77 results on '"Tambets K."'
Search Results
2. Multidisciplinary investigation of two Egyptian child mummies curated at the University of Tartu Art Museum, Estonia (Late/Graeco-Roman Periods)
- Author
-
Oras, E, Anderson, J, Tõrv, M, Vahur, S, Rammo, R, Remmer, S, Mölder, M, Malve, M, Saag, L, Saage, R, Teearu-Ojakäär, A, Peets, P, Tambets, K, Metspalu, M, Lees, David, Barclay, Maxwell, Hall, MJR, Ikram, S, Piombino-Mascali, D, Oras, E, Anderson, J, Tõrv, M, Vahur, S, Rammo, R, Remmer, S, Mölder, M, Malve, M, Saag, L, Saage, R, Teearu-Ojakäär, A, Peets, P, Tambets, K, Metspalu, M, Lees, David, Barclay, Maxwell, Hall, MJR, Ikram, S, and Piombino-Mascali, D
- Abstract
Two ancient Egyptian child mummies at the University of Tartu Art Museum (Estonia) were, according to museum records, brought to Estonia by the young Baltic-German scholar Otto Friedrich von Richter, who had travelled in Egypt during the early 19th century. Although some studies of the mummies were conducted, a thorough investigation has never been made. Thus, an interdisciplinary team of experts studied the remains using the most recent analytical methods in order to provide an exhaustive analysis of the remains. The bodies were submitted for osteological and archaeothanatological study, radiological investigation, AMS radiocarbon dating, chemical and textile analyses, 3D modelling, entomological as well as aDNA investigation. Here we synthesize the results of one of the most extensive multidisciplinary analyses of ancient Egyptian child mummies, adding significantly to our knowledge of such examples of ancient funerary practices.
- Published
- 2020
3. Diversity of Mitochondrial DNA Haplogroups in Ethnic Populations of the Volga–Ural Region
- Author
-
Bermisheva, M. A., Tambets, K., Villems, R., and Khusnutdinova, E. K.
- Published
- 2002
- Full Text
- View/download PDF
4. Origin and Expansion of Haplogroup H, the Dominant Human Mitochondrial DNA Lineage in West Eurasia: The Near Eastern and Caucasian Perspective
- Author
-
Roostalu, U., Kutuev, I., Loogväli, E.-L., Metspalu, E., Tambets, K., Reidla, M., Khusnutdinova, E. K., Usanga, E., Kivisild, T., and Villems, R.
- Published
- 2007
5. Mitochondrial DNA Portrait of Latvians: Towards the Understanding of the Genetic Structure of Baltic-Speaking Populations
- Author
-
Pliss, L., Tambets, K., Loogväli, E.-L., Pronina, N., Lazdins, M., Krumina, A., Baumanis, V., and Villems, R.
- Published
- 2006
6. Origin and spread of human mitochondrial DNA haplogroup U7
- Author
-
Sahakyan, H. Kashani, B.H. Tamang, R. Kushniarevich, A. Francis, A. Costa, M.D. Pathak, A.K. Khachatryan, Z. Sharma, I. Van Oven, M. Parik, J. Hovhannisyan, H. Metspalu, E. Pennarun, E. Karmin, M. Tamm, E. Tambets, K. Bahmanimehr, A. Reisberg, T. Reidla, M. Achilli, A. Olivieri, A. Gandini, F. Perego, U.A. Al-Zahery, N. Houshmand, M. Sanati, M.H. Soares, P. Rai, E. Šarac, J. Šarić, T. Sharma, V. Pereira, L. Fernandes, V. Černý, V. Farjadian, S. Singh, D.P. Azakli, H. Üstek, D. Trofimova, N.E. Kutuev, I. Litvinov, S. Bermisheva, M. Khusnutdinova, E.K. Rai, N. Singh, M. Singh, V.K. Reddy, A.G. Tolk, H.-V. Cvjetan, S. Lauc, L.B. Rudan, P. Michalodimitrakis, E.N. Anagnou, N.P. Pappa, K.I. Golubenko, M.V. Orekhov, V. Borinskaya, S.A. Kaldma, K. Schauer, M.A. Simionescu, M. Gusar, V. Grechanina, E. Govindaraj, P. Voevoda, M. Damba, L. Sharma, S. Singh, L. Semino, O. Behar, D.M. Yepiskoposyan, L. Richards, M.B. Metspalu, M. Kivisild, T. Thangaraj, K. Endicott, P. Chaubey, G. Torroni, A. Villems, R.
- Abstract
Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (∼16-19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that - analysed alongside 100 published ones - enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (∼11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (∼8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region. © The Author(s) 2017.
- Published
- 2017
7. Origin and spread of mitochondrial DNA haplogroup U7
- Author
-
Sahakyan, H, Kashani, BH, Tamang, R, Kushniarevich, A, Francis, A, Costa, MD, Pathak, AK, Khachatryan, Z, Sharma, I, van Oven, M, Parik, J, Hovhannisyan, H, Metspalu, E, Pennarun, E, Karmin, M, Tamm, E, Tambets, K, Bahmanimehr, A, Reisberg, T, Reidla, M, Achilli, A, Olivieri, A, Gandini, F, Perego, UA, Al-Zahery, N, Houshmand, M, Sanati, MH, Soares, P, Rai, E, Šarac, J, Šarić, T, Sharma, V, Pereira, L, Fernandes, V, Černý, V, Farjadian, S, Singh, DP, Azakli, H, Üstek, D, Ekomasova, NT, Kutuev, I, Litvinov, S, Bermisheva, M, Khusnutdinova, EK, Rai, N, Singh, M, Singh, VK, Reddy, AG, Tolk, HV, Cvjetan, S, Lauc, LB, Rudan, P, Michalodimitrakis, EN, Anagnou, NP, Pappa, KI, Golubenko, MV, Orekhov, V, Borinskaya, SA, Kaldma, K, Schauer, MA, Simionescu, M, Gusar, V, Grechanina, E, Govindaraj, P, Voevoda, M, Damba, L, Sharma, S, Singh, L, Semino, O, Behar, DM, Yepiskoposyan, L, Richards, MB, Metspalu, M, Kivisild, T, Thangaraj, K, Endicott, P, Chaubey, G, Torroni, A, Villems, R, and Instituto de Investigação e Inovação em Saúde
- Subjects
Bronze Age ,Europe ,Mitochondrial haplogroup ,Middle East ,Steppe ,Holocene ,Human experiment ,Neolithic ,South Asia ,Human ,Language - Abstract
Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene huntergatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16–19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that – analysed alongside 100 published ones – enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (~11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (~8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region.
- Published
- 2017
8. Genomic analyses inform on migration events during the peopling of Eurasia
- Author
-
Pagani, L, Lawson, DJ, Jagoda, E, Mörseburg, A, Eriksson, A, Mitt, M, Clemente, F, Hudjashov, G, Degiorgio, M, Saag, L, Wall, JD, Cardona, A, Mägi, R, Sayres, MAW, Kaewert, S, Inchley, C, Scheib, CL, Järve, M, Karmin, M, Jacobs, GS, Antao, T, Iliescu, FM, Kushniarevich, A, Ayub, Q, Tyler-Smith, C, Xue, Y, Yunusbayev, B, Tambets, K, Mallick, CB, Pocheshkhova, E, Andriadze, G, Muller, C, Westaway, MC, Lambert, DM, Zoraqi, G, Turdikulova, S, Dalimova, D, Sabitov, Z, Sultana, GNN, Lachance, J, Tishkoff, S, Momynaliev, K, Isakova, J, Damba, LD, Gubina, M, Nymadawa, P, Evseeva, I, Atramentova, L, Utevska, O, Ricaut, FX, Brucato, N, Sudoyo, H, Letellier, T, Cox, MP, Barashkov, NA, Mulahasanović, L, Primorac, D, Mormina, M, Eichstaedt, CA, Lichman, DV, Chaubey, G, Wee, JTS, Mihailov, E, Karunas, A, Litvinov, S, Khusainova, R, and Ekomasova, N
- Abstract
© 2016 Macmillan Publishers Limited, part of Springer Nature. High-Coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long-and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.
- Published
- 2016
- Full Text
- View/download PDF
9. A recent bottleneck of Y chromosome diversity coincides with a global change in culture
- Author
-
Karmin M., Saag L., Vicente M., Wilson Sayres M., Järve M., Talas U., Rootsi S., Ilumäe A., Mägi R., Mitt M., Pagani L., Puurand T., Faltyskova Z., Clemente F., Cardona A., Metspalu E., Sahakyan H., Yunusbayev B., Hudjashov G., DeGiorgio M., Loogväli E., Eichstaedt C., Eelmets M., Chaubey G., Tambets K., Litvinov S., Mormina M., Xue Y., Ayub Q., Zoraqi G., Korneliussen T., Akhatova F., Lachance J., Tishkoff S., Momynaliev K., Ricaut F., Kusuma P., Razafindrazaka H., Pierron D., Cox M., Sultana G., Willerslev R., Muller C., Westaway M., Lambert D., Skaro V., Kovačević L., Turdikulova S., Dalimova D., Khusainova R., Trofimova N., Akhmetova V., Khidiyatova I., Lichman D., Isakova J., Pocheshkhova E., Sabitov Z., Barashkov N., Nymadawa P., Mihailov E., Seng J., Evseeva I., Migliano A., Abdullah S., Andriadze G., Primorac D., Atramentova L., Utevska O., Yepiskoposyan L., Marjanović D., Kushniarevich A., and Behar D.
- Abstract
© 2015 Karmin et al. It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.
- Published
- 2015
10. A recent bottleneck of Y chromosome diversity coincides with a global change in culture
- Author
-
Karmin, M., Saag, L., Vicente, M., Wilson Sayres, M.A., Jarve, M., Talas, U.G., Rootsi, S., Ilumae, A.M., Magi, R., Mitt, M., Pagani, L., Puurand, T., Faltyskova, Z., Clemente, F., Cardona, A., Metspalu, E., Sahakyan, H., Yunusbayev, B., Hudjashov, G., DeGiorgio, M., Loogvali, E.L., Eichstaedt, C., Eelmets, M., Chaubey, G., Tambets, K., Litvinov, S., Mormina, M., Xue, Y., Ayub, Q., Zoraqi, G., Korneliussen, T.S., Akhatova, F., Lachance, J., Tishkoff, S., Momynaliev, K., Ricaut, F.X., Kusuma, P., Razafindrazaka, H., Pierron, D., Cox, M.P., Sultana, G.N., Willerslev, R., Muller, C., Westaway, M., Lambert, D., Skaro, V., Kovacevic, L., Turdikulova, S., Dalimova, D., Khusainova, R., Trofimova, N., Akhmetova, V., Khidiyatova, I., Lichman, D.V., Isakova, J., Pocheshkhova, E., Sabitov, Z., Barashkov, N.A., Nymadawa, P., Mihailov, E., Seng, J.W., Evseeva, I., Migliano, A.B., Abdullah, S., Andriadze, G., Primorac, D., Atramentova, L., Utevska, O., Yepiskoposyan, L., Marjanovic, D., Kushniarevich, A., Behar, D.M., Gilissen, C., Vissers, L., Veltman, J.A., Balanovska, E., Derenko, M., Malyarchuk, B., Metspalu, A., Fedorova, S., Eriksson, A., Manica, A., Mendez, F.L., Karafet, T.M., Veeramah, K.R., Bradman, N., Hammer, M.F., Osipova, L.P., Balanovsky, O., Khusnutdinova, E.K., Johnsen, K., Remm, M., Thomas, M.G., Tyler-Smith, C., Underhill, P.A., Willerslev, E., Nielsen, R., Metspalu, M., Villems, R., Kivisild, T., Karmin, M., Saag, L., Vicente, M., Wilson Sayres, M.A., Jarve, M., Talas, U.G., Rootsi, S., Ilumae, A.M., Magi, R., Mitt, M., Pagani, L., Puurand, T., Faltyskova, Z., Clemente, F., Cardona, A., Metspalu, E., Sahakyan, H., Yunusbayev, B., Hudjashov, G., DeGiorgio, M., Loogvali, E.L., Eichstaedt, C., Eelmets, M., Chaubey, G., Tambets, K., Litvinov, S., Mormina, M., Xue, Y., Ayub, Q., Zoraqi, G., Korneliussen, T.S., Akhatova, F., Lachance, J., Tishkoff, S., Momynaliev, K., Ricaut, F.X., Kusuma, P., Razafindrazaka, H., Pierron, D., Cox, M.P., Sultana, G.N., Willerslev, R., Muller, C., Westaway, M., Lambert, D., Skaro, V., Kovacevic, L., Turdikulova, S., Dalimova, D., Khusainova, R., Trofimova, N., Akhmetova, V., Khidiyatova, I., Lichman, D.V., Isakova, J., Pocheshkhova, E., Sabitov, Z., Barashkov, N.A., Nymadawa, P., Mihailov, E., Seng, J.W., Evseeva, I., Migliano, A.B., Abdullah, S., Andriadze, G., Primorac, D., Atramentova, L., Utevska, O., Yepiskoposyan, L., Marjanovic, D., Kushniarevich, A., Behar, D.M., Gilissen, C., Vissers, L., Veltman, J.A., Balanovska, E., Derenko, M., Malyarchuk, B., Metspalu, A., Fedorova, S., Eriksson, A., Manica, A., Mendez, F.L., Karafet, T.M., Veeramah, K.R., Bradman, N., Hammer, M.F., Osipova, L.P., Balanovsky, O., Khusnutdinova, E.K., Johnsen, K., Remm, M., Thomas, M.G., Tyler-Smith, C., Underhill, P.A., Willerslev, E., Nielsen, R., Metspalu, M., Villems, R., and Kivisild, T.
