118 results on '"Thomas, Noémie"'
Search Results
2. Peptide-conjugated nanoparticles for targeted photodynamic therapy
- Author
-
Dhaini Batoul, Kenzhebayeva Bibigul, Ben-Mihoub Amina, Gries Mickaël, Acherar Samir, Baros Francis, Thomas Noémie, Daouk Joël, Schohn Hervé, Hamieh Tayssir, and Frochot Céline
- Subjects
cancer ,nanoparticle ,peptide ,photodynamic therapy ,photosensitizer ,targeting ,Physics ,QC1-999 - Abstract
Cancer is the second leading cause of death worldwide after cardiovascular disease. Depending on the type and the location of the tumor, several cancer treatments are implemented. Among these, the three most conventional therapies are surgery, radiotherapy and chemotherapy. However, there are other therapeutic approaches such as photodynamic therapy (PDT). PDT relies on the combined action of light, a photoactivable molecule called photosensitizer (PS) and molecular oxygen. Most of the PSs used for clinical applications are not cancer-cell specific. One of the solutions to overcome this problem is the use of nanoparticles (NPs) to induce a passive targeting. It is also possible to graft a vector onto the NPs to specifically target membrane receptors overexpressed in the tumor cells or neovessels surrounding the tumor. In this review, we focus on the NPs loaded with PSs and coupled to peptides for targeted PDT. We described nanosystems that targeted Neuropilin-1 (NRP-1), αvβ3 integrins, nucleolin membrane receptor, epidermal growth factor (EGF) receptor, protein-glutamine-gamma-glutamyltransferase (TGM2), p32, transferrin, PD-1, and mitochondrial membrane. The use of a cell absorbing-peptide is also described.
- Published
- 2021
- Full Text
- View/download PDF
3. Tumor-Infiltrating Lymphocyte Scoring in Neoadjuvant-Treated Breast Cancer.
- Author
-
Thomas, Noémie, Garaud, Soizic, Langouo, Mireille, Sofronii, Doïna, Boisson, Anaïs, De Wind, Alexandre, Duwel, Valérie, Craciun, Ligia, Larsimont, Dennis, Awada, Ahmad, and Willard-Gallo, Karen
- Subjects
- *
BREAST tumor diagnosis , *PREDICTIVE tests , *IMMUNOPHENOTYPING , *STATISTICAL correlation , *RESEARCH funding , *BREAST tumors , *TUMOR markers , *LYMPHOCYTES , *CANCER patients , *CANCER chemotherapy , *IMMUNOHISTOCHEMISTRY , *COMBINED modality therapy , *STAINS & staining (Microscopy) , *DATA analysis software , *REGRESSION analysis - Abstract
Simple Summary: TIL scoring has been recommended as a biomarker in routine clinical practice in breast cancer patients. Currently, the standard of care for early breast cancer is neoadjuvant treatment. Recent studies have demonstrated the additional predictive value of TIL scoring to the residual cancer burden after neoadjuvant treatment. Although guidelines have been published, the reliability of this biomarker in treated tumor samples has not yet been evaluated. Here, we show that there is good inter-pathologist reproducibility for TIL scoring in patients with clear residual tumor tissue. However, in patients with a (near-)complete response, there is not. This is significant because this demonstrates that it could be a reliable biomarker and help guide adjuvant treatment decisions. Neoadjuvant chemotherapy (NAC) is now the standard of care for patients with locally advanced breast cancer (BC). TIL scoring is prognostic and adds predictive value to the residual cancer burden evaluation after NAC. However, NAC induces changes in the tumor, and the reliability of TIL scoring in post-NAC samples has not yet been studied. H&E- and dual CD3/CD20 chromogenic IHC-stained tissues were scored for stromal and intra-tumoral TIL by two experienced pathologists on pre- and post-treatment BC tissues. Digital TIL scoring was performed using the HALO® image analysis software (version 2.2). In patients with residual disease, we show a good inter-pathologist correlation for stromal TIL on H&E-stained tissues (CCC value 0.73). A good correlation for scoring with both staining methods (CCC 0.81) and the digital TIL scoring (CCC 0.77) was also observed. Overall concordance for TIL scoring in patients with a complete response was however poor. This study reveals there is good reliability for TIL scoring in patients with detectable residual tumors after NAC treatment, which is comparable to the scoring of untreated breast cancer patients. Based on the good consistency observed with digital TIL scoring, the development of a validated algorithm in the future might be advantageous. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. Non-Targeted Effects of Radiation Therapy for Glioblastoma
- Author
-
