1. Iron-Utilization System in Vibrio vulnificus M2799
- Author
-
Katsushiro Miyamoto, Hiroaki Kawano, Naoko Okai, Takeshi Hiromoto, Nao Miyano, Koji Tomoo, Takahiro Tsuchiya, Jun Komano, Tomotaka Tanabe, Tatsuya Funahashi, and Hiroshi Tsujibo
- Subjects
siderophore ,periplasmic binding protein ,siderophore-interacting protein ,ferric-siderophore reductase ,aerobactin ,desferrioxamine B ,Biology (General) ,QH301-705.5 - Abstract
Vibrio vulnificus is a Gram-negative pathogenic bacterium that causes serious infections in humans and requires iron for growth. A clinical isolate, V. vulnificus M2799, secretes a catecholate siderophore, vulnibactin, that captures ferric ions from the environment. In the ferric-utilization system in V. vulnificus M2799, an isochorismate synthase (ICS) and an outer membrane receptor, VuuA, are required under low-iron conditions, but alternative proteins FatB and VuuB can function as a periplasmic-binding protein and a ferric-chelate reductase, respectively. The vulnibactin-export system is assembled from TolCV1 and several RND proteins, including VV1_1681. In heme acquisition, HupA and HvtA serve as specific outer membrane receptors and HupB is a sole periplasmic-binding protein, unlike FatB in the ferric-vulnibactin utilization system. We propose that ferric-siderophore periplasmic-binding proteins and ferric-chelate reductases are potential targets for drug discovery in infectious diseases.
- Published
- 2021
- Full Text
- View/download PDF