7 results on '"Thiour-Mauprivez C"'
Search Results
2. Agroecological transition: towards a better understanding of the impact of ecology-based farming practices on soil microbial ecotoxicology.
- Author
-
Vermeire ML, Thiour-Mauprivez C, and De Clerck C
- Subjects
- Soil Microbiology, Biological Control Agents, Agriculture, Soil, Ecotoxicology
- Abstract
Alternative farming systems have developed since the beginning of industrial agriculture. Organic, biodynamic, conservation farming, agroecology and permaculture, all share a grounding in ecological concepts and a belief that farmers should work with nature rather than damage it. As ecology-based agricultures rely greatly on soil organisms to perform the functions necessary for agricultural production, it is thus important to evaluate the performance of these systems through the lens of soil organisms, especially soil microbes. They provide numerous services to plants, including growth promotion, nutrient supply, tolerance to environmental stresses and protection against pathogens. An overwhelming majority of studies confirm that ecology-based agricultures are beneficial for soil microorganisms. However, three practices were identified as posing potential ecotoxicological risks: the recycling of organic waste products, plastic mulching, and pest and disease management with biopesticides. The first two because they can be a source of contaminants; the third because of potential impacts on non-target microorganisms. Consequently, developing strategies to allow a safe recycling of the increasingly growing organic matter stocks produced in cities and factories, and the assessment of the ecotoxicological impact of biopesticides on non-target soil microorganisms, represent two challenges that ecology-based agricultural systems will have to face in the future., (© The Author(s) 2024. Published by Oxford University Press on behalf of FEMS.)
- Published
- 2024
- Full Text
- View/download PDF
3. "Structural responses of non-targeted bacterial and hppd communities to the herbicide tembotrione in soil".
- Author
-
Terol H, Thiour-Mauprivez C, Devers M, Martin-Laurent F, Suzuki M, Calvayrac C, and Barthelmebs L
- Subjects
- Ecotoxicology, Biodiversity, Soil Pollutants toxicity, Soil Microbiology, Cyclohexanones toxicity, Sulfones toxicity, Microbiota drug effects, Herbicides toxicity
- Abstract
Tembotrione (TBT) is a β-triketone herbicide targeting the 4-Hydroxyphenylpyruvate dioxygenase enzyme (4-HPPD) of weeds. This molecule can also affect soil microorganisms, either through both direct and indirect toxic effects for microorganisms expressing 4-HPPD, or by promoting tolerant and/or degrading microbial populations. Our study aimed to characterize the impacts of TBT on the diversity of total- and hppd (coding for 4-HPPD) -soil bacterial communities. Soil microcosms were treated with the active ingredient TBT at the recommended field dose (100 g a.i/ha; D1) or the tenfold dose (D10). Soil samples were collected from 0 to 55 days post-treatment to study: (i) total- and hppd-bacterial diversities using 16SrRNA and hppd amplicons sequencing, respectively; (ii) TBT dissipation in soil. Both total- and hppd-bacterial community composition was not affected by TBT treatments (D1 and D10). However, D10 treatment slightly increased richness and phylogenetic diversity of the total bacterial community while decreasing hppd richness. Overall, the highest dose of TBT seemed to promote TBT-tolerant or TBT-degrading bacterial populations and to deplete TBT-sensitive ones. These effects were transient as TBT was rapidly dissipated with a DT
50 of 7 days and 15 days for D1 and D10, respectively. Differential abundance analysis with a Generalized Linear Model allowed the identification of Sphingomonas, Steroidobacter and Lysobacter as genus that were influenced by TBT, and which could be used as a new class of exposure biomarkers., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
4. Assessing the effects of β-triketone herbicides on HPPD from environmental bacteria using a combination of in silico and microbiological approaches.
- Author
-
Thiour-Mauprivez C, Dayan FE, Terol H, Devers M, Calvayrac C, Martin-Laurent F, and Barthelmebs L
- Subjects
- Molecular Docking Simulation, Bacteria metabolism, Enzyme Inhibitors, Herbicides pharmacology, Herbicides chemistry, Dioxygenases, 4-Hydroxyphenylpyruvate Dioxygenase chemistry, 4-Hydroxyphenylpyruvate Dioxygenase metabolism
- Abstract
4-hydroxyphenylpyruvate dioxygenase (HPPD) is the molecular target of β-triketone herbicides in plants. This enzyme, involved in the tyrosine pathway, is also present in a wide range of living organisms, including microorganisms. Previous studies, focusing on a few strains and using high herbicide concentrations, showed that β-triketones are able to inhibit microbial HPPD. Here, we measured the effect of agronomical doses of β-triketone herbicides on soil bacterial strains. The HPPD activity of six bacterial strains was tested with 1× or 10× the recommended field dose of the herbicide sulcotrione. The selected strains were tested with 0.01× to 15× the recommended field dose of sulcotrione, mesotrione, and tembotrione. Molecular docking was also used to measure and model the binding mode of the three herbicides with the different bacterial HPPD. Our results show that responses to herbicides are strain-dependent with Pseudomonas fluorescens F113 HPPD activity not inhibited by any of the herbicide tested, when all three β-triketone herbicides inhibited HPPD in Bacillus cereus ATCC14579 and Shewanella oneidensis MR-1. These responses are also molecule-dependent with tembotrione harboring the strongest inhibitory effect. Molecular docking also reveals different binding potentials. This is the first time that the inhibitory effect of β-triketone herbicides is tested on environmental strains at agronomical doses, showing a potential effect of these molecules on the HPPD enzymatic activity of non-target microorganisms. The whole-cell assay developed in this study, coupled with molecular docking analysis, appears as an interesting way to have a first idea of the effect of herbicides on microbial communities, prior to setting up microcosm or even field experiments. This methodology could then largely be applied to other family of pesticides also targeting an enzyme present in microorganisms., (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
5. Assessing the Effects of β-Triketone Herbicides on the Soil Bacterial and hppd Communities: A Lab-to-Field Experiment.
