12 results on '"Tauchnitz, Tina"'
Search Results
2. Novel Methods for Controlled Self-Catalyzed Growth of GaAs Nanowires and GaAs/AlxGa1-xAs Axial Nanowire Heterostructures on Si Substrates by Molecular Beam Epitaxy
- Author
-
Tauchnitz, Tina
- Published
- 2020
3. Novel Methods for Controlled Self-Catalyzed Growth of GaAs Nanowires and GaAs/AlxGa1-xAs Axial Nanowire Heterostructures on Si Substrates by Molecular Beam Epitaxy
- Author
-
Tauchnitz, Tina, Cuniberti, Gianaurelio, Helm, Manfred, Riechert, Henning, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf
- Subjects
MBE, Si-CMOS, NW, QD, SMP, DCAPE, Ga droplets, GaAs-based nanowires, III-V nanowires, SiOx/Si(111) substrate, molecular beam epitaxy, surface modification procedure, sub-Poissonian, nucleation antibunching, droplet-confined alternate pulsed epitaxy, quantum dot-in-a-wire, axial nanowire heterostructures ,ddc:621.3 ,MBE, Si-CMOS, NW, QD, SMP, DCAPE, Ga Tröpfchen, GaAs-basierte Nanodrähte, III-V Nanodrähte, SiOx/Si(111) Substrat, Molekularstrahlepitaxie, Oberflächenmodifikationsprozedur, sub-Poisson Verteilung, Nukleations-Antibunching, Tröpfchen-gestützte alternierend gepulste Epitaxie, Quantenpunkt-Nanodrähte, axiale Nanodraht-Heterostrukturen ,ddc:620 - Abstract
GaAs-based nanowires are attractive building blocks for the development of future (opto)electronic devices owing to their excellent intrinsic material properties, such as the direct band gap and high electron mobility. A pre-requisite for the implementation of novel functionalities on a single Si chip is the monolithic integration of the nanowires on the well-established Si complementary-metal-oxide-semiconductor (CMOS) platform with precise control of the nanowire growth process. The self-catalyzed (Ga-assisted) growth of GaAs nanowires on Si(111) substrates using molecular beam epitaxy has offered the possibility to obtain vertical nanowires with predominant zinc blende structure, while potential contamination by external catalysts like Au is eliminated. Although the growth mechanism is fairly well understood, control of the nucleation stage, the nanowire number density and the crystal structure has been proven rather challenging. Moreover, conventional growth processes are typically performed at relatively high substrate temperatures in the range of 560-630 °C, which limit their application to the industrial Si platform. This thesis provides two original methods in order to tackle the aforementioned challenges in the conventional growth processes. In the first part of this thesis, a simple surface modification procedure (SMP) for the in situ preparation of native-SiOx/Si(111) substrates has been developed. Using a pre-growth treatment of the substrates with Ga droplets and two annealing cycles, the SMP enables highly synchronized nucleation of all nanowires on their substrate and thus, the growth of exceptionally uniform GaAs nanowire ensembles with sub-Poissonian length distributions. Moreover, the nanowire number density can be tuned within three orders of magnitude and independent of the nanowire dimensions without prior ex situ patterning of the substrate. This work delivers a fundamental understanding of the nucleation kinetics of Ga droplets on native-SiOx and their interaction with SiOx, and confirms theoretical predictions about the so-called nucleation antibunching, the temporal anti-correlation of consecutive nucleation events. In the second part of this thesis, an alternative method called droplet-confined alternate-pulsed epitaxy (DCAPE) for the self-catalyzed growth of GaAs nanowires and GaAs/AlxGa1-xAs axial nanowire heterostructures has been developed. DCAPE enables nanowire growth at unconventional, low temperatures in the range of 450-550 °C and is compatible with the standard Si-CMOS platform. The novel growth approach allows one to precisely control the crystal structure of the nanowires and, thus, to produce defect-free pure zinc blende GaAs-based nanowires. The strength of DCAPE is further highlighted by the controlled growth of GaAs/AlxGa1-xAs axial quantum well nanowires with abrupt interfaces and tunable thickness and Al-content of the AlxGa1-xAs sections. The GaAs/AlxGa1-xAs