- Abstract
Contains fulltext : 153022.pdf (publisher's version ) (Open Access), It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.
- Published
- 2015
11. Genetic discontinuity between local hunter-gatherers and Europes first farmers
- Author
-
Bramanti, B., Thomas, M.G., Haak, W., Unterlaender, M., Jores, P., Tambets, K., Antanaitis-Jacobs, I., Haidle, M.N., Jankauskas, R., Kind, C.J., Lueth, F., Terberger, T., Hiller, J., Matsumura, S., Forster, P., and Burger, J.
- Abstract
Following the domestication of animals and crops in the Near East some 11,000 years ago, farming reached much of Central Europe by 7,500 before present. The extent to which these early European farmers ere immigrants, or descendants of resident hunter-gatherers who had learnt farming, has been widely debated. We compare new mitochondrial DNA (mtDNA) sequences from late European hunter-gatherer skeletons with those from early farmers, and from modern Europeans. We find large genetic differences betwee all three groups that cannot be explained by population continuity alone. Most (82 %) of the ancient hunter-gatherers share mtDNA types that are relatively rare in Central Europeans today. Together, thse analyses provide persuasive evidence that the first farmers were not the descendants of local hunergatherers but immigrated into Central Europe at the onset of the Neolithic.
- Published
- 2009
12. The western and eastern roots of the Saami - The story of genetic 'outliers' told by mitochondrial DNA and Y chromosomes
- Author
-
Tambets, K Rootsi, S Kivisild, T Help, H Serk, P and Loogvali, EL Tolk, HV Reidla, M Metspalu, E Pliss, L and Balanovsky, O Pshenichnov, A Balanovska, E Gubina, M and Zhadanov, S Osipova, L Damba, L Voevoda, M Kutuev, I and Bermisheva, M Khusnutdinova, E Gusar, V Grechanina, E and Parik, J Pennarun, E Richard, C Chaventre, A Moisan, JP and Barac, L Pericic, M Rudan, P Terzic, R Mikerezi, I and Krumina, A Baumanis, V Koziel, S Rickards, O De Stefano, GF Anagnou, N Pappa, KI Michalodimitrakis, E and Ferak, V Furedi, S Komel, R Beckman, L Villems, R
- Abstract
The Saami are regarded as extreme genetic outliers among European populations. In this study, a high-resolution phylogenetic analysis of Saami genetic heritage was undertaken in a comprehensive context, through use of maternally inherited mitochondrial DNA ( mtDNA) and paternally inherited Y-chromosomal variation. DNA variants present in the Saami were compared with those found in Europe and Siberia, through use of both new and previously published data from 445 Saami and 17,096 western Eurasian and Siberian mtDNA samples, as well as 127 Saami and 2,840 western Eurasian and Siberian Y-chromosome samples. It was shown that the “Saami motif” variant of mtDNA haplogroup U5b is present in a large area outside Scandinavia. A detailed phylogeographic analysis of one of the predominant Saami mtDNA haplogroups, U5b1b, which also includes the lineages of the “Saami motif,” was undertaken in 31 populations. The results indicate that the origin of U5b1b, as for the other predominant Saami haplogroup, V, is most likely in western, rather than eastern, Europe. Furthermore, an additional haplogroup (H1) spread among the Saami was virtually absent in 781 Samoyed and Ob-Ugric Siberians but was present in western and central European populations. The Y-chromosomal variety in the Saami is also consistent with their European ancestry. It suggests that the large genetic separation of the Saami from other Europeans is best explained by assuming that the Saami are descendants of a narrow, distinctive subset of Europeans. In particular, no evidence of a significant directional gene flow from extant aboriginal Siberian populations into the haploid gene pools of the Saami was found.
- Published
- 2004
13. Disuniting uniformity: A pied cladistic canvas of mtDNA haplogroup H in Eurasia
- Author
-
Loogvali, EL Roostalu, U Malyarchuk, BA Derenko, MV and Kivisild, T Metspalu, E Tambets, K Reidla, M Tolk, HV and Parik, J Pennarun, E Laos, S Lunkina, A Golubenko, M and Barac, L Pericic, M Balanovsky, OP Gusar, V and Khusnutdinova, EK Stepanov, V Puzyrev, V Rudan, P and Balanovska, EV Grechanina, E Richard, C Moisan, JP and Chaventre, A Anagnou, NP Pappa, KI Michalodimitrakis, EN and Claustres, M Golge, M Mikerezi, I Usanga, E Villems, R
- Abstract
It has been often stated that the overall pattern of human maternal lineages in Europe is largely uniform. Yet this uniformity may also result from an insufficient depth and width of the phylogenetic analysis, in particular of the predominant western Eurasian haplogroup (Hg) H that comprises nearly a half of the European mitochondrial DNA (mtDNA) pool. Making use of the coding sequence information from 267 mtDNA Hg H sequences, we have analyzed 830 mtDNA genomes, from 11 European, Near and Middle Eastern, Central Asian, and Altaian populations. In addition to the seven previously specified subhaplogroups, we define fifteen novel subclades of Hg H present in the extant human populations of western Eurasia. The refinement of the phylogenetic resolution has allowed us to resolve a large number of homoplasies in phylogenetic trees of Hg H based on the first hypervariable segment (HVS-I) of mtDNA. As many as 50 out of 125 polymorphic positions in HVS-I were found to be mutated in more than one subcluster of Hg H. The phylogeographic analysis revealed that sub-Hgs H1*, H1b, H1f, H2a, H3, H6a, H6b, and H8 demonstrate distinct phylogeographic patterns. The monophyletic subhaplogroups of Hg H provide means for further progress in the understanding of the (pre)historic movements of women in Eurasia and for the understanding of the present-day genetic diversity of western Eurasians in general.
- Published
- 2004
14. Origin and Expansion of Haplogroup H, the Dominant Human Mitochondrial DNA Lineage in West Eurasia: The Near Eastern and Caucasian Perspective
- Author
-
Roostalu, U, primary, Kutuev, I, additional, Loogväli, E-L, additional, Metspalu, E, additional, Tambets, K, additional, Reidla, M, additional, Khusnutdinova, EK, additional, Usanga, E, additional, Kivisild, T, additional, and Villems, R, additional
- Published
- 2006
- Full Text
- View/download PDF
15. Mitochondrial DNA Portrait of Latvians: Towards the Understanding of the Genetic Structure of Baltic-Speaking Populations
- Author
-
Pliss, L., primary, Tambets, K., additional, Loogvali, E.-L., additional, Pronina, N., additional, Lazdins, M., additional, Krumina, A., additional, Baumanis, V., additional, and Villems, R., additional
- Published
- 2005
- Full Text
- View/download PDF
16. THE CONCEPTS OF RICHARD INDREKO ABOUT THE ORIGIN OF THE FINNO-UGRIC SPEAKERS AND THE POPULATION GENETICS OF THE EXTANT NORTH-EAST EUROPEAN POPULATIONS
- Author
-
Tambets, K, primary, Rootsi, S, primary, Kivisild, T, primary, and Villems, R, primary
- Published
- 2001
- Full Text
- View/download PDF
17. A recent bottleneck of Y chromosome diversity coincides with a global change in culture
- Author
-
Karmin M., Saag L., Vicente M., Wilson Sayres M., Järve M., Talas U., Rootsi S., Ilumäe A., Mägi R., Mitt M., Pagani L., Puurand T., Faltyskova Z., Clemente F., Cardona A., Metspalu E., Sahakyan H., Yunusbayev B., Hudjashov G., DeGiorgio M., Loogväli E., Eichstaedt C., Eelmets M., Chaubey G., Tambets K., Litvinov S., Mormina M., Xue Y., Ayub Q., Zoraqi G., Korneliussen T., Akhatova F., Lachance J., Tishkoff S., Momynaliev K., Ricaut F., Kusuma P., Razafindrazaka H., Pierron D., Cox M., Sultana G., Willerslev R., Muller C., Westaway M., Lambert D., Skaro V., Kovačević L., Turdikulova S., Dalimova D., Khusainova R., Trofimova N., Akhmetova V., Khidiyatova I., Lichman D., Isakova J., Pocheshkhova E., Sabitov Z., Barashkov N., Nymadawa P., Mihailov E., Seng J., Evseeva I., Migliano A., Abdullah S., Andriadze G., Primorac D., Atramentova L., Utevska O., Yepiskoposyan L., Marjanović D., Kushniarevich A., Behar D., Karmin M., Saag L., Vicente M., Wilson Sayres M., Järve M., Talas U., Rootsi S., Ilumäe A., Mägi R., Mitt M., Pagani L., Puurand T., Faltyskova Z., Clemente F., Cardona A., Metspalu E., Sahakyan H., Yunusbayev B., Hudjashov G., DeGiorgio M., Loogväli E., Eichstaedt C., Eelmets M., Chaubey G., Tambets K., Litvinov S., Mormina M., Xue Y., Ayub Q., Zoraqi G., Korneliussen T., Akhatova F., Lachance J., Tishkoff S., Momynaliev K., Ricaut F., Kusuma P., Razafindrazaka H., Pierron D., Cox M., Sultana G., Willerslev R., Muller C., Westaway M., Lambert D., Skaro V., Kovačević L., Turdikulova S., Dalimova D., Khusainova R., Trofimova N., Akhmetova V., Khidiyatova I., Lichman D., Isakova J., Pocheshkhova E., Sabitov Z., Barashkov N., Nymadawa P., Mihailov E., Seng J., Evseeva I., Migliano A., Abdullah S., Andriadze G., Primorac D., Atramentova L., Utevska O., Yepiskoposyan L., Marjanović D., Kushniarevich A., and Behar D.
- Abstract
© 2015 Karmin et al. It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.
