. Bahat, X. Bai, B. Baiocchi, D. Balaguer, S. Balme, C. Balorin, O. Barana, D. Barbier, A. Barbuti, V. Basiuk, O. Baulaigue, P. Bayetti, C. Baylard, S. Beaufils, A. Beaute, M. Bécoulet, Z. Bej, S. Benkadda, F. Benoit, G. Berger-By, J.M. Bernard, A. Berne, B. Bertrand, E. Bertrand, P. Beyer, A. Bigand, G. Bonhomme, G. Borel, A. Boron, C. Bottereau, H. Bottollier-Curtet, C. Bouchand, F. Bouquey, C. Bourdelle, J. Bourg, S. Bourmaud, S. Brémond, F. Bribiesca Argomedo, M. Brieu, C. Brun, V. Bruno, J. Bucalossi, H. Bufferand, Y. Buravand, L. Cai, V. Cantone, B. Cantone, E. Caprin, T. Cartier-Michaud, A. Castagliolo, J. Belo, V. Catherine-Dumont, G. Caulier, J. Chaix, M. Chantant, M. Chatelier, D. Chauvin, J. Chenevois, B. Chouli, L. Christin, D. Ciazynski, G. Ciraolo, F. Clairet, R. Clapier, H. Cloez, M. Coatanea-Gouachet, L. Colas, G. Colledani, L. Commin, P. Coquillat, E. Corbel, Y. Corre, J. Cottet, P. Cottier, X. Courtois, I. Crest, R. Dachicourt, M. Dapena Febrer, C. Daumas, H.P.L. de Esch, B. De Gentile, C. Dechelle, J. Decker, P. Decool, V. Deghaye, J. Delaplanche, E. Delchambre-Demoncheaux, L. Delpech, C. Desgranges, P. Devynck, J. Dias Pereira Bernardo, G. Dif-Pradalier, L. Doceul, Y. Dong, D. Douai, H. Dougnac, N. Dubuit, J.-L. Duchateau, L. Ducobu, B. Dugue, N. Dumas, R. Dumont, A. Durocher, F. Duthoit, A. Ekedahl, D. Elbeze, A. Escarguel, J. Escop, F. Faïsse, G. Falchetto, J. Farjon, M. Faury, N. Fedorzack, P. Féjoz, C. Fenzi, F. Ferlay, P. Fiet, M. Firdaouss, M. Francisquez, B. Franel, J. Frauche, Y. Frauel, R. Futtersack, X. Garbet, J. Garcia, J. Gardarein, L. Gargiulo, P. Garibaldi, P. Garin, D. Garnier, E. Gauthier, O. Gaye, A. Geraud, M. Gerome, V. Gervaise, M. Geynet, P. Ghendrih, I. Giacalone, S. Gibert, C. Gil, S. Ginoux, L. Giovannangelo, S. Girard, G. Giruzzi, C. Goletto, R. Goncalves, R. Gonde, M. Goniche, R. Goswami, C. Grand, V. Grandgirard, B. Gravil, C. Grisolia, G. Gros, A. Grosman, J. Guigue, D. Guilhem, C. Guillemaut, B. Guillerminet, Z. Guimaraes Filho, R. Guirlet, J. P. Gunn, O. Gurcan, F. Guzman, S. Hacquin, F. Hariri, F. Hasenbeck, J.C. Hatchressian, P. Hennequin, C. Hernandez, P. Hertout, S. Heuraux, J. Hillairet, C. Honore, G. Hornung, M. Houry, I. Hunstad, T. Hutter, P. Huynh, V. Icard, F. Imbeaux, M. Irishkin, L. Isoardi, J. Jacquinot, J. Jacquot, G. Jiolat, M. Joanny, E. Joffrin, J. Johner, P. Joubert, L. Jourd'Heuil, M. Jouve, C. Junique, D. Keller, C. Klepper, D. Kogut, M. Kubič, F. Labassé, B. Lacroix, Y. Lallier, V. Lamaison, R. Lambert, S. Larroque, G. Latu, Y. Lausenaz, C. Laviron, R. Le, A. Le Luyer, C. Le Niliot, Y. Le Tonqueze, P. Lebourg, T. Lefevre, F. Leroux, L. Letellier, Y. Li, M. Lipa, J. Lister, X. Litaudon, F. Liu, T. Loarer, G. Lombard, P. Lotte, M. Lozano, J. Lucas, H. Lütjens, P. Magaud, P. Maget, R. Magne, J.-F. Mahieu, P. Maini, P. Malard, L. Manenc, Y. Marandet, G. Marbach, J.-L. Marechal, L. Marfisi, M. Marle, C. Martin, V. Martin, G. Martin, A. Martinez, P. Martino, R. Masset, D. Mazon, N. Mellet, L. Mercadier, A. Merle, D. Meshcheriakov, P. Messina, O. Meyer, L. Millon, M. Missirlian, J. Moerel, D. Molina, P. Mollard, V. Moncada, P. Monier-Garbet, D. Moreau, M. Moreau, P. Moreau, P. Morel, T. Moriyama, Y. Motassim, G. Mougeolle, D. Moulton, G. Moureau, D. Mouyon, M. Naim Habib, E. Nardon, V. Négrier, J. Nemeth, C. Nguyen, M. Nguyen, L. Nicolas, T. Nicolas, S. Nicollet, E. Nilsson, B. N'Konga, F. Noel, A. Nooman, C. Norscini, R. Nouailletas, P. Oddon, T. Ohsako, F. Orain, M. Ottaviani, M. Pagano, F. Palermo, S. Panayotis, H. Parrat, J.-Y. Pascal, C. Passeron, P. Pastor, J. Patterlini, K. Pavy, A.-L. Pecquet, B. Pégourié, C. Peinturier, T. Pelletier, B. Peluso, V. Petrzilka, Y. Peysson, E. Pignoly, R. Pirola, C. Pocheau, E. Poitevin, V. Poli, S. Poli, F. Pompon, I. Porchy, C. Portafaix, M. Preynas, P. Prochet, M. Prou, A. Ratnani, D. Raulin, N. Ravenel, S. Renard, B. Ricaud, M. Richou, G. Ritz, H. Roche, P. Roubin, C. Roux, K. Ruiz, F. Sabathier, R. Sabot, A. Saille, F. Saint-Laurent, R. Sakamoto, S. Salasca, T. Salmon, F. Samaille, S. Sanchez, A. Santagiustina, B. Saoutic, Y. Sarazin, P. Sardain, J. Schlosser, M. Schneider, J. Schwob, J. Segui, N. Seguin, G. Selig, D. Serret, J. Signoret, A. Simonin, M. Soldaini, B. Soler, C. Soltane, S. Song, F. Sourbier, J. Sparagna, P. Spitz, P. Spuig, A. Storelli, A. Strugarek, P. Tamain, M. Tena, J. Theis, O. Thomine, D. Thouvenin, A. Torre, L. Toulouse, J. Travère, E. Tsitrone, B. Turck, J. Urban, J.-C. Vallet, J. Vallory, A. Valognes, J. Van Helvoirt, S. Vartanian, J.-M. Verger, L. Vermare, C. Vermare, D. Vezinet, K. Vicente, J. Vidal, N. Vignal, T. Vigne, F. Villecroze, E. Villedieu, B. Vincent, B. Volpe, D. Volpe, R. Volpe, J. Wagrez, H. Wang, T. Wauters, O. Wintersdorff, E. Wittebol, B. Zago, L. Zani, D. Zarzoso, Y. Zhang, W. Zhong, X.L. Zou, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Plasmas (LPP), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique [Palaiseau] (CPHT), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), and Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Engineering ,Tokamak ,business.industry ,Superconducting magnet ,Tore Supra ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,Phase (combat) ,010305 fluids & plasmas ,law.invention ,Procurement ,Runaway electrons ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Systems engineering ,010306 general physics ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
Équipe 107 : Physique des plasmas chauds; International audience; In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented.