axial nanowire heterostructures are interesting for applications as single photon emitters with tunable emission wavelength, when they are overgrown with thick lattice-mismatched InxAl1-xAs layers in a core-shell fashion. All results presented in this thesis contribute to paving the way for a successful monolithic integration of highly uniform GaAs-based nanowires with controlled number density, dimensions and crystal structure on the mature Si platform. GaAs-basierte Nanodrähte sind attraktive Bausteine für die Entwicklung von zukünftigen (opto)elektronischen Bauelementen dank ihrer exzellenten intrinsischen Materialeigenschaften wie zum Beispiel die direkte Bandlücke und die hohe Elektronenbeweglichkeit. Eine Voraussetzung für die Realisierung neuer Funktionalitäten auf einem einzelnen Si Chip ist die monolithische Integration der Nanodrähte auf der etablierten Si-Metall-Oxid-Halbleiter-Plattform (CMOS) mit präziser Kontrolle des Wachstumsprozesses der Nanodrähte. Das selbstkatalytische (Ga-unterstützte) Wachstum von GaAs Nanodrähten auf Si(111)-Substrat mittels Molekularstrahlepitaxie bietet die Möglichkeit vertikale Nanodrähte mit vorwiegend Zinkblende-Struktur herzustellen, während die potentielle Verunreinigung der Nanodrähte und des Substrats durch externe Katalysatoren wie Au vermieden wird. Obwohl der Wachstumsmechanismus gut verstanden ist, erweist sich die Kontrolle der Nukleationsphase, Anzahldichte und Kristallstruktur der Nanodrähte als sehr schwierig. Darüber hinaus sind relativ hohe Temperaturen im Bereich von 560-630 °C in konventionellen Wachstumsprozessen notwendig, die deren Anwendung auf der industriellen Si Plattform begrenzen. Die vorliegende Arbeit liefert zwei originelle Methoden um die bestehenden Herausforderungen in konventionellen Wachstumsprozessen zu bewältigen. Im ersten Teil dieser Arbeit wurde eine einfache Prozedur, bezeichnet als surface modification procedure (SMP), für die in situ Vorbehandlung von nativem-SiOx/Si(111)-Substrat entwickelt. Die Substratvorbehandlung mit Ga-Tröpfchen und zwei Hochtemperaturschritten vor dem Wachstumsprozess ermöglicht eine synchronisierte Nukleation aller Nanodrähte auf ihrem Substrat und folglich das Wachstum von sehr gleichförmigen GaAs Nanodraht-Ensembles mit einer sub-Poisson Verteilung der Nanodrahtlängen. Des Weiteren kann die Anzahldichte der Nanodrähte unabhängig von deren Abmessungen und ohne ex situ Vorstrukturierung des Substrats über drei Größenordnungen eingestellt werden. Diese Arbeit liefert außerdem ein grundlegendes Verständnis zur Nukleationskinetik von Ga-Tröpfchen auf nativem-SiOx und deren Wechselwirkung mit SiOx und bestätigt theoretische Voraussagen zum sogenannten Nukleations-Antibunching, dem Auftreten einer zeitlichen Anti-Korrelation aufeinanderfolgender Nukleationsereignisse. Im zweiten Teil dieser Arbeit wurde eine alternative Methode, bezeichnet als droplet-confined alternate-pulsed epitaxy (DCAPE), für das selbstkatalytische Wachstum von GaAs Nanodrähten und GaAs/AlxGa1-xAs axialen Nanodraht-Heterostrukturen entwickelt. DCAPE ermöglicht das Nanodrahtwachstum bei unkonventionell geringeren Temperaturen im Bereich von 450-550 °C und ist vollständig kompatibel mit der Standard-Si-CMOS-Plattform. Der neue Wachstumsansatz erlaubt eine präzise Kontrolle der Kristallstruktur der Nanodrähte und folglich das Wachstum von defektfreien Nanodrähten mit phasenreiner Zinkblende-Struktur. Die Stärke der DCAPE Methode wird des Weiteren durch das kontrollierte Wachstum von GaAs/AlxGa1-xAs axialen Quantentopf-Nanodrähten mit abrupten Grenzflächen und einstellbarer Dicke und Al-Anteil der AlxGa1-xAs-Segmente aufgezeigt. Die GaAs/AlxGa1-xAs axialen Nanodraht-Heterostrukturen sind interessant für den Einsatz als Einzelphotonen-Emitter mit einstellbarer Emissionswellenlänge, wenn diese mit gitterfehlangepassten InxAl1-xAs-Schichten in einer Kern-Hülle-Konfiguration überwachsen werden. Alle Ergebnisse dieser Arbeit tragen dazu bei, den Weg für eine erfolgreiche monolithische Integration von sehr gleichförmigen GaAs-basierten Nanodrähten mit kontrollierbarer Anzahldichte, Abmessungen und Kristallstruktur auf der industriell etablierten Si-Plattform zu ebnen.