18. A recent bottleneck of Y chromosome diversity coincides with a global change in culture
- Author
-
Karmin M., Saag L., Vicente M., Wilson Sayres M., Järve M., Talas U., Rootsi S., Ilumäe A., Mägi R., Mitt M., Pagani L., Puurand T., Faltyskova Z., Clemente F., Cardona A., Metspalu E., Sahakyan H., Yunusbayev B., Hudjashov G., DeGiorgio M., Loogväli E., Eichstaedt C., Eelmets M., Chaubey G., Tambets K., Litvinov S., Mormina M., Xue Y., Ayub Q., Zoraqi G., Korneliussen T., Akhatova F., Lachance J., Tishkoff S., Momynaliev K., Ricaut F., Kusuma P., Razafindrazaka H., Pierron D., Cox M., Sultana G., Willerslev R., Muller C., Westaway M., Lambert D., Skaro V., Kovačević L., Turdikulova S., Dalimova D., Khusainova R., Trofimova N., Akhmetova V., Khidiyatova I., Lichman D., Isakova J., Pocheshkhova E., Sabitov Z., Barashkov N., Nymadawa P., Mihailov E., Seng J., Evseeva I., Migliano A., Abdullah S., Andriadze G., Primorac D., Atramentova L., Utevska O., Yepiskoposyan L., Marjanović D., Kushniarevich A., Behar D., Karmin M., Saag L., Vicente M., Wilson Sayres M., Järve M., Talas U., Rootsi S., Ilumäe A., Mägi R., Mitt M., Pagani L., Puurand T., Faltyskova Z., Clemente F., Cardona A., Metspalu E., Sahakyan H., Yunusbayev B., Hudjashov G., DeGiorgio M., Loogväli E., Eichstaedt C., Eelmets M., Chaubey G., Tambets K., Litvinov S., Mormina M., Xue Y., Ayub Q., Zoraqi G., Korneliussen T., Akhatova F., Lachance J., Tishkoff S., Momynaliev K., Ricaut F., Kusuma P., Razafindrazaka H., Pierron D., Cox M., Sultana G., Willerslev R., Muller C., Westaway M., Lambert D., Skaro V., Kovačević L., Turdikulova S., Dalimova D., Khusainova R., Trofimova N., Akhmetova V., Khidiyatova I., Lichman D., Isakova J., Pocheshkhova E., Sabitov Z., Barashkov N., Nymadawa P., Mihailov E., Seng J., Evseeva I., Migliano A., Abdullah S., Andriadze G., Primorac D., Atramentova L., Utevska O., Yepiskoposyan L., Marjanović D., Kushniarevich A., and Behar D.
- Abstract
© 2015 Karmin et al. It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.
19. The Genomic Impact of European Colonization of the Americas
- Author
-
Alessandro Raveane, Shahlo Turdikulova, Donata Luiselli, Pongsakorn Wangkumhang, Marta E. Alarcón-Riquelme, Francesco Montinaro, Guido Alberto Gnecchi-Ruscone, Damir Marjanović, Mait Metspalu, Sarabjit S. Mastana, Oleg Balanovsky, Alessandro Achilli, Antonio Torroni, Lejla Kovacevic, L. A. Atramentova, Anna Olivieri, Maria Fernanda Lima-Costa, Linda Ongaro, Cristian Capelli, Toomas Kivisild, Bernardo L. Horta, Nédio Mabunda, Marilia O. Scliar, Roy J. King, Etienne Patin, Kristiina Tambets, Garrett Hellenthal, Mauricio Lima Barreto, Celia A. May, Miguel Gonzalez-Santos, Andreja Leskovac, Andrés Moreno-Estrada, Eduardo Tarazona-Santos, Alexandre C. Pereira, Rodrigo Flores, Anastasia Kouvatsi, Luca Pagani, Stefania Sarno, Elena Balanovska, Ornella Semino, Davide Marnetto, Ongaro L., Scliar M.O., Flores R., Raveane A., Marnetto D., Sarno S., Gnecchi-Ruscone G.A., Alarcon-Riquelme M.E., Patin E., Wangkumhang P., Hellenthal G., Gonzalez-Santos M., King R.J., Kouvatsi A., Balanovsky O., Balanovska E., Atramentova L., Turdikulova S., Mastana S., Marjanovic D., Mulahasanovic L., Leskovac A., Lima-Costa M.F., Pereira A.C., Barreto M.L., Horta B.L., Mabunda N., May C.A., Moreno-Estrada A., Achilli A., Olivieri A., Semino O., Tambets K., Kivisild T., Luiselli D., Torroni A., Capelli C., Tarazona-Santos E., Metspalu M., Pagani L., Montinaro F., Institute of Genomics [Tartu, Estonia], University of Tartu, Universidade de São Paulo = University of São Paulo (USP), Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani' = Department of Biology and Biotechnology [Univ di Pavia] (DBB UNIPV), Università degli Studi di Pavia = University of Pavia (UNIPV), Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Max Planck Institute for the Science of Human History (MPI-SHH), Max-Planck-Gesellschaft, Centre for Genomics and Oncological Reearch (GENYO), Génétique Evolutive Humaine - Human Evolutionary Genetics, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), University College of London [London] (UCL), University of Oxford, Stanford University School of Medicine [CA, USA], Aristotle University of Thessaloniki, Vavilov Institute of General Genetics, Russian Academy of Sciences [Moscow] (RAS), V.N. Karazin Kharkiv National University (KhNU), Institute of Bioorganic Chemistry [Tashkent, Uzbekistan], Academy of Sciences of Republic of Uzbekistan, Loughborough University, International Burch University [Sarajevo], University of Belgrade [Belgrade], Fundação Oswaldo Cruz / Oswaldo Cruz Foundation (FIOCRUZ), Réseau International des Instituts Pasteur (RIIP), Universidade Federal da Bahia (UFBA), Universidade Federal de Pelotas = Federal University of Pelotas (UFPel), Instituto Nacional de Saude [Maputo, Mozambique] (INS), University of Leicester, National Laboratory of Genomics for Biodiversity (LANGEBIO), Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Dipartimento di Biologia e Biotecnologie 'L. Spallanzani', Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), University of Bologna/Università di Bologna, Universidade Federal de Minas Gerais [Belo Horizonte] (UFMG), University of São Paulo (USP), Dipartimento di Biologia e Biotecnologie ‘Lazzaro Spallanzani’, University of Pavia, University of Pavia, BIGEA, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), University of Oxford [Oxford], Fundação Oswaldo Cruz (FIOCRUZ), Universidade de São Paulo (USP), and University of Bologna
- Subjects
0301 basic medicine ,admixture history of the America ,Human genetic variation ,Colonialism ,Atlantic Slave Trade ,Gene flow ,0302 clinical medicine ,Colonization ,European colonization ,African Continental Ancestry Group ,0303 health sciences ,Genome ,Middle East ,Geography ,Caribbean Region ,Genetic structure ,Ethnology ,General Agricultural and Biological Sciences ,Atlantic slave trade ,Human ,MESH: Caribbean Region ,Gene Flow ,American Native Continental Ancestry Group ,Demographic history ,European Continental Ancestry Group ,Black People ,Biology ,General Biochemistry, Genetics and Molecular Biology ,White People ,03 medical and health sciences ,sex-biased admixture ,Humans ,admixture history of the Americas ,MESH: Gene Flow ,MESH: Genome, Human ,American Indian or Alaska Native ,030304 developmental biology ,MESH: Central America ,MESH: Humans ,[SDV.GEN.GPO]Life Sciences [q-bio]/Genetics/Populations and Evolution [q-bio.PE] ,Central America ,North America ,South America ,Genome, Human ,MESH: South America ,MESH: North America ,030104 developmental biology ,[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human genetics ,030217 neurology & neurosurgery - Abstract
The complexity of the admixture dynamics that shaped American populations is unveiled by Ongaro et al., where genetic data for more than 12,000 individuals from the continents are investigated. This study evaluates the dramatic impact of events after the colonial era, revealing a spatial and temporal heterogeneity and mirroring historical records. © 2019 Elsevier Ltd The human genetic diversity of the Americas has been affected by several events of gene flow that have continued since the colonial era and the Atlantic slave trade. Moreover, multiple waves of migration followed by local admixture occurred in the last two centuries, the impact of which has been largely unexplored. Here, we compiled a genome-wide dataset of ∼12,000 individuals from twelve American countries and ∼6,000 individuals from worldwide populations and applied haplotype-based methods to investigate how historical movements from outside the New World affected (1) the genetic structure, (2) the admixture profile, (3) the demographic history, and (4) sex-biased gene-flow dynamics of the Americas. We revealed a high degree of complexity underlying the genetic contribution of European and African populations in North and South America, from both geographic and temporal perspectives, identifying previously unreported sources related to Italy, the Middle East, and to specific regions of Africa. © 2019 Elsevier Ltd Preprint version of the article: "The genomic impact of European colonization of the Americas", posted June 28, 2019 on bioRxiv. Article is now published in Current Biology doi: [dx.doi.org/10.1016/j.cub.2019.09.076]. Published version on this repository: [http://vinar.vin.bg.ac.rs/handle/123456789/8654].
- Published
- 2019
- Full Text
- View/download PDF
20. POPULATION GENETICS. Genomic evidence for the Pleistocene and recent population history of Native Americans
- Author
-
Maanasa, Raghavan, Matthias, Steinrücken, Kelley, Harris, Stephan, Schiffels, Simon, Rasmussen, Michael, DeGiorgio, Anders, Albrechtsen, Cristina, Valdiosera, María C, Ávila-Arcos, Anna-Sapfo, Malaspinas, Anders, Eriksson, Ida, Moltke, Mait, Metspalu, Julian R, Homburger, Jeff, Wall, Omar E, Cornejo, J Víctor, Moreno-Mayar, Thorfinn S, Korneliussen, Tracey, Pierre, Morten, Rasmussen, Paula F, Campos, Peter, de Barros Damgaard, Morten E, Allentoft, John, Lindo, Ene, Metspalu, Ricardo, Rodríguez-Varela, Josefina, Mansilla, Celeste, Henrickson, Andaine, Seguin-Orlando, Helena, Malmström, Thomas, Stafford, Suyash S, Shringarpure, Andrés, Moreno-Estrada, Monika, Karmin, Kristiina, Tambets, Anders, Bergström, Yali, Xue, Vera, Warmuth, Andrew D, Friend, Joy, Singarayer, Paul, Valdes, Francois, Balloux, Ilán, Leboreiro, Jose Luis, Vera, Hector, Rangel-Villalobos, Davide, Pettener, Donata, Luiselli, Loren G, Davis, Evelyne, Heyer, Christoph P E, Zollikofer, Marcia S, Ponce de León, Colin I, Smith, Vaughan, Grimes, Kelly-Anne, Pike, Michael, Deal, Benjamin T, Fuller, Bernardo, Arriaza, Vivien, Standen, Maria F, Luz, Francois, Ricaut, Niede, Guidon, Ludmila, Osipova, Mikhail I, Voevoda, Olga L, Posukh, Oleg, Balanovsky, Maria, Lavryashina, Yuri, Bogunov, Elza, Khusnutdinova, Marina, Gubina, Elena, Balanovska, Sardana, Fedorova, Sergey, Litvinov, Boris, Malyarchuk, Miroslava, Derenko, M J, Mosher, David, Archer, Jerome, Cybulski, Barbara, Petzelt, Joycelynn, Mitchell, Rosita, Worl, Paul J, Norman, Peter, Parham, Brian M, Kemp, Toomas, Kivisild, Chris, Tyler-Smith, Manjinder S, Sandhu, Michael, Crawford, Richard, Villems, David Glenn, Smith, Michael R, Waters, Ted, Goebel, John R, Johnson, Ripan S, Malhi, Mattias, Jakobsson, David J, Meltzer, Andrea, Manica, Richard, Durbin, Carlos D, Bustamante, Yun S, Song, Rasmus, Nielsen, Eske, Willerslev, Raghavan M, Steinrücken M, Harris K, Schiffels S, Rasmussen S, DeGiorgio M, Albrechtsen A, Valdiosera C, Ávila-Arcos MC, Malaspinas AS, Eriksson A, Moltke I, Metspalu M, Homburger JR, Wall J, Cornejo OE, Moreno-Mayar JV, Korneliussen TS, Pierre T, Rasmussen M, Campos PF, Damgaard Pde B, Allentoft ME, Lindo J, Metspalu E, Rodríguez-Varela R, Mansilla J, Henrickson C, Seguin-Orlando A, Malmström H, Stafford T Jr, Shringarpure SS, Moreno-Estrada A, Karmin M, Tambets K, Bergström A, Xue Y, Warmuth V, Friend AD, Singarayer J, Valdes P, Balloux F, Leboreiro I, Vera JL, Rangel-Villalobos H, Pettener D, Luiselli D, Davis LG, Heyer E, Zollikofer CP, Ponce de León MS, Smith CI, Grimes V, Pike KA, Deal M, Fuller BT, Arriaza B, Standen V, Luz MF, Ricaut F, Guidon N, Osipova L, Voevoda MI, Posukh OL, Balanovsky O, Lavryashina M, Bogunov Y, Khusnutdinova E, Gubina M, Balanovska E, Fedorova S, Litvinov S, Malyarchuk B, Derenko M, Mosher MJ, Archer D, Cybulski J, Petzelt B, Mitchell J, Worl R, Norman PJ, Parham P, Kemp BM, Kivisild T, Tyler-Smith C, Sandhu MS, Crawford M, Villems R, Smith DG, Waters MR, Goebel T, Johnson JR, Malhi RS, Jakobsson M, Meltzer DJ, Manica A, Durbin R, Bustamante CD, Song YS, Nielsen R, and Willerslev E
- Subjects
Gene Flow ,Siberia ,Models, Genetic ,Athabascans and Amerindians ,Human Migration ,Genetic history of Native American ,Indians, North American ,Humans ,Genomics ,Americas ,Population genetic ,History, Ancient ,Article - Abstract
How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we find that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (KYA), and after no more than 8,000-year isolation period in Beringia. Following their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 KYA, one that is now dispersed across North and South America and the other is restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative ‘Paleoamerican’ relict populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.
