1. Private Synthetic Data Generation in Small Memory
- Author
-
Holland, Rayne, Camtepe, Seyit, Thapa, Chandra, and Xue, Jason
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Data Structures and Algorithms - Abstract
Protecting sensitive information on data streams is a critical challenge for modern systems. Current approaches to privacy in data streams follow two strategies. The first transforms the stream into a private sequence, enabling the use of non-private analyses but incurring high memory costs. The second uses compact data structures to create private summaries but restricts flexibility to predefined queries. To address these limitations, we propose $\textsf{PrivHP}$, a lightweight synthetic data generator that ensures differential privacy while being resource-efficient. $\textsf{PrivHP}$ generates private synthetic data that preserves the input stream's distribution, allowing flexible downstream analyses without additional privacy costs. It leverages a hierarchical decomposition of the domain, pruning low-frequency subdomains while preserving high-frequency ones in a privacy-preserving manner. To achieve memory efficiency in streaming contexts, $\textsf{PrivHP}$ uses private sketches to estimate subdomain frequencies without accessing the full dataset. $\textsf{PrivHP}$ is parameterized by a privacy budget $\varepsilon$, a pruning parameter $k$ and the sketch width $w$. It can process a dataset of size $n$ in $\mathcal{O}((w+k)\log (\varepsilon n))$ space, $\mathcal{O}(\log (\varepsilon n))$ update time, and outputs a private synthetic data generator in $\mathcal{O}(k\log k\log (\varepsilon n))$ time. Prior methods require $\Omega(n)$ space and construction time. Our evaluation uses the expected 1-Wasserstein distance between the sampler and the empirical distribution. Compared to state-of-the-art methods, we demonstrate that the additional cost in utility is inversely proportional to $k$ and $w$. This represents the first meaningful trade-off between performance and utility for private synthetic data generation., Comment: 28 Pages, 1 Table, 3 Figures, 4 Algorithms
- Published
- 2024