- Author
-
Thiour-Mauprivez C, Devers-Lamrani M, Bru D, Béguet J, Spor A, Mounier A, Alletto L, Calvayrac C, Barthelmebs L, and Martin-Laurent F
- Abstract
Maize cultivators often use β-triketone herbicides to prevent the growth of weeds in their fields. These herbicides target the 4-HPPD enzyme of dicotyledons. This enzyme, encoded by the hppd gene, is widespread among all living organisms including soil bacteria, which are considered as "non-target organisms" by the legislation. Within the framework of the pesticide registration process, the ecotoxicological impact of herbicides on soil microorganisms is solely based on carbon and nitrogen mineralization tests. In this study, we used more extensive approaches to assess with a lab-to-field experiment the risk of β-triketone on the abundance and the diversity of both total and hppd soil bacterial communities. Soil microcosms were exposed, under lab conditions, to 1× or 10× the recommended dose of sulcotrione or its commercial product, Decano
® . Whatever the treatment applied, sulcotrione was fully dissipated from soil after 42 days post-treatment. The abundance and the diversity of both the total and the hppd bacterial communities were not affected by the herbicide treatments all along the experiment. Same measurements were led in real agronomical conditions, on three different fields located in the same area cropped with maize: one not exposed to any plant protection products, another one exposed to a series of plant protection products (PPPs) comprising mesotrione, and a last one exposed to different PPPs including mesotrione and tembotrione, two β-triketones. In this latter, the abundance of the hppd community varied over time. The diversity of the total and the hppd communities evolved over time independently from the treatment received. Only slight but significant transient effects on the abundance of the hppd community in one of the tested soil were observed. Our results showed that tested β-triketones have no visible impact toward both total and hppd soil bacteria communities., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Thiour-Mauprivez, Devers-Lamrani, Bru, Béguet, Spor, Mounier, Alletto, Calvayrac, Barthelmebs and Martin-Laurent.)- Published
- 2021
- Full Text
- View/download PDF
6. Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers?
- Author
-
Thiour-Mauprivez C, Martin-Laurent F, Calvayrac C, and Barthelmebs L
- Subjects
- Risk Assessment methods, Soil Microbiology, Toxicity Tests, Bacteria drug effects, Biomarkers analysis, Ecotoxicology methods, Fungi drug effects, Herbicides toxicity
- Abstract
Conventional agriculture still relies on the general use of agrochemicals (herbicides, fungicides and insecticides) to control various pests (weeds, fungal pathogens and insects), to ensure the yield of crop and to feed a constantly growing population. The generalized use of pesticides in agriculture leads to the contamination of soil and other connected environmental resources. The persistence of pesticide residues in soil is identified as a major threat for in-soil living organisms that are supporting an important number of ecosystem services. Although authorities released pesticides on the market only after their careful and thorough evaluation, the risk assessment for in-soil living organisms is unsatisfactory, particularly for microorganisms for which pesticide toxicity is solely considered by one global test measuring N mineralization. Recently, European Food Safety Authority (EFSA) underlined the lack of standardized methods to assess pesticide ecotoxicological effects on soil microorganisms. Within this context, there is an obvious need to develop innovative microbial markers sensitive to pesticide exposure. Biomarkers that reveal direct effects of pesticides on microorganisms are often viewed as the panacea. Such biomarkers can only be developed for pesticides having a mode of action inhibiting a specific enzyme not only found in the targeted organisms but also in microorganisms which are considered as "non-target organisms" by current regulations. This review explores possible ways of innovation to develop such biomarkers for herbicides. We scanned the herbicide classification by considering the mode of action, the targeted enzyme and the ecotoxicological effects of each class of active substance in order to identify those that can be tracked using sensitive microbial markers., (Copyright © 2019. Published by Elsevier B.V.)
- Published
- 2019
- Full Text
- View/download PDF
7. Ecological Conditions and Molecular Determinants Involved in Agrobacterium Lifestyle in Tumors.
- Author
-
Meyer T, Thiour-Mauprivez C, Wisniewski-Dyé F, Kerzaon I, Comte G, Vial L, and Lavire C
- Abstract
The study of pathogenic agents in their natural niches allows for a better understanding of disease persistence and dissemination. Bacteria belonging to the Agrobacterium genus are soil-borne and can colonize the rhizosphere. These bacteria are also well known as phytopathogens as they can cause tumors (crown gall disease) by transferring a DNA region (T-DNA) into a wide range of plants. Most reviews on Agrobacterium are focused on virulence determinants, T-DNA integration, bacterial and plant factors influencing the efficiency of genetic transformation. Recent research papers have focused on the plant tumor environment on the one hand, and genetic traits potentially involved in bacterium-plant interactions on the other hand. The present review gathers current knowledge about the special conditions encountered in the tumor environment along with the Agrobacterium genetic determinants putatively involved in bacterial persistence inside a tumor. By integrating recent metabolomic and transcriptomic studies, we describe how tumors develop and how Agrobacterium can maintain itself in this nutrient-rich but stressful and competitive environment.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.