- Published
- 2019
4. Novel Methods for Controlled Self-Catalyzed Growth of GaAs Nanowires and GaAs/AlxGa1-xAs Axial Nanowire Heterostructures on Si Substrates by Molecular Beam Epitaxy
- Author
-
Cuniberti, Gianaurelio, Helm, Manfred, Riechert, Henning, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Tauchnitz, Tina, Cuniberti, Gianaurelio, Helm, Manfred, Riechert, Henning, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, and Tauchnitz, Tina
- Abstract
GaAs-based nanowires are attractive building blocks for the development of future (opto)electronic devices owing to their excellent intrinsic material properties, such as the direct band gap and high electron mobility. A pre-requisite for the implementation of novel functionalities on a single Si chip is the monolithic integration of the nanowires on the well-established Si complementary-metal-oxide-semiconductor (CMOS) platform with precise control of the nanowire growth process. The self-catalyzed (Ga-assisted) growth of GaAs nanowires on Si(111) substrates using molecular beam epitaxy has offered the possibility to obtain vertical nanowires with predominant zinc blende structure, while potential contamination by external catalysts like Au is eliminated. Although the growth mechanism is fairly well understood, control of the nucleation stage, the nanowire number density and the crystal structure has been proven rather challenging. Moreover, conventional growth processes are typically performed at relatively high substrate temperatures in the range of 560-630 °C, which limit their application to the industrial Si platform. This thesis provides two original methods in order to tackle the aforementioned challenges in the conventional growth processes. In the first part of this thesis, a simple surface modification procedure (SMP) for the in situ preparation of native-SiOx/Si(111) substrates has been developed. Using a pre-growth treatment of the substrates with Ga droplets and two annealing cycles, the SMP enables highly synchronized nucleation of all nanowires on their substrate and thus, the growth of exceptionally uniform GaAs nanowire ensembles with sub-Poissonian length distributions. Moreover, the nanowire number density can be tuned within three orders of magnitude and independent of the nanowire dimensions without prior ex situ patterning of the substrate. This work delivers a fundamental understanding of the nucleation kinetics of Ga droplets on native-SiOx, GaAs-basierte Nanodrähte sind attraktive Bausteine für die Entwicklung von zukünftigen (opto)elektronischen Bauelementen dank ihrer exzellenten intrinsischen Materialeigenschaften wie zum Beispiel die direkte Bandlücke und die hohe Elektronenbeweglichkeit. Eine Voraussetzung für die Realisierung neuer Funktionalitäten auf einem einzelnen Si Chip ist die monolithische Integration der Nanodrähte auf der etablierten Si-Metall-Oxid-Halbleiter-Plattform (CMOS) mit präziser Kontrolle des Wachstumsprozesses der Nanodrähte. Das selbstkatalytische (Ga-unterstützte) Wachstum von GaAs Nanodrähten auf Si(111)-Substrat mittels Molekularstrahlepitaxie bietet die Möglichkeit vertikale Nanodrähte mit vorwiegend Zinkblende-Struktur herzustellen, während die potentielle Verunreinigung der Nanodrähte und des Substrats durch externe Katalysatoren wie Au vermieden wird. Obwohl der Wachstumsmechanismus gut verstanden ist, erweist sich die Kontrolle der Nukleationsphase, Anzahldichte und Kristallstruktur der Nanodrähte als sehr schwierig. Darüber hinaus sind relativ hohe Temperaturen im Bereich von 560-630 °C in konventionellen Wachstumsprozessen notwendig, die deren Anwendung auf der industriellen Si Plattform begrenzen. Die vorliegende Arbeit liefert zwei originelle Methoden um die bestehenden Herausforderungen in konventionellen Wachstumsprozessen zu bewältigen. Im ersten Teil dieser Arbeit wurde eine einfache Prozedur, bezeichnet als surface modification procedure (SMP), für die in situ Vorbehandlung von nativem-SiOx/Si(111)-Substrat entwickelt. Die Substratvorbehandlung mit Ga-Tröpfchen und zwei Hochtemperaturschritten vor dem Wachstumsprozess ermöglicht eine synchronisierte Nukleation aller Nanodrähte auf ihrem Substrat und folglich das Wachstum von sehr gleichförmigen GaAs Nanodraht-Ensembles mit einer sub-Poisson Verteilung der Nanodrahtlängen. Des Weiteren kann die Anzahldichte der Nanodrähte unabhängig von deren Abmessungen und ohne ex situ Vorstrukturierung des Substrats über d