- Published
- 2015
21. The genomic portrait of the Picene culture provides new insights into the Italic Iron Age and the legacy of the Roman Empire in Central Italy.
- Author
-
Ravasini F, Kabral H, Solnik A, de Gennaro L, Montinaro F, Hui R, Delpino C, Finocchi S, Giroldini P, Mei O, Beck De Lotto MA, Cilli E, Hajiesmaeil M, Pistacchia L, Risi F, Giacometti C, Scheib CL, Tambets K, Metspalu M, Cruciani F, D'Atanasio E, and Trombetta B
- Subjects
- Italy, Humans, History, Ancient, DNA, Ancient analysis, Genome, Human, Ethnicity genetics, Genetics, Population, Genomics, Roman World history
- Abstract
Background: The Italic Iron Age is characterized by the presence of various ethnic groups partially examined from a genomic perspective. To explore the evolution of Iron Age Italic populations and the genetic impact of Romanization, we focus on the Picenes, one of the most fascinating pre-Roman civilizations, who flourished on the Middle Adriatic side of Central Italy between the 9
th and the 3rd century BCE, until the Roman colonization., Results: More than 50 samples are reported, spanning more than 1000 years of history from the Iron Age to Late Antiquity. Despite cultural diversity, our analysis reveals no major differences between the Picenes and other coeval populations, suggesting a shared genetic history of the Central Italian Iron Age ethnic groups. Nevertheless, a slight genetic differentiation between populations along the Adriatic and Tyrrhenian coasts can be observed, possibly due to different population dynamics in the two sides of Italy and/or genetic contacts across the Adriatic Sea. Additionally, we identify several individuals with ancestries deviating from their general population. Lastly, in our Late Antiquity site, we observe a drastic change in the genetic landscape of the Middle Adriatic region, indicating a relevant influx from the Near East, possibly as a consequence of Romanization., Conclusions: Our findings, consistently with archeological hypotheses, suggest genetic interactions across the Adriatic Sea during the Bronze/Iron Age and a high level of individual mobility typical of cosmopolitan societies. Finally, we highlight the role of the Roman Empire in shaping genetic and phenotypic changes that greatly impact the Italian peninsula., Competing Interests: Declarations. Ethics approval and consent to participate: Not applicable. Consent for publication: Not applicable. Competing interests: The authors declare that they have no competing interests., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
22. Gene pool preservation across time and space In Mongolian-speaking Oirats.
- Author
-
Balinova N, Hudjašov G, Pankratov V, Pennarun E, Reidla M, Metspalu E, Batyrov V, Khomyakova I, Reisberg T, Parik J, Dzhaubermezov M, Aiyzhy E, Balinova A, El'chinova G, Spitsyna N, Khusnutdinova E, Metspalu M, Tambets K, Villems R, and Kushniarevich A
- Subjects
- Humans, Mongolia, DNA, Mitochondrial genetics, Ethnicity genetics, China, Asian People genetics, Gene Flow, Russia, Gene Pool
- Abstract
The Oirats are a group of Mongolian-speaking peoples residing in Russia, China, and Mongolia, who speak Oirat dialects of the Mongolian language. Migrations of nomadic ethnopolitical formations of the Oirats across the Eurasian Steppe during the Late Middle Ages/early Modern times resulted in a wide geographic spread of Oirat ethnic groups from present-day northwestern China in East Asia to the Lower Volga region in Eastern Europe. In this study, we generate new genome-wide and mitochondrial DNA data for present-day Oirat-speaking populations from Kalmykia in Eastern Europe, Western Mongolia, and the Xinjiang region of China, as well as Issyk-Kul Sart-Kalmaks from Central Asia, and historically related ethnic groups from Altai, Tuva, and Northern Mongolia to study the genetic structure and history of the Oirats. Despite their spatial and temporal separation, small current population census, both the Kalmyks of Eastern Europe and the Oirats of Western Mongolia in East Asia are characterized by strong genetic similarity, high effective population size, and low levels of interpopulation structure. This contrasts the fine genetic structure observed today at a smaller geographic scale in traditionally sedentary populations, and is conditioned by high mobility and marriage practices (traditional strict exogamy) in nomadic groups. Conversely, the genetic profile of the Issyk-Kul Sart-Kalmaks suggests a distinct source(s) of genetic ancestry, along with indications of isolation and genetic drift compared to other Oirats. Our results also show that there was limited gene flow between the ancestors of the Oirats and the Altaians during the late Middle Ages. Source of the yurt image: https://www.vecteezy.com/free-vector/yurt ., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
23. Capturing the fusion of two ancestries and kinship structures in Merovingian Flanders.
- Author
-
Sasso S, Saag L, Spros R, Beneker O, Molinaro L, Biagini SA, Lehouck A, Van De Vijver K, Hui R, D'Atanasio E, Kushniarevich A, Kabral H, Metspalu E, Guellil M, Ali MQA, Geypen J, Hoebreckx M, Berk B, De Winter N, Driesen P, Pijpelink A, Van Damme P, Scheib CL, Deschepper E, Deckers P, Snoeck C, Dewilde M, Ervynck A, Tambets K, Larmuseau MHD, and Kivisild T
- Subjects
- Humans, History, Medieval, Belgium, Burial history, Genetics, Population methods, Female, Male, DNA, Ancient analysis, England, Human Migration, Archaeology, Netherlands, Genome, Human, Pedigree
- Abstract
The Merovingian period (5th to 8th cc AD) was a time of demographic, socioeconomic, cultural, and political realignment in Western Europe. Here, we report the whole-genome shotgun sequence data of 30 human skeletal remains from a coastal Late Merovingian site of Koksijde (675 to 750 AD), alongside 18 remains from two Early to Late Medieval sites in present-day Flanders, Belgium. We find two distinct ancestries, one shared with Early Medieval England and the Netherlands, while the other, minor component, reflecting likely continental Gaulish ancestry. Kinship analyses identified no large pedigrees characteristic to elite burials revealing instead a high modularity of distant relationships among individuals of the main ancestry group. In contrast, individuals with >90% Gaulish ancestry had no kinship links among sampled individuals. Evidence for population structure and major differences in the extent of Gaulish ancestry in the main group, including in a mother-daughter pair, suggests ongoing admixture in the community at the time of their burial. The isotopic and genetic evidence combined supports a model by which the burials, representing an established coastal nonelite community, had incorporated migrants from inland populations. The main group of burials at Koksijde shows an abundance of >5 cM long shared allelic intervals with the High Medieval site nearby, implying long-term continuity and suggesting that similarly to Britain, the Early Medieval ancestry shifts left a significant and long-lasting impact on the genetic makeup of the Flemish population. We find substantial allele frequency differences between the two ancestry groups in pigmentation and diet-associated variants, including those linked with lactase persistence, likely reflecting ancestry change rather than local adaptation., Competing Interests: Competing interests statement:The authors declare no competing interest.
- Published
- 2024
- Full Text
- View/download PDF
24. The genomic echoes of the last Green Sahara on the Fulani and Sahelian people.
- Author
-
D'Atanasio E, Risi F, Ravasini F, Montinaro F, Hajiesmaeil M, Bonucci B, Pistacchia L, Amoako-Sakyi D, Bonito M, Onidi S, Colombo G, Semino O, Destro Bisol G, Anagnostou P, Metspalu M, Tambets K, Trombetta B, and Cruciani F
- Subjects
- Humans, Africa, Northern, Black People genetics, Genetics, Population, Genomics
- Abstract
The population history of the Sahara/Sahelian belt is understudied, despite previous work highlighting complex dynamics.
1 , 2 , 3 , 4 , 5 , 6 , 7 The Sahelian Fulani, i.e., the largest nomadic pastoral population in the world,8 represent an interesting case because they show a non-negligible proportion of an Eurasian genetic component, usually explained by recent admixture with northern Africans.1 , 2 , 5 , 6 , 7 , 9 , 10 , 11 , 12 Nevertheless, their origins are largely unknown, although several hypotheses have been proposed, including a possible link to ancient peoples settled in the Sahara during its last humid phase (Green Sahara, 12,000-5,000 years before present [BP]).13 , 14 , 15 To shed light about the Fulani ancient genetic roots, we produced 23 high-coverage (30×) whole genomes from Fulani individuals from 8 Sahelian countries, plus 17 samples from other African groups and 3 from Europeans as controls, for a total of 43 new whole genomes. These data have been compared with 814 published modern whole genomes2 , 16 , 17 , 18 and with relevant published ancient sequences (> 1,800 samples).19 These analyses showed some evidence that the non-sub-Saharan genetic ancestry component of the Fulani might have also been shaped by older events,1 , 5 , 6 possibly tracing the Fulani origins to unsampled ancient Green Saharan population(s). The joint analysis of modern and ancient samples allowed us to shed light on the genetic ancestry composition of such ancient Saharans, suggesting a similarity with Late Neolithic Moroccans and possibly pointing to a link with the spread of cattle herding. We also identified two different Fulani clusters whose admixture pattern may be informative about the historical Fulani movements and their later involvement in the western African empires., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2023 Elsevier Inc. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
25. Ancient herpes simplex 1 genomes reveal recent viral structure in Eurasia.
- Author
-
Guellil M, van Dorp L, Inskip SA, Dittmar JM, Saag L, Tambets K, Hui R, Rose A, D'Atanasio E, Kriiska A, Varul L, Koekkelkoren AMHC, Goldina RD, Cessford C, Solnik A, Metspalu M, Krause J, Herbig A, Robb JE, Houldcroft CJ, and Scheib CL
- Abstract
Human herpes simplex virus 1 (HSV-1), a life-long infection spread by oral contact, infects a majority of adults globally. Phylogeographic clustering of sampled diversity into European, pan-Eurasian, and African groups has suggested the virus codiverged with human migrations out of Africa, although a much younger origin has also been proposed. We present three full ancient European HSV-1 genomes and one partial genome, dating from the 3rd to 17th century CE, sequenced to up to 9.5× with paired human genomes up to 10.16×. Considering a dataset of modern and ancient genomes, we apply phylogenetic methods to estimate the age of sampled modern Eurasian HSV-1 diversity to 4.68 (3.87 to 5.65) ka. Extrapolation of estimated rates to a global dataset points to the age of extant sampled HSV-1 as 5.29 (4.60 to 6.12) ka, suggesting HSV-1 lineage replacement coinciding with the late Neolithic period and following Bronze Age migrations.
- Published
- 2022
- Full Text
- View/download PDF
26. Continental-scale genomic analysis suggests shared post-admixture adaptation in the Americas.
- Author
-
Ongaro L, Mondal M, Flores R, Marnetto D, Molinaro L, Alarcón-Riquelme ME, Moreno-Estrada A, Mabunda N, Ventura M, Tambets K, Hellenthal G, Capelli C, Kivisild T, Metspalu M, Pagani L, and Montinaro F
- Subjects
- Americas, Computer Simulation, Humans, Models, Genetic, Polymorphism, Single Nucleotide, Genetics, Population, Genome, Human, Genomics methods, Racial Groups genetics, Selection, Genetic
- Abstract
American populations are one of the most interesting examples of recently admixed groups, where ancestral components from three major continental human groups (Africans, Eurasians and Native Americans) have admixed within the last 15 generations. Recently, several genetic surveys focusing on thousands of individuals shed light on the geography, chronology and relevance of these events. However, even though gene flow could drive adaptive evolution, it is unclear whether and how natural selection acted on the resulting genetic variation in the Americas. In this study, we analysed the patterns of local ancestry of genomic fragments in genome-wide data for ~ 6000 admixed individuals from 10 American countries. In doing so, we identified regions characterized by a divergent ancestry profile (DAP), in which a significant over or under ancestral representation is evident. Our results highlighted a series of genomic regions with DAPs associated with immune system response and relevant medical traits, with the longest DAP region encompassing the human leukocyte antigen locus. Furthermore, we found that DAP regions are enriched in genes linked to cancer-related traits and autoimmune diseases. Then, analysing the biological impact of these regions, we showed that natural selection could have acted preferentially towards variants located in coding and non-coding transcripts and characterized by a high deleteriousness score. Taken together, our analyses suggest that shared patterns of post admixture adaptation occurred at a continental scale in the Americas, affecting more often functional and impactful genomic variants., (© The Author(s) 2021. Published by Oxford University Press.)