Lerouge, Lucie, primary, Ruch, Aurélie, additional, Pierson, Julien, additional, Thomas, Noémie, additional, and Barberi-Heyob, Muriel, additional
- Published
- 2024
- Full Text
- View/download PDF
5. Targeting Glioblastoma-Associated Macrophages for Photodynamic Therapy Using AGuIX®-Design Nanoparticles
- Author
-
Lerouge, Lucie, primary, Gries, Mickaël, additional, Chateau, Alicia, additional, Daouk, Joël, additional, Lux, François, additional, Rocchi, Paul, additional, Cedervall, Jessica, additional, Olsson, Anna-Karin, additional, Tillement, Olivier, additional, Frochot, Céline, additional, Acherar, Samir, additional, Thomas, Noémie, additional, and Barberi-Heyob, Muriel, additional
- Published
- 2023
- Full Text
- View/download PDF
6. A new algorithm for a better characterization and timing of the anti-VEGF vascular effect named “normalization”
- Author
-
El Alaoui-Lasmaili, Karima, Djermoune, El-Hadi, Tylcz, Jean-Baptiste, Meng, Dominique, Plénat, François, Thomas, Noémie, and Faivre, Béatrice
- Published
- 2017
- Full Text
- View/download PDF
7. p27Kip1 Is a Microtubule-Associated Protein that Promotes Microtubule Polymerization during Neuron Migration
- Author
-
Godin, Juliette D., Thomas, Noémie, Laguesse, Sophie, Malinouskaya, Lina, Close, Pierre, Malaise, Olivier, Purnelle, Audrey, Raineteau, Olivier, Campbell, Kenneth, Fero, Matthew, Moonen, Gustave, Malgrange, Brigitte, Chariot, Alain, Metin, Christine, Besson, Arnaud, and Nguyen, Laurent
- Published
- 2012
- Full Text
- View/download PDF
8. Abstract 2045: Spatial organization of the immune microenvironment after neoadjuvant treatment of breast cancer
- Author
-
Thomas, Noémie, primary, Garaud, Soizic, additional, Langouo, Mireille, additional, Zerdes, Ioannis, additional, Sofronii, Doïna, additional, Boisson, Anaïs, additional, Foukakis, Theodoros, additional, De Wind, Alexandre, additional, Salgado, Roberto, additional, Awada, Ahmad, additional, and Willard-Gallo, Karen, additional
- Published
- 2022
- Full Text
- View/download PDF
9. Targeting Glioblastoma-Associated Macrophages for Photodynamic Therapy Using AGuIX ® -Design Nanoparticles.
- Author
-
Lerouge, Lucie, Gries, Mickaël, Chateau, Alicia, Daouk, Joël, Lux, François, Rocchi, Paul, Cedervall, Jessica, Olsson, Anna-Karin, Tillement, Olivier, Frochot, Céline, Acherar, Samir, Thomas, Noémie, and Barberi-Heyob, Muriel
- Subjects
PHOTODYNAMIC therapy ,MACROPHAGES ,MAGNETIC resonance imaging ,CONTRAST media ,IMMUNE response ,NANOMEDICINE - Abstract
Glioblastoma (GBM) is the most difficult brain cancer to treat, and photodynamic therapy (PDT) is emerging as a complementary approach to improve tumor eradication. Neuropilin-1 (NRP-1) protein expression plays a critical role in GBM progression and immune response. Moreover, various clinical databases highlight a relationship between NRP-1 and M2 macrophage infiltration. In order to induce a photodynamic effect, multifunctional AGuIX
® -design nanoparticles were used in combination with a magnetic resonance imaging (MRI) contrast agent, as well as a porphyrin as the photosensitizer molecule and KDKPPR peptide ligand for targeting the NRP-1 receptor. The main objective of this study was to characterize the impact of macrophage NRP-1 protein expression on the uptake of functionalized AGuIX® -design nanoparticles in vitro and to describe the influence of GBM cell secretome post-PDT on the polarization of macrophages into M1 or M2 phenotypes. By using THP-1 human monocytes, successful polarization into the macrophage phenotypes was argued via specific morphological traits, discriminant nucleocytoplasmic ratio values, and different adhesion abilities based on real-time cell impedance measurements. In addition, macrophage polarization was confirmed via the transcript-level expression of TNFα, CXCL10, CD-80, CD-163, CD-206, and CCL22 markers. In relation to NRP-1 protein over-expression, we demonstrated a three-fold increase in functionalized nanoparticle uptake for the M2 macrophages compared to the M1 phenotype. The secretome of the post-PDT GBM cells led to nearly a three-fold increase in the over-expression of TNFα transcripts, confirming the polarization to the M1 phenotype. The in vivo relationship between post-PDT efficiency and the inflammatory effects points to the extensive involvement of macrophages in the tumor zone. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
10. Photodynamic therapy targeting neuropilin-1: Interest of pseudopeptides with improved stability properties
- Author
-
Thomas, Noémie, Pernot, Marlène, Vanderesse, Régis, Becuwe, Philippe, Kamarulzaman, Ezatul, Da Silva, David, François, Aurélie, Frