1. Normalized solutions for the Kirchhoff equation with combined nonlinearities in ℝ4
- Author
-
Qiu Xin, Ou Zeng-Qi, Tang Chun-Lei, and Lv Ying
- Subjects
kirchhoff equation ,normalized solutions ,critical exponent ,combined nonlinearities ,35j60 ,35j50 ,35j20 ,Analysis ,QA299.6-433 - Abstract
In this article, we study the following Kirchhoff equation with combined nonlinearities: −a+b∫R4∣∇u∣2dxΔu+λu=μ∣u∣q−2u+∣u∣2u,inR4,∫R4∣u∣2dx=c2,\left\{\begin{array}{l}-\left(a+b\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{4}}{| \nabla u| }^{2}{\rm{d}}x\right)\Delta u+\lambda u=\mu {| u| }^{q-2}u+{| u| }^{2}u,\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{4},\\ \mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{4}}{| u| }^{2}{\rm{d}}x={c}^{2},\end{array}\right. where a,b,c>0a,b,c\gt 0, μ,λ∈R\mu ,\lambda \in {\mathbb{R}}, 20b,c\gt 0 and μ∈R\mu \in {\mathbb{R}}, we prove some existence, nonexistence, and asymptotic behavior of the obtained normalized solutions. When μ>0\mu \gt 0:(i) for 2
- Published
- 2024
- Full Text
- View/download PDF