- Published
- 2021
- Full Text
- View/download PDF
27. Evaluating the Impact of Sex-Biased Genetic Admixture in the Americas through the Analysis of Haplotype Data.
- Author
-
Ongaro L, Molinaro L, Flores R, Marnetto D, Capodiferro MR, Alarcón-Riquelme ME, Moreno-Estrada A, Mabunda N, Ventura M, Tambets K, Achilli A, Capelli C, Metspalu M, Pagani L, and Montinaro F
- Subjects
- Black or African American genetics, Americas, Chromosomes, Human, X genetics, Female, Genotype, Humans, Male, Maternal Inheritance genetics, Paternal Inheritance genetics, White People genetics, Genetics, Population, Haplotypes genetics, Human Migration
- Abstract
A general imbalance in the proportion of disembarked males and females in the Americas has been documented during the Trans-Atlantic Slave Trade and the Colonial Era and, although less prominent, more recently. This imbalance may have left a signature on the genomes of modern-day populations characterised by high levels of admixture. The analysis of the uniparental systems and the evaluation of continental proportion ratio of autosomal and X chromosomes revealed a general sex imbalance towards males for European and females for African and Indigenous American ancestries. However, the consistency and degree of this imbalance are variable, suggesting that other factors, such as cultural and social practices, may have played a role in shaping it. Moreover, very few investigations have evaluated the sex imbalance using haplotype data, containing more critical information than genotypes. Here, we analysed genome-wide data for more than 5000 admixed American individuals to assess the presence, direction and magnitude of sex-biased admixture in the Americas. For this purpose, we applied two haplotype-based approaches, ELAI and NNLS, and we compared them with a genotype-based method, ADMIXTURE. In doing so, besides a general agreement between methods, we unravelled that the post-colonial admixture dynamics show higher complexity than previously described.
- Published
- 2021
- Full Text
- View/download PDF
28. Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes.
- Author
-
Pfrengle S, Neukamm J, Guellil M, Keller M, Molak M, Avanzi C, Kushniarevich A, Montes N, Neumann GU, Reiter E, Tukhbatova RI, Berezina NY, Buzhilova AP, Korobov DS, Suppersberger Hamre S, Matos VMJ, Ferreira MT, González-Garrido L, Wasterlain SN, Lopes C, Santos AL, Antunes-Ferreira N, Duarte V, Silva AM, Melo L, Sarkic N, Saag L, Tambets K, Busso P, Cole ST, Avlasovich A, Roberts CA, Sheridan A, Cessford C, Robb J, Krause J, Scheib CL, Inskip SA, and Schuenemann VJ
- Subjects
- Europe, Genome, Bacterial genetics, Humans, Leprosy genetics, Population Dynamics, Mycobacterium leprae genetics
- Abstract
Background: Hansen's disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease's complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period., Results: Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae's genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria., Conclusions: Our findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease's global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy's global history and can contribute to current models of M. leprae's worldwide dissemination, including interspecies transmissions., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
29. Patterns of genetic connectedness between modern and medieval Estonian genomes reveal the origins of a major ancestry component of the Finnish population.
- Author
-
Kivisild T, Saag L, Hui R, Biagini SA, Pankratov V, D'Atanasio E, Pagani L, Saag L, Rootsi S, Mägi R, Metspalu E, Valk H, Malve M, Irdt K, Reisberg T, Solnik A, Scheib CL, Seidman DN, Williams AL, Tambets K, and Metspalu M
- Subjects
- Estonia, Female, Finland, Gene Frequency, Genealogy and Heraldry, High-Throughput Nucleotide Sequencing, History, 21st Century, History, Ancient, History, Medieval, Humans, Language history, Male, Alleles, DNA, Ancient analysis, Genome, Human, Human Migration history, Pedigree
- Abstract
The Finnish population is a unique example of a genetic isolate affected by a recent founder event. Previous studies have suggested that the ancestors of Finnic-speaking Finns and Estonians reached the circum-Baltic region by the 1
st millennium BC. However, high linguistic similarity points to a more recent split of their languages. To study genetic connectedness between Finns and Estonians directly, we first assessed the efficacy of imputation of low-coverage ancient genomes by sequencing a medieval Estonian genome to high depth (23×) and evaluated the performance of its down-sampled replicas. We find that ancient genomes imputed from >0.1× coverage can be reliably used in principal-component analyses without projection. By searching for long shared allele intervals (LSAIs; similar to identity-by-descent segments) in unphased data for >143,000 present-day Estonians, 99 Finns, and 14 imputed ancient genomes from Estonia, we find unexpectedly high levels of individual connectedness between Estonians and Finns for the last eight centuries in contrast to their clear differentiation by allele frequencies. High levels of sharing of these segments between Estonians and Finns predate the demographic expansion and late settlement process of Finland. One plausible source of this extensive sharing is the 8th -10th centuries AD migration event from North Estonia to Finland that has been proposed to explain uniquely shared linguistic features between the Finnish language and the northern dialect of Estonian and shared Christianity-related loanwords from Slavic. These results suggest that LSAI detection provides a computationally tractable way to detect fine-scale structure in large cohorts., Competing Interests: Declaration of interests A.L.W. is a paid consultant for 23andMe and the owner of HAPI-DNA LLC. All other authors declare no competing interests., (Copyright © 2021 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
30. Genetic ancestry changes in Stone to Bronze Age transition in the East European plain.
- Author
-
Saag L, Vasilyev SV, Varul L, Kosorukova NV, Gerasimov DV, Oshibkina SV, Griffith SJ, Solnik A, Saag L, D'Atanasio E, Metspalu E, Reidla M, Rootsi S, Kivisild T, Scheib CL, Tambets K, Kriiska A, and Metspalu M
- Abstract
The transition from Stone to Bronze Age in Central and Western Europe was a period of major population movements originating from the Ponto-Caspian Steppe. Here, we report new genome-wide sequence data from 30 individuals north of this area, from the understudied western part of present-day Russia, including 3 Stone Age hunter-gatherers (10,800 to 4250 cal BCE) and 26 Bronze Age farmers from the Corded Ware complex Fatyanovo Culture (2900 to 2050 cal BCE). We show that Eastern hunter-gatherer ancestry was present in northwestern Russia already from around 10,000 BCE. Furthermore, we see a change in ancestry with the arrival of farming-Fatyanovo Culture individuals were genetically similar to other Corded Ware cultures, carrying a mixture of Steppe and European early farmer ancestry. Thus, they likely originate from a fast migration toward the northeast from somewhere near modern-day Ukraine-the closest area where these ancestries coexisted from around 3000 BCE., (Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)
- Published
- 2021
- Full Text
- View/download PDF
31. Multidisciplinary investigation of two Egyptian child mummies curated at the University of Tartu Art Museum, Estonia (Late/Graeco-Roman Periods).
- Author
-
Oras E, Anderson J, Tõrv M, Vahur S, Rammo R, Remmer S, Mölder M, Malve M, Saag L, Saage R, Teearu-Ojakäär A, Peets P, Tambets K, Metspalu M, Lees DC, Barclay MVL, Hall MJR, Ikram S, and Piombino-Mascali D
- Subjects
- Adolescent, Child, Child, Preschool, Egypt, Egypt, Ancient, Estonia, Humans, Male, Museums, Mummies
- Abstract
Two ancient Egyptian child mummies at the University of Tartu Art Museum (Estonia) were, according to museum records, brought to Estonia by the young Baltic-German scholar Otto Friedrich von Richter, who had travelled in Egypt during the early 19th century. Although some studies of the mummies were conducted, a thorough investigation has never been made. Thus, an interdisciplinary team of experts studied the remains using the most recent analytical methods in order to provide an exhaustive analysis of the remains. The bodies were submitted for osteological and archaeothanatological study, radiological investigation, AMS radiocarbon dating, chemical and textile analyses, 3D modelling, entomological as well as aDNA investigation. Here we synthesize the results of one of the most extensive multidisciplinary analyses of ancient Egyptian child mummies, adding significantly to our knowledge of such examples of ancient funerary practices., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
32. The Genomic Impact of European Colonization of the Americas.
- Author
-
Ongaro L, Scliar MO, Flores R, Raveane A, Marnetto D, Sarno S, Gnecchi-Ruscone GA, Alarcón-Riquelme ME, Patin E, Wangkumhang P, Hellenthal G, Gonzalez-Santos M, King RJ, Kouvatsi A, Balanovsky O, Balanovska E, Atramentova L, Turdikulova S, Mastana S, Marjanovic D, Mulahasanovic L, Leskovac A, Lima-Costa MF, Pereira AC, Barreto ML, Horta BL, Mabunda N, May CA, Moreno-Estrada A, Achilli A, Olivieri A, Semino O, Tambets K, Kivisild T, Luiselli D, Torroni A, Capelli C, Tarazona-Santos E, Metspalu M, Pagani L, and Montinaro F
- Subjects
- Caribbean Region, Central America, Humans, North America, South America, American Indian or Alaska Native genetics, Black People genetics, Gene Flow, Genome, Human, White People genetics
- Abstract
The human genetic diversity of the Americas has been affected by several events of gene flow that have continued since the colonial era and the Atlantic slave trade. Moreover, multiple waves of migration followed by local admixture occurred in the last two centuries, the impact of which has been largely unexplored. Here, we compiled a genome-wide dataset of ∼12,000 individuals from twelve American countries and ∼6,000 individuals from worldwide populations and applied haplotype-based methods to investigate how historical movements from outside the New World affected (1) the genetic structure, (2) the admixture profile, (3) the demographic history, and (4) sex-biased gene-flow dynamics of the Americas. We revealed a high degree of complexity underlying the genetic contribution of European and African populations in North and South America, from both geographic and temporal perspectives, identifying previously unreported sources related to Italy, the Middle East, and to specific regions of Africa., (Copyright © 2019 Elsevier Ltd. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
33. Shifts in the Genetic Landscape of the Western Eurasian Steppe Associated with the Beginning and End of the Scythian Dominance.
- Author
-
Järve M, Saag L, Scheib CL, Pathak AK, Montinaro F, Pagani L, Flores R, Guellil M, Saag L, Tambets K, Kushniarevich A, Solnik A, Varul L, Zadnikov S, Petrauskas O, Avramenko M, Magomedov B, Didenko S, Toshev G, Bruyako I, Grechko D, Okatenko V, Gorbenko K, Smyrnov O, Heiko A, Reida R, Sapiehin S, Sirotin S, Tairov A, Beisenov A, Starodubtsev M, Vasilev V, Nechvaloda A, Atabiev B, Litvinov S, Ekomasova N, Dzhaubermezov M, Voroniatov S, Utevska O, Shramko I, Khusnutdinova E, Metspalu M, Savelev N, Kriiska A, Kivisild T, and Villems R
- Subjects
- Archaeology, Ethnicity genetics, Genome, Human, History, Ancient, Humans, Male, Ukraine, DNA, Ancient analysis, DNA, Mitochondrial analysis, Genetic Drift, Human Migration
- Abstract
The Early Iron Age nomadic Scythians have been described as a confederation of tribes of different origins, based on ancient DNA evidence [1-3]. It is still unclear how much of the Scythian dominance in the Eurasian Steppe was due to movements of people and how much reflected cultural diffusion and elite dominance. We present new whole-genome sequences of 31 ancient Western and Eastern Steppe individuals, including Scythians as well as samples pre- and postdating them, allowing us to set the Scythians in a temporal context (in the Western, i.e., Ponto-Caspian Steppe). We detect an increase of eastern (Altaian) affinity along with a decrease in eastern hunter-gatherer (EHG) ancestry in the Early Iron Age Ponto-Caspian gene pool at the start of the Scythian dominance. On the other hand, samples of the Chernyakhiv culture postdating the Scythians in Ukraine have a significantly higher proportion of Near Eastern ancestry than other samples of this study. Our results agree with the Gothic source of the Chernyakhiv culture and support the hypothesis that the Scythian dominance did involve a demic component., (Copyright © 2019 Elsevier Ltd. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
34. Y-chromosomal connection between Hungarians and geographically distant populations of the Ural Mountain region and West Siberia.