- Full Text
- View/download PDF
39. Metis: a fast integrated tokamak modelling tool for scenario design
- Author
-
A. Bécoulet, G.T. Hoang, V. Basiuk, Xavier Garbet, J. Decker, Clarisse Bourdelle, G. Giruzzi, P. Huynh, R. Guirlet, E. Joffrin, R. J. Dumont, M. Schneider, B. Pégourié, Patrick Maget, J.F. Artaud, D. Moreau, T. Aniel, Rémy Nouailletas, L.-G. Eriksson, X. Litaudon, Frederic Imbeaux, Jakub Urban, Y. Buravand, Y. Peysson, J. Garcia, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), European Commission [Brussels], EUROfusion, Culham Centre for Fusion Energy (CCFE), ITER organization (ITER), Department of Pulse Plasma Systems, Institute of Plasma Physics, Academy of Sciences of the Czech Republic, and Czech Academy of Sciences [Prague] (CAS)
- Subjects
[PHYS]Physics [physics] ,Nuclear and High Energy Physics ,Tokamak ,business.industry ,Computer science ,Suite ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Momentum ,Workflow ,law ,0103 physical sciences ,Metis ,Code (cryptography) ,Particle ,Aerospace engineering ,Diffusion (business) ,010306 general physics ,business - Abstract
International audience; METIS is a numerical code aiming at fast full tokamak plasma analyses and predictions. It combines 0-D scaling-law normalised heat and particle transport with 1-D current diffusion modelling and 2-D equilibria. It contains several heat, particle and impurities transport models, as well as heat, particle, current and momentum sources, which allow faster than real time scenario simulations. This paper gives a first comprehensive description of the METIS suite: overall structure of the code, main available models, details on the simulation workflow and numerical implementation. Some examples of applications to the analysis of experimental discharges and the predictions of ITER scenarios are also given.
- Full Text
- View/download PDF
40. Metis: a fast integrated tokamak modelling tool for scenario design.
- Author
-
J.F. Artaud, F. Imbeaux, J. Garcia, G. Giruzzi, T. Aniel, V. Basiuk, A. Bécoulet, C. Bourdelle, Y. Buravand, J. Decker, R. Dumont, L.G. Eriksson, X. Garbet, R. Guirlet, G.T. Hoang, P. Huynh, E. Joffrin, X. Litaudon, P. Maget, and D. Moreau
- Subjects
TOKAMAKS ,SCALING laws (Nuclear physics) ,PLASMA flow ,COMPUTER simulation ,HEAT transfer - Abstract
METIS is a numerical code aiming at fast full tokamak plasma analyses and predictions. It combines 0D scaling-law normalised heat and particle transport with 1D current diffusion modelling and 2D equilibria. It contains several heat, particle and impurities transport models, as well as heat, particle, current and momentum sources, which allow faster than real time scenario simulations. This paper gives a first comprehensive description of the METIS suite: overall structure of the code, main available models, details on the simulation workflow and numerical implementation. Some examples of applications to the analysis of experimental discharges and the predictions of ITER scenarios are also given. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
41. Co- and counter-current rotation in Tore Supra lower hybrid current drive plasmas
- Author
-
D. Elbeze, J.F. Artaud, C. Gil, F. Clairet, V. Basiuk, T. Aniel, C. Fenzi, Clarisse Bourdelle, Xavier Garbet, Yanick Sarazin, Ph. Lotte, G. Colledani, J. Decker, R. J. Dumont, and B. Chouli
- Subjects
Physics ,Momentum (technical analysis) ,Plasma parameters ,Magnetic confinement fusion ,Plasma ,Tore Supra ,Condensed Matter Physics ,Rotation ,Amplitude ,Nuclear Energy and Engineering ,Physics::Plasma Physics ,Physics::Space Physics ,Atomic physics ,Electric current - Abstract
Observations of lower hybrid (LH) radio frequency heating effects on toroidal plasma rotation in L-mode Tore Supra plasmas are reported. A database of more than 50 plasma discharges has been analysed. Core rotation is found to increment in co- or counter-current direction depending on the plasma current (Ip). At low plasma current, the induced rotation is up to +15 km s−1 in the co-current direction, the rotation profile being affected over the whole plasma minor radius. At higher plasma current, an opposite trend is observed, the core plasma rotation incrementing up to −15 km s−1 in the counter-current direction, the profile being affected up to r/a < 0.6 only. At the zero crossing point, which is defined when the plasma rotation profile is not affected by LH power injection, Ip ~ 0.95 MA. In both low and high Ip cases, rotation increments are found to increase with the injected power. Several mechanisms in competition which can induce co- or counter-current rotation in Tore Supra LHCD plasmas are investigated and typical order of magnitude are discussed. How those effects evolve with plasma parameters and how they compete are important issues addressed in this paper. Rotation increment increase with Ip at fixed LH power is consistent with a dominant standard momentum confinement mechanism related to Ip increase. The co-current change in rotation is consistent with a fast electron ripple loss mechanism, while thermal ripple induced neoclassical friction and absorbed LH wave momentum from resonant electrons are expected to influence the rotation in the counter-current direction. Finally, the numerical simulations show that the radial turbulent momentum transport does impact the rotation behaviour inducing increment in co- or counter-current directions, depending on the plasma current amplitude.