- Published
- 2019
5. A simple route to synchronized nucleation of self-catalyzed GaAs nanowires on silicon for sub-Poissonian length distributions
- Author
-
Tauchnitz, Tina, primary, Berdnikov, Yury, additional, Dubrovskii, Vladimir G, additional, Schneider, Harald, additional, Helm, Manfred, additional, and Dimakis, Emmanouil, additional
- Published
- 2018
- Full Text
- View/download PDF
6. Assembly Behavior of Organically Interlinked Gold Nanoparticle Composite Films: A Quartz Crystal Microbalance Investigation
- Author
-
Daskal, Yelyena, primary, Tauchnitz, Tina, additional, Güth, Frederic, additional, Dittrich, Rosemarie, additional, and Joseph, Yvonne, additional
- Published
- 2017
- Full Text
- View/download PDF
7. Decoupling the Two Roles of Ga Droplets in the Self-Catalyzed Growth of GaAs Nanowires on SiOx/Si(111) Substrates
- Author
-
Tauchnitz, Tina, primary, Nurmamytov, Timur, additional, Hübner, René, additional, Engler, Martin, additional, Facsko, Stefan, additional, Schneider, Harald, additional, Helm, Manfred, additional, and Dimakis, Emmanouil, additional
- Published
- 2017
- Full Text
- View/download PDF
8. At the Limit of Interfacial Sharpness in Nanowire Axial Heterostructures
- Author
-
Hilliard, Donovan, Tauchnitz, Tina, Hübner, René, Vasileiadis, Isaak, Gkotinakos, Athanasios, Dimitrakopulos, George, Komninou, Philomela, Sun, Xiaoxiao, Winnerl, Stephan, Schneider, Harald, Helm, Manfred, and Dimakis, Emmanouil
- Abstract
As semiconductor devices approach dimensions at the atomic scale, controlling the compositional grading across heterointerfaces becomes paramount. Particularly in nanowire axial heterostructures, which are promising for a broad spectrum of nanotechnology applications, the achievement of sharp heterointerfaces has been challenging owing to peculiarities of the commonly used vapor–liquid–solid growth mode. Here, the grading of Al across GaAs/AlxGa1–xAs/GaAs heterostructures in self-catalyzed nanowires is studied, aiming at finding the limits of the interfacial sharpness for this technologically versatile material system. A pulsed growth mode ensures precise control of the growth mechanisms even at low temperatures, while a semiempirical thermodynamic model is derived to fit the experimental Al-content profiles and quantitatively describe the dependences of the interfacial sharpness on the growth temperature, the nanowire radius, and the Al content. Finally, symmetrical Al profiles with interfacial widths of 2–3 atomic planes, at the limit of the measurement accuracy, are obtained, outperforming even equivalent thin-film heterostructures. The proposed method enables the development of advanced heterostructure schemes for a more effective utilization of the nanowire platform; moreover, it is considered expandable to other material systems and nanostructure types.
- Published
- 2024
- Full Text
- View/download PDF
9. Droplet-Confined Alternate Pulsed Epitaxy of GaAs Nanowires on Si Substrates down to CMOS-Compatible Temperatures
- Author
-
Balaghi, Leila, primary, Tauchnitz, Tina, additional, Hübner, René, additional, Bischoff, Lothar, additional, Schneider, Harald, additional, Helm, Manfred, additional, and Dimakis, Emmanouil, additional
- Published
- 2016
- Full Text
- View/download PDF
10. Assembly Behavior of Organically Interlinked Gold Nanoparticle Composite Films: A Quartz Crystal Microbalance Investigation.