- Author
-
Post H, Németh E, Klima L, Flores R, Fehér T, Türk A, Székely G, Sahakyan H, Mondal M, Montinaro F, Karmin M, Saag L, Yunusbayev B, Khusnutdinova EK, Metspalu E, Villems R, Tambets K, and Rootsi S
- Subjects
- Gene Pool, Genetics, Population, Haplotypes, Humans, Hungary, Language, Phylogeny, Phylogeography, Siberia, White People genetics, Chromosomes, Human, Y
- Abstract
Hungarians who live in Central Europe today are one of the westernmost Uralic speakers. Despite of the proposed Volga-Ural/West Siberian roots of the Hungarian language, the present-day Hungarian gene pool is highly similar to that of the surrounding Indo-European speaking populations. However, a limited portion of specific Y-chromosomal lineages from haplogroup N, sometimes associated with the spread of Uralic languages, link modern Hungarians with populations living close to the Ural Mountain range on the border of Europe and Asia. Here we investigate the paternal genetic connection between these spatially separated populations. We reconstruct the phylogeny of N3a4-Z1936 clade by using 33 high-coverage Y-chromosomal sequences and estimate the coalescent times of its sub-clades. We genotype close to 5000 samples from 46 Eurasian populations to show the presence of N3a4-B539 lineages among Hungarians and in the populations from Ural Mountain region, including Ob-Ugric-speakers from West Siberia who are geographically distant but linguistically closest to Hungarians. This sub-clade splits from its sister-branch N3a4-B535, frequent today among Northeast European Uralic speakers, 4000-5000 ya, which is in the time-frame of the proposed divergence of Ugric languages.
- Published
- 2019
- Full Text
- View/download PDF
35. The Arrival of Siberian Ancestry Connecting the Eastern Baltic to Uralic Speakers further East.
- Author
-
Saag L, Laneman M, Varul L, Malve M, Valk H, Razzak MA, Shirobokov IG, Khartanovich VI, Mikhaylova ER, Kushniarevich A, Scheib CL, Solnik A, Reisberg T, Parik J, Saag L, Metspalu E, Rootsi S, Montinaro F, Remm M, Mägi R, D'Atanasio E, Crema ER, Díez-Del-Molino D, Thomas MG, Kriiska A, Kivisild T, Villems R, Lang V, Metspalu M, and Tambets K
- Subjects
- Archaeology, Estonia, Female, History, Ancient, History, Medieval, Humans, Male, DNA, Ancient analysis, Gene Flow, Human Migration, Phenotype
- Abstract
In this study, we compare the genetic ancestry of individuals from two as yet genetically unstudied cultural traditions in Estonia in the context of available modern and ancient datasets: 15 from the Late Bronze Age stone-cist graves (1200-400 BC) (EstBA) and 6 from the Pre-Roman Iron Age tarand cemeteries (800/500 BC-50 AD) (EstIA). We also included 5 Pre-Roman to Roman Iron Age Ingrian (500 BC-450 AD) (IngIA) and 7 Middle Age Estonian (1200-1600 AD) (EstMA) individuals to build a dataset for studying the demographic history of the northern parts of the Eastern Baltic from the earliest layer of Mesolithic to modern times. Our findings are consistent with EstBA receiving gene flow from regions with strong Western hunter-gatherer (WHG) affinities and EstIA from populations related to modern Siberians. The latter inference is in accordance with Y chromosome (chrY) distributions in present day populations of the Eastern Baltic, as well as patterns of autosomal variation in the majority of the westernmost Uralic speakers [1-5]. This ancestry reached the coasts of the Baltic Sea no later than the mid-first millennium BC; i.e., in the same time window as the diversification of west Uralic (Finnic) languages [6]. Furthermore, phenotypic traits often associated with modern Northern Europeans, like light eyes, hair, and skin, as well as lactose tolerance, can be traced back to the Bronze Age in the Eastern Baltic. VIDEO ABSTRACT., (Copyright © 2019 Elsevier Ltd. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
36. Genes reveal traces of common recent demographic history for most of the Uralic-speaking populations.
- Author
-
Tambets K, Yunusbayev B, Hudjashov G, Ilumäe AM, Rootsi S, Honkola T, Vesakoski O, Atkinson Q, Skoglund P, Kushniarevich A, Litvinov S, Reidla M, Metspalu E, Saag L, Rantanen T, Karmin M, Parik J, Zhadanov SI, Gubina M, Damba LD, Bermisheva M, Reisberg T, Dibirova K, Evseeva I, Nelis M, Klovins J, Metspalu A, Esko T, Balanovsky O, Balanovska E, Khusnutdinova EK, Osipova LP, Voevoda M, Villems R, Kivisild T, and Metspalu M
- Subjects
- Demography, Genes, Genetic Variation, Genome, Human, Humans, Linguistics, Population Dynamics, Asian People genetics, White People genetics
- Abstract
Background: The genetic origins of Uralic speakers from across a vast territory in the temperate zone of North Eurasia have remained elusive. Previous studies have shown contrasting proportions of Eastern and Western Eurasian ancestry in their mitochondrial and Y chromosomal gene pools. While the maternal lineages reflect by and large the geographic background of a given Uralic-speaking population, the frequency of Y chromosomes of Eastern Eurasian origin is distinctively high among European Uralic speakers. The autosomal variation of Uralic speakers, however, has not yet been studied comprehensively., Results: Here, we present a genome-wide analysis of 15 Uralic-speaking populations which cover all main groups of the linguistic family. We show that contemporary Uralic speakers are genetically very similar to their local geographical neighbours. However, when studying relationships among geographically distant populations, we find that most of the Uralic speakers and some of their neighbours share a genetic component of possibly Siberian origin. Additionally, we show that most Uralic speakers share significantly more genomic segments identity-by-descent with each other than with geographically equidistant speakers of other languages. We find that correlated genome-wide genetic and lexical distances among Uralic speakers suggest co-dispersion of genes and languages. Yet, we do not find long-range genetic ties between Estonians and Hungarians with their linguistic sisters that would distinguish them from their non-Uralic-speaking neighbours., Conclusions: We show that most Uralic speakers share a distinct ancestry component of likely Siberian origin, which suggests that the spread of Uralic languages involved at least some demic component.
- Published
- 2018
- Full Text
- View/download PDF
37. Extensive Farming in Estonia Started through a Sex-Biased Migration from the Steppe.
- Author
-
Saag L, Varul L, Scheib CL, Stenderup J, Allentoft ME, Saag L, Pagani L, Reidla M, Tambets K, Metspalu E, Kriiska A, Willerslev E, Kivisild T, and Metspalu M
- Subjects
- Chromosomes, Human, X genetics, Chromosomes, Human, Y genetics, DNA, Mitochondrial chemistry, Estonia, History, Ancient, Humans, Agriculture history, DNA, Ancient analysis, Genome, Human genetics, Human Migration
- Abstract
The transition from hunting and gathering to farming in Europe was brought upon by arrival of new people carrying novel material culture and genetic ancestry. The exact nature and scale of the transition-both material and genetic-varied in different parts of Europe [1-7]. Farming-based economies appear relatively late in Northeast Europe, and the extent to which they involve change in genetic ancestry is not fully understood due to the lack of relevant ancient DNA data. Here we present the results from new low-coverage whole-genome shotgun sequence data from five hunter-gatherers and five first farmers of Estonia whose remains date to 4,500 to 6,300 years before present. We find evidence of significant differences between the two groups in the composition of autosomal as well as mtDNA, X chromosome, and Y chromosome ancestries. We find that Estonian hunter-gatherers of Comb Ceramic culture are closest to Eastern hunter-gatherers, which is in contrast to earlier hunter-gatherers from the Baltics, who are close to Western hunter-gatherers [8, 9]. The Estonian first farmers of Corded Ware culture show high similarity in their autosomes with European hunter-gatherers, Steppe Eneolithic and Bronze Age populations, and European Late Neolithic/Bronze Age populations, while their X chromosomes are in addition equally closely related to European and Anatolian and Levantine early farmers. These findings suggest that the shift to intensive cultivation and animal husbandry in Estonia was triggered by the arrival of new people with predominantly Steppe ancestry but whose ancestors had undergone sex-specific admixture with early farmers with Anatolian ancestry., (Copyright © 2017 Elsevier Ltd. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
38. Origin and spread of human mitochondrial DNA haplogroup U7.
- Author
-
Sahakyan H, Hooshiar Kashani B, Tamang R, Kushniarevich A, Francis A, Costa MD, Pathak AK, Khachatryan Z, Sharma I, van Oven M, Parik J, Hovhannisyan H, Metspalu E, Pennarun E, Karmin M, Tamm E, Tambets K, Bahmanimehr A, Reisberg T, Reidla M, Achilli A, Olivieri A, Gandini F, Perego UA, Al-Zahery N, Houshmand M, Sanati MH, Soares P, Rai E, Šarac J, Šarić T, Sharma V, Pereira L, Fernandes V, Černý V, Farjadian S, Singh DP, Azakli H, Üstek D, Ekomasova Trofimova N, Kutuev I, Litvinov S, Bermisheva M, Khusnutdinova EK, Rai N, Singh M, Singh VK, Reddy AG, Tolk HV, Cvjetan S, Lauc LB, Rudan P, Michalodimitrakis EN, Anagnou NP, Pappa KI, Golubenko MV, Orekhov V, Borinskaya SA, Kaldma K, Schauer MA, Simionescu M, Gusar V, Grechanina E, Govindaraj P, Voevoda M, Damba L, Sharma S, Singh L, Semino O, Behar DM, Yepiskoposyan L, Richards MB, Metspalu M, Kivisild T, Thangaraj K, Endicott P, Chaubey G, Torroni A, and Villems R
- Subjects
- Bayes Theorem, Geography, Humans, Mutation genetics, Phylogeny, DNA, Mitochondrial genetics, Evolution, Molecular, Haplotypes genetics
- Abstract
Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16-19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that - analysed alongside 100 published ones - enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (~11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (~8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region.
- Published
- 2017
- Full Text
- View/download PDF
39. Genomic analyses inform on migration events during the peopling of Eurasia.
- Author
-
Pagani L, Lawson DJ, Jagoda E, Mörseburg A, Eriksson A, Mitt M, Clemente F, Hudjashov G, DeGiorgio M, Saag L, Wall JD, Cardona A, Mägi R, Wilson Sayres MA, Kaewert S, Inchley C, Scheib CL, Järve M, Karmin M, Jacobs GS, Antao T, Iliescu FM, Kushniarevich A, Ayub Q, Tyler-Smith C, Xue Y, Yunusbayev B, Tambets K, Mallick CB, Saag L, Pocheshkhova E, Andriadze G, Muller C, Westaway MC, Lambert DM, Zoraqi G, Turdikulova S, Dalimova D, Sabitov Z, Sultana GNN, Lachance J, Tishkoff S, Momynaliev K, Isakova J, Damba LD, Gubina M, Nymadawa P, Evseeva I, Atramentova L, Utevska O, Ricaut FX, Brucato N, Sudoyo H, Letellier T, Cox MP, Barashkov NA, Skaro V, Mulahasanovic L, Primorac D, Sahakyan H, Mormina M, Eichstaedt CA, Lichman DV, Abdullah S, Chaubey G, Wee JTS, Mihailov E, Karunas A, Litvinov S, Khusainova R, Ekomasova N, Akhmetova V, Khidiyatova I, Marjanović D, Yepiskoposyan L, Behar DM, Balanovska E, Metspalu A, Derenko M, Malyarchuk B, Voevoda M, Fedorova SA, Osipova LP, Lahr MM, Gerbault P, Leavesley M, Migliano AB, Petraglia M, Balanovsky O, Khusnutdinova EK, Metspalu E, Thomas MG, Manica A, Nielsen R, Villems R, Willerslev E, Kivisild T, and Metspalu M
- Subjects
- Africa ethnology, Animals, Asia, Datasets as Topic, Estonia, Europe, Fossils, Gene Flow, Genetics, Population, Heterozygote, History, Ancient, Humans, Native Hawaiian or Other Pacific Islander genetics, Neanderthals genetics, New Guinea, Population Dynamics, Genome, Human genetics, Genomics, Human Migration history, Racial Groups genetics
- Abstract
High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago., Competing Interests: The authors declare no competing financial interests.