- Full Text
- View/download PDF
42. Investigations of LHCD induced plasma rotation in Tore Supra.
- Author
-
B Chouli, C Fenzi, X Garbet, C Bourdelle, Y Sarazin, J Rice, T Aniel, J-F Artaud, B Baiocchi, V Basiuk, P Cottier, J Decker, F Imbeaux, M Irishkin, D Mazon, M Schneider, and Team, the Tore Supra
- Subjects
CURRENT-drive heating ,PLASMA flow ,TOROIDAL magnetic circuits ,DIAMAGNETIC materials ,ELECTRIC currents - Abstract
Theoretical investigations are performed in order to explain the plasma rotation increments induced by lower hybrid current drive (LHCD) in Tore Supra and the results are compared to the experimental observations. The intrinsic toroidal rotation is governed by several mechanisms in concert. The impact of the LHCD on each involved mechanism is analyzed. The neoclassical toroidal rotation is always in the counter-current direction. The toroidal diamagnetic velocity is of the order of the experimental toroidal velocity. At high plasma current the rotation evolution in the lower hybrid (LH) phase is controlled by the neoclassical friction force due to the trapped ions in banana trajectories through the toroidal diamagnetic velocity. This force results in the counter-current increment as observed in the experimental measurement of toroidal rotation. At low plasma current the rotation is dominated by momentum turbulent transport when the LH waves are applied. The Reynolds stress grows strongly compared to the high plasma current case and acts as a co-current force through its residual stress contribution. Momentum transport simulations are also performed with CRONOS (Artaud et al 2010) in order to assess the rotation increments induced by LHCD. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
43. Real-time capable first principle based modelling of tokamak turbulent transport.
- Author
-
J. Citrin, S. Breton, F. Felici, F. Imbeaux, T. Aniel, J.F. Artaud, B. Baiocchi, C. Bourdelle, Y. Camenen, and J. Garcia
- Subjects
TOKAMAKS ,PLASMA transport processes ,PLASMA instabilities ,ADIABATIC electron transfer ,REGRESSION analysis ,NONLINEAR regression - Abstract
A real-time capable core turbulence tokamak transport model is developed. This model is constructed from the regularized nonlinear regression of quasilinear gyrokinetic transport code output. The regression is performed with a multilayer perceptron neural network. The transport code input for the neural network training set consists of five dimensions, and is limited to adiabatic electrons. The neural network model successfully reproduces transport fluxes predicted by the original quasilinear model, while gaining five orders of magnitude in computation time. The model is implemented in a real-time capable tokamak simulator, and simulates a 300 s ITER discharge in 10 s. This proof-of-principle for regression based transport models anticipates a significant widening of input space dimensionality and physics realism for future training sets. This aims to provide unprecedented computational speed coupled with first-principle based physics for real-time control and integrated modelling applications. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
44. Density impact on toroidal rotation in Tore Supra: experimental observations and theoretical investigation.
- Author
-
J Bernardo, C Fenzi, C Bourdelle, Y Camenen, H Arnichand, João P S Bizarro, S Cortes, X Garbet, Z O Guimarães-Filho, T Aniel, J-F Artaud, F Clairet, P Cottier, J Gunn, P Lotte, and Team, the Tore Supra
- Subjects
NUCLEAR research ,PLASMA density ,PLASMA currents ,MAGNETIC fields ,TURBULENCE - Abstract
The effect of plasma density on toroidal rotation was examined in density ramp-up experiments at a plasma current of 1 MA and a toroidal magnetic field of 3.6 T in Tore Supra ohmic discharges. Experimental measurements have shown that the toroidal rotation amplitude is reduced at all radii when increasing the plasma density, although it remains in the counter-current direction. Neoclassical predictions including ripple-induced toroidal friction are in qualitative agreement with such observations. However, in the core (r/a < 0.5) the plasma accelerates at n
l ∼ 3 × 1019 m−2 and breaks again above nl ∼ 3.5 × 1019 m−2 . This rotation bifurcation did not appear to be correlated to a possible influence of the sawtooth activity. Nonetheless, quasi-linear gyrokinetic simulations have shown that the transition of the nature of linear microinstabilities from ITG-TEM to pure ITG occurs at nl ∼ 3 × 1019 m−2 , which could indicate a change on the turbulence driven contributions and explain the deviation from neoclassical predictions in the plasma core. [ABSTRACT FROM AUTHOR]- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.