- Author
-
Daska, Yelyena, Tauchnitz, Tina, Güth, Frederic, Dittrich, Rosemarie, and Joseph, Yvonne
- Subjects
- *
GOLD nanoparticles , *NANOPARTICLES , *AMINES , *MICROBALANCES , *QUARTZ crystal microbalances - Abstract
Thin films based on dodecylamine stabilized gold nanoparticles interlinked with different organic molecules are prepared by automatic layer-by-layer self-assembly in a microfluidic quartz crystal microbalance (QCM) cell, to obtain an in situ insight on the film formation by ligand/linker exchange reactions. The influence of interlinking functional groups and the length of the organic linker molecule on the assembly behavior is investigated. Alkyldithiols with different lengths are compared to alkyldiamines and alkylbisdithiocarbamates with a C8 alkylic molecular backbone. The stepwise layer-by-layer assembly occurs independently of the linker molecule, while the largest frequency changes always correspond to the gold nanoparticle step. During the solvent rinsing and ligand/linker exchange reaction step, the frequency is almost constant with slight increases or decreases dependent on the molar mass of the linker compared to the exchanged ligand. The assembly efficiency is higher for shorter molecules and for molecules with stronger interacting functional groups. The densities of the composite films are calculated from QCM data and independent thickness measurements. They reflect the higher fraction of organic material in the films comprising longer organic linkers. The plasmon resonance band of the gold nanoparticles in the final assemblies is measured with UV/vis spectroscopy. Band positions in films prepared from dithiols and diamines of comparable lengths are very similar, while the spectrum of the bisdithiocarbamate film exhibits a distinct blue-shift. This observation is explained by the longer molecular structure of the linker due to a larger binding group, in conjunction with a delocalization of particle charge on the organic molecule. Obtained results play an essential role in the understanding of thin film layer-by-layer self-assembly processes, and enable the formation of new gold nanoparticle networks with organic diamine and bisdithiocarbamate molecules. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
11. Decoupling the Two Roles of Ga Droplets in the Self-Catalyzed Growth of GaAs Nanowires on SiOx/Si(111) Substrates.
- Author
-
Tauchnitz, Tina, Nurmamytov, Timur, Hübner, René, Engler, Martin, Facsko, Stefan, Schneider, Harald, Helm, Manfred, and Dimakis, Emmanouil
- Subjects
- *
GALLIUM arsenide , *CATALYSIS , *SILICON nanowires , *CRYSTAL growth , *NUCLEATION - Abstract
Liquid Ga droplets play a double role in the self-catalyzed growth of GaAs nanowires on Si(111) substrates covered with a native SiOx layer: they induce the formation of nanosized holes in SiOx and then drive the uniaxial nanowire growth directly onto the underlying Si. The independent control of the two mechanisms is a prerequisite for mastering the growth of nanowires, but it is challenging in a conventional growth procedure where they both take place under the same droplets. To that end, we have developed an in situ procedure where the Ga droplets used for the formation of SiOx holes are removed before new Ga droplets drive the growth of GaAs nanowires. In that way, it was possible to study the interaction between Ga droplets and SiOx, to create holes in SiOx with controlled number density and size, and, finally, to grow GaAs nanowires only within those holes. Our results show unprecedented control of the nanowire nucleation with unique possibilities: (1) deliberate control of the number density of nanowires within 3 orders of magnitude (106-109 cm-2) without patterning the substrate and without changing the growth conditions, (2) highly synchronous nucleation events and, thus, exceptionally narrow nanowire length distributions (standard deviation <1% for 3 µm long nanowires), (3) high yield of vertical nanowires up to 80% (against GaAs islands), (4) highly reproducible results, and (5) independent control of the nanowire diameter from the number density. We anticipate that our methodology could be also exploited for different materials or other types of nanostructures. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
12. TEMAZ/O3 atomic layer deposition process with doubled growth rate and optimized interface properties in metal–insulator–metal capacitors
- Author
-
Weinreich, Wenke, primary, Tauchnitz, Tina, additional, Polakowski, Patrick, additional, Drescher, Maximilian, additional, Riedel, Stefan, additional, Sundqvist, Jonas, additional, Seidel, Konrad, additional, Shirazi, Mahdi, additional, Elliott, Simon D., additional, Ohsiek, Susanne, additional, Erben, Elke, additional, and Trui, Bernhard, additional
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.