- Published
- 2016
- Full Text
- View/download PDF
40. Human Y Chromosome Haplogroup N: A Non-trivial Time-Resolved Phylogeography that Cuts across Language Families.
- Author
-
Ilumäe AM, Reidla M, Chukhryaeva M, Järve M, Post H, Karmin M, Saag L, Agdzhoyan A, Kushniarevich A, Litvinov S, Ekomasova N, Tambets K, Metspalu E, Khusainova R, Yunusbayev B, Khusnutdinova EK, Osipova LP, Fedorova S, Utevska O, Koshel S, Balanovska E, Behar DM, Balanovsky O, Kivisild T, Underhill PA, Villems R, and Rootsi S
- Subjects
- Asia, Europe, Humans, Phylogeography, Time Factors, Chromosomes, Human, Y genetics, Haplotypes genetics, Language
- Abstract
The paternal haplogroup (hg) N is distributed from southeast Asia to eastern Europe. The demographic processes that have shaped the vast extent of this major Y chromosome lineage across numerous linguistically and autosomally divergent populations have previously been unresolved. On the basis of 94 high-coverage re-sequenced Y chromosomes, we establish and date a detailed hg N phylogeny. We evaluate geographic structure by using 16 distinguishing binary markers in 1,631 hg N Y chromosomes from a collection of 6,521 samples from 56 populations. The more southerly distributed sub-clade N4 emerged before N2a1 and N3, found mostly in the north, but the latter two display more elaborate branching patterns, indicative of regional contrasts in recent expansions. In particular, a number of prominent and well-defined clades with common N3a3'6 ancestry occur in regionally dissimilar northern Eurasian populations, indicating almost simultaneous regional diversification and expansion within the last 5,000 years. This patrilineal genetic affinity is decoupled from the associated higher degree of language diversity., (Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
41. Y-Chromosomal Lineages of Latvians in the Context of the Genetic Variation of the Eastern-Baltic Region.
- Author
-
Pliss L, Timša L, Rootsi S, Tambets K, Pelnena I, Zole E, Puzuka A, Sabule A, Rozane S, Lace B, Kucinskas V, Krumina A, Ranka R, and Baumanis V
- Subjects
- Genetic Markers, Genotype, Haplotypes, Humans, Latvia, Male, Microsatellite Repeats, Phylogeny, Phylogeography, Polymorphism, Single Nucleotide, White People genetics, Chromosomes, Human, Y genetics, Gene Pool, Genetic Variation, Genetics, Population
- Abstract
Variations of the nonrecombining Y-chromosomal region were investigated in 159 unrelated Baltic-speaking ethnic Latvians from four different geographic regions, using 28 biallelic markers and 12 short tandem repeats. Eleven different haplogroups (hgs) were detected in a regionally homogeneous Latvian population, among which N1c, R1a, and I1 cover more than 85% of its paternal lineages. When compared its closest geographic neighbors, the composition of the Latvian Y-chromosomal gene pool was found to be very similar to those of Lithuanians and Estonians. Despite the comparable frequency distribution of hg N1c in Latvians and Lithuanians with the Finno-Ugric-speaking populations from the Eastern coast of the Baltic Sea, the observed differences in allelic variances of N1c haplotypes between these two groups are in concordance with the previously stated hypothesis of different dispersal ways of this lineage in the region. More than a third of Latvian paternal lineages belong specifically to a recently defined R1a-M558 hg, indicating an influence from a common source within Eastern Slavic populations on the formation of the present-day Latvian Y-chromosome gene pool., (© 2015 John Wiley & Sons Ltd/University College London.)
- Published
- 2015
- Full Text
- View/download PDF
42. Genetic Heritage of the Balto-Slavic Speaking Populations: A Synthesis of Autosomal, Mitochondrial and Y-Chromosomal Data.
- Author
-
Kushniarevich A, Utevska O, Chuhryaeva M, Agdzhoyan A, Dibirova K, Uktveryte I, Möls M, Mulahasanovic L, Pshenichnov A, Frolova S, Shanko A, Metspalu E, Reidla M, Tambets K, Tamm E, Koshel S, Zaporozhchenko V, Atramentova L, Kučinskas V, Davydenko O, Goncharova O, Evseeva I, Churnosov M, Pocheshchova E, Yunusbayev B, Khusnutdinova E, Marjanović D, Rudan P, Rootsi S, Yankovsky N, Endicott P, Kassian A, Dybo A, Tyler-Smith C, Balanovska E, Metspalu M, Kivisild T, Villems R, and Balanovsky O
- Subjects
- Europe, Humans, Phylogeny, Polymorphism, Single Nucleotide, Chromosomes, Human, Y genetics, DNA, Mitochondrial genetics, Gene Pool, Genetic Variation, Language, White People genetics
- Abstract
The Slavic branch of the Balto-Slavic sub-family of Indo-European languages underwent rapid divergence as a result of the spatial expansion of its speakers from Central-East Europe, in early medieval times. This expansion-mainly to East Europe and the northern Balkans-resulted in the incorporation of genetic components from numerous autochthonous populations into the Slavic gene pools. Here, we characterize genetic variation in all extant ethnic groups speaking Balto-Slavic languages by analyzing mitochondrial DNA (n = 6,876), Y-chromosomes (n = 6,079) and genome-wide SNP profiles (n = 296), within the context of other European populations. We also reassess the phylogeny of Slavic languages within the Balto-Slavic branch of Indo-European. We find that genetic distances among Balto-Slavic populations, based on autosomal and Y-chromosomal loci, show a high correlation (0.9) both with each other and with geography, but a slightly lower correlation (0.7) with mitochondrial DNA and linguistic affiliation. The data suggest that genetic diversity of the present-day Slavs was predominantly shaped in situ, and we detect two different substrata: 'central-east European' for West and East Slavs, and 'south-east European' for South Slavs. A pattern of distribution of segments identical by descent between groups of East-West and South Slavs suggests shared ancestry or a modest gene flow between those two groups, which might derive from the historic spread of Slavic people.
- Published
- 2015
- Full Text
- View/download PDF
43. POPULATION GENETICS. Genomic evidence for the Pleistocene and recent population history of Native Americans.
- Author
-
Raghavan M, Steinrücken M, Harris K, Schiffels S, Rasmussen S, DeGiorgio M, Albrechtsen A, Valdiosera C, Ávila-Arcos MC, Malaspinas AS, Eriksson A, Moltke I, Metspalu M, Homburger JR, Wall J, Cornejo OE, Moreno-Mayar JV, Korneliussen TS, Pierre T, Rasmussen M, Campos PF, de Barros Damgaard P, Allentoft ME, Lindo J, Metspalu E, Rodríguez-Varela R, Mansilla J, Henrickson C, Seguin-Orlando A, Malmström H, Stafford T Jr, Shringarpure SS, Moreno-Estrada A, Karmin M, Tambets K, Bergström A, Xue Y, Warmuth V, Friend AD, Singarayer J, Valdes P, Balloux F, Leboreiro I, Vera JL, Rangel-Villalobos H, Pettener D, Luiselli D, Davis LG, Heyer E, Zollikofer CPE, Ponce de León MS, Smith CI, Grimes V, Pike KA, Deal M, Fuller BT, Arriaza B, Standen V, Luz MF, Ricaut F, Guidon N, Osipova L, Voevoda MI, Posukh OL, Balanovsky O, Lavryashina M, Bogunov Y, Khusnutdinova E, Gubina M, Balanovska E, Fedorova S, Litvinov S, Malyarchuk B, Derenko M, Mosher MJ, Archer D, Cybulski J, Petzelt B, Mitchell J, Worl R, Norman PJ, Parham P, Kemp BM, Kivisild T, Tyler-Smith C, Sandhu MS, Crawford M, Villems R, Smith DG, Waters MR, Goebel T, Johnson JR, Malhi RS, Jakobsson M, Meltzer DJ, Manica A, Durbin R, Bustamante CD, Song YS, Nielsen R, and Willerslev E
- Subjects
- Americas, Gene Flow, Genomics, History, Ancient, Humans, Indians, North American genetics, Models, Genetic, Siberia, Human Migration history, Indians, North American history
- Abstract
How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative "Paleoamerican" relict populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model., (Copyright © 2015, American Association for the Advancement of Science.)
- Published
- 2015
- Full Text
- View/download PDF
44. The genetic legacy of the expansion of Turkic-speaking nomads across Eurasia.
- Author
-
Yunusbayev B, Metspalu M, Metspalu E, Valeev A, Litvinov S, Valiev R, Akhmetova V, Balanovska E, Balanovsky O, Turdikulova S, Dalimova D, Nymadawa P, Bahmanimehr A, Sahakyan H, Tambets K, Fedorova S, Barashkov N, Khidiyatova I, Mihailov E, Khusainova R, Damba L, Derenko M, Malyarchuk B, Osipova L, Voevoda M, Yepiskoposyan L, Kivisild T, Khusnutdinova E, and Villems R
- Subjects
- Asia, Asian People genetics, Asian People history, China, Chromosomes, Human, Y genetics, Ethnicity genetics, Ethnicity history, Europe, Genotype, History, 15th Century, History, 16th Century, History, 17th Century, History, Medieval, Humans, Language, Middle East, Mongolia, Polymorphism, Single Nucleotide genetics, Siberia, Chromosomes genetics, Gene Flow, Genetics, Population, Human Migration history
- Abstract
The Turkic peoples represent a diverse collection of ethnic groups defined by the Turkic languages. These groups have dispersed across a vast area, including Siberia, Northwest China, Central Asia, East Europe, the Caucasus, Anatolia, the Middle East, and Afghanistan. The origin and early dispersal history of the Turkic peoples is disputed, with candidates for their ancient homeland ranging from the Transcaspian steppe to Manchuria in Northeast Asia. Previous genetic studies have not identified a clear-cut unifying genetic signal for the Turkic peoples, which lends support for language replacement rather than demic diffusion as the model for the Turkic language's expansion. We addressed the genetic origin of 373 individuals from 22 Turkic-speaking populations, representing their current geographic range, by analyzing genome-wide high-density genotype data. In agreement with the elite dominance model of language expansion most of the Turkic peoples studied genetically resemble their geographic neighbors. However, western Turkic peoples sampled across West Eurasia shared an excess of long chromosomal tracts that are identical by descent (IBD) with populations from present-day South Siberia and Mongolia (SSM), an area where historians center a series of early Turkic and non-Turkic steppe polities. While SSM matching IBD tracts (> 1cM) are also observed in non-Turkic populations, Turkic peoples demonstrate a higher percentage of such tracts (p-values ≤ 0.01) compared to their non-Turkic neighbors. Finally, we used the ALDER method and inferred admixture dates (~9th-17th centuries) that overlap with the Turkic migrations of the 5th-16th centuries. Thus, our results indicate historical admixture among Turkic peoples, and the recent shared ancestry with modern populations in SSM supports one of the hypothesized homelands for their nomadic Turkic and related Mongolic ancestors.
- Published
- 2015
- Full Text
- View/download PDF
45. A recent bottleneck of Y chromosome diversity coincides with a global change in culture.
- Author
-
Karmin M, Saag L, Vicente M, Wilson Sayres MA, Järve M, Talas UG, Rootsi S, Ilumäe AM, Mägi R, Mitt M, Pagani L, Puurand T, Faltyskova Z, Clemente F, Cardona A, Metspalu E, Sahakyan H, Yunusbayev B, Hudjashov G, DeGiorgio M, Loogväli EL, Eichstaedt C, Eelmets M, Chaubey G, Tambets K, Litvinov S, Mormina M, Xue Y, Ayub Q, Zoraqi G, Korneliussen TS, Akhatova F, Lachance J, Tishkoff S, Momynaliev K, Ricaut FX, Kusuma P, Razafindrazaka H, Pierron D, Cox MP, Sultana GN, Willerslev R, Muller C, Westaway M, Lambert D, Skaro V, Kovačevic L, Turdikulova S, Dalimova D, Khusainova R, Trofimova N, Akhmetova V, Khidiyatova I, Lichman DV, Isakova J, Pocheshkhova E, Sabitov Z, Barashkov NA, Nymadawa P, Mihailov E, Seng JW, Evseeva I, Migliano AB, Abdullah S, Andriadze G, Primorac D, Atramentova L, Utevska O, Yepiskoposyan L, Marjanovic D, Kushniarevich A, Behar DM, Gilissen C, Vissers L, Veltman JA, Balanovska E, Derenko M, Malyarchuk B, Metspalu A, Fedorova S, Eriksson A, Manica A, Mendez FL, Karafet TM, Veeramah KR, Bradman N, Hammer MF, Osipova LP, Balanovsky O, Khusnutdinova EK, Johnsen K, Remm M, Thomas MG, Tyler-Smith C, Underhill PA, Willerslev E, Nielsen R, Metspalu M, Villems R, and Kivisild T
- Subjects
- Base Sequence, DNA, Mitochondrial genetics, Genetic Variation genetics, Genetics, Population, Haplotypes genetics, Humans, Male, Models, Genetic, Phylogeny, Sequence Analysis, DNA, Chromosomes, Human, Y genetics, Evolution, Molecular, Racial Groups genetics
- Abstract
It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males., (© 2015 Karmin et al.; Published by Cold Spring Harbor Laboratory Press.)
- Published
- 2015
- Full Text
- View/download PDF
46. Standing at the gateway to Europe--the genetic structure of Western balkan populations based on autosomal and haploid markers.
- Author
-
Kovacevic L, Tambets K, Ilumäe AM, Kushniarevich A, Yunusbayev B, Solnik A, Bego T, Primorac D, Skaro V, Leskovac A, Jakovski Z, Drobnic K, Tolk HV, Kovacevic S, Rudan P, Metspalu E, and Marjanovic D
- Subjects
- Balkan Peninsula, Chromosomes, Human, Y, Cluster Analysis, DNA, Mitochondrial, Evolution, Molecular, Genetic Variation, Geography, Humans, Polymorphism, Single Nucleotide, Chromosomes, Human, Ethnicity genetics, Genetic Markers, Genetics, Population, Haplotypes
- Abstract
Contemporary inhabitants of the Balkan Peninsula belong to several ethnic groups of diverse cultural background. In this study, three ethnic groups from Bosnia and Herzegovina - Bosniacs, Bosnian Croats and Bosnian Serbs - as well as the populations of Serbians, Croatians, Macedonians from the former Yugoslav Republic of Macedonia, Montenegrins and Kosovars have been characterized for the genetic variation of 660 000 genome-wide autosomal single nucleotide polymorphisms and for haploid markers. New autosomal data of the 70 individuals together with previously published data of 20 individuals from the populations of the Western Balkan region in a context of 695 samples of global range have been analysed. Comparison of the variation data of autosomal and haploid lineages of the studied Western Balkan populations reveals a concordance of the data in both sets and the genetic uniformity of the studied populations, especially of Western South-Slavic speakers. The genetic variation of Western Balkan populations reveals the continuity between the Middle East and Europe via the Balkan region and supports the scenario that one of the major routes of ancient gene flows and admixture went through the Balkan Peninsula.
- Published
- 2014
- Full Text
- View/download PDF
47. Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers.
- Author
-
Skoglund P, Malmström H, Omrak A, Raghavan M, Valdiosera C, Günther T, Hall P, Tambets K, Parik J, Sjögren KG, Apel J, Willerslev E, Storå J, Götherström A, and Jakobsson M
- Subjects
- DNA, Mitochondrial history, Genomics, History, Ancient, Humans, Scandinavian and Nordic Countries, White People history, Agriculture history, DNA, Mitochondrial genetics, Genetic Variation, Genome, Human, White People genetics
- Abstract
Prehistoric population structure associated with the transition to an agricultural lifestyle in Europe remains a contentious idea. Population-genomic data from 11 Scandinavian Stone Age human remains suggest that hunter-gatherers had lower genetic diversity than that of farmers. Despite their close geographical proximity, the genetic differentiation between the two Stone Age groups was greater than that observed among extant European populations. Additionally, the Scandinavian Neolithic farmers exhibited a greater degree of hunter-gatherer-related admixture than that of the Tyrolean Iceman, who also originated from a farming context. In contrast, Scandinavian hunter-gatherers displayed no significant evidence of introgression from farmers. Our findings suggest that Stone Age foraging groups were historically in low numbers, likely owing to oscillating living conditions or restricted carrying capacity, and that they were partially incorporated into expanding farming groups., (Copyright © 2014, American Association for the Advancement of Science.)
- Published
- 2014
- Full Text
- View/download PDF
48. The genome of a Late Pleistocene human from a Clovis burial site in western Montana.
- Author
-
Rasmussen M, Anzick SL, Waters MR, Skoglund P, DeGiorgio M, Stafford TW Jr, Rasmussen S, Moltke I, Albrechtsen A, Doyle SM, Poznik GD, Gudmundsdottir V, Yadav R, Malaspinas AS, White SS 5th, Allentoft ME, Cornejo OE, Tambets K, Eriksson A, Heintzman PD, Karmin M, Korneliussen TS, Meltzer DJ, Pierre TL, Stenderup J, Saag L, Warmuth VM, Lopes MC, Malhi RS, Brunak S, Sicheritz-Ponten T, Barnes I, Collins M, Orlando L, Balloux F, Manica A, Gupta R, Metspalu M, Bustamante CD, Jakobsson M, Nielsen R, and Willerslev E
- Subjects
- Archaeology, Asia ethnology, Bone and Bones, Burial, Chromosomes, Human, Y genetics, DNA, Mitochondrial genetics, Emigration and Immigration history, Europe ethnology, Gene Flow genetics, Haplotypes genetics, History, Ancient, Humans, Infant, Male, Models, Genetic, Molecular Sequence Data, Montana, Population Dynamics, Radiometric Dating, Genome, Human genetics, Indians, North American genetics, Phylogeny
- Abstract
Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 (14)C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 ± 35 (14)C years bp (approximately 12,707-12,556 calendar years bp) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years bp. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.
- Published
- 2014
- Full Text
- View/download PDF
49. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans.
- Author
-
Raghavan M, Skoglund P, Graf KE, Metspalu M, Albrechtsen A, Moltke I, Rasmussen S, Stafford TW Jr, Orlando L, Metspalu E, Karmin M, Tambets K, Rootsi S, Mägi R, Campos PF, Balanovska E, Balanovsky O, Khusnutdinova E, Litvinov S, Osipova LP, Fedorova SA, Voevoda MI, DeGiorgio M, Sicheritz-Ponten T, Brunak S, Demeshchenko S, Kivisild T, Villems R, Nielsen R, Jakobsson M, and Willerslev E
- Subjects
- Animals, Asia ethnology, Chromosomes, Human, Y genetics, DNA, Mitochondrial genetics, Emigration and Immigration, Gene Flow genetics, Genome, Mitochondrial genetics, Haplotypes genetics, Humans, Indians, North American classification, Male, Phylogeography, Siberia ethnology, Skeleton, Asian People genetics, Genome, Human genetics, Indians, North American ethnology, Indians, North American genetics, Phylogeny, White People genetics
- Abstract
The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians, there is no consensus with regard to which specific Old World populations they are closest to. Here we sequence the draft genome of an approximately 24,000-year-old individual (MA-1), from Mal'ta in south-central Siberia, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic and Mesolithic European hunter-gatherers, and the Y chromosome of MA-1 is basal to modern-day western Eurasians and near the root of most Native American lineages. Similarly, we find autosomal evidence that MA-1 is basal to modern-day western Eurasians and genetically closely related to modern-day Native Americans, with no close affinity to east Asians. This suggests that populations related to contemporary western Eurasians had a more north-easterly distribution 24,000 years ago than commonly thought. Furthermore, we estimate that 14 to 38% of Native American ancestry may originate through gene flow from this ancient population. This is likely to have occurred after the divergence of Native American ancestors from east Asian ancestors, but before the diversification of Native American populations in the New World. Gene flow from the MA-1 lineage into Native American ancestors could explain why several crania from the First Americans have been reported as bearing morphological characteristics that do not resemble those of east Asians. Sequencing of another south-central Siberian, Afontova Gora-2 dating to approximately 17,000 years ago, revealed similar autosomal genetic signatures as MA-1, suggesting that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans.
- Published
- 2014
- Full Text
- View/download PDF
50. No evidence from genome-wide data of a Khazar origin for the Ashkenazi Jews.
- Author
-
Behar DM, Metspalu M, Baran Y, Kopelman NM, Yunusbayev B, Gladstein A, Tzur S, Sahakyan H, Bahmanimehr A, Yepiskoposyan L, Tambets K, Khusnutdinova EK, Kushniarevich A, Balanovsky O, Balanovsky E, Kovacevic L, Marjanovic D, Mihailov E, Kouvatsi A, Triantaphyllidis C, King RJ, Semino O, Torroni A, Hammer MF, Metspalu E, Skorecki K, Rosset S, Halperin E, Villems R, and Rosenberg NA
- Subjects
- Ancient Lands ethnology, Europe ethnology, Female, Genetics, Population methods, Genome-Wide Association Study, History, Ancient, History, Medieval, Humans, Jews history, Male, Middle East ethnology, Polymorphism, Single Nucleotide genetics, Jews genetics
- Abstract
The origin and history of the Ashkenazi Jewish population have long been of great interest, and advances in high-throughput genetic analysis have recently provided a new approach for investigating these topics. We and others have argued on the basis of genome-wide data that the Ashkenazi Jewish population derives its ancestry from a combination of sources tracing to both Europe and the Middle East. It has been claimed, however, through a reanalysis of some of our data, that a large part of the ancestry of the Ashkenazi population originates with the Khazars, a Turkic-speaking group that lived to the north of the Caucasus region ~1,000 years ago. Because the Khazar population has left no obvious modern descendants that could enable a clear test for a contribution to Ashkenazi Jewish ancestry, the Khazar hypothesis has been difficult to examine using genetics. Furthermore, because only limited genetic data have been available from the Caucasus region, and because these data have been concentrated in populations that are genetically close to populations from the Middle East, the attribution of any signal of Ashkenazi-Caucasus genetic similarity to Khazar ancestry rather than shared ancestral Middle Eastern ancestry has been problematic. Here, through integration of genotypes from newly collected samples with data from several of our past studies, we have assembled the largest data set available to date for assessment of Ashkenazi Jewish genetic origins. This data set contains genome-wide single-nucleotide polymorphisms in 1,774 samples from 106 Jewish and non-Jewish populations that span the possible regions of potential Ashkenazi ancestry: Europe, the Middle East, and the region historically associated with the Khazar Khaganate. The data set includes 261 samples from 15 populations from the Caucasus region and the region directly to its north, samples that have not previously been included alongside Ashkenazi Jewish samples in genomic studies. Employing a variety of standard techniques for the analysis of population-genetic structure, we found that Ashkenazi Jews share the greatest genetic ancestry with other Jewish populations and, among non-Jewish populations, with groups from Europe and the Middle East. No particular similarity of Ashkenazi Jews to populations from the Caucasus is evident, particularly populations that most closely represent the Khazar region. Thus, analysis of Ashkenazi Jews together with a large sample from the region of the Khazar Khaganate corroborates the earlier results that Ashkenazi Jews derive their ancestry primarily from populations of the Middle East and Europe, that they possess considerable shared ancestry with other Jewish populations, and that there is no indication of a significant genetic contribution either from within or from north of the Caucasus region., (Copyright © 2014 Wayne State University Press, Detroit, Michigan 48201-1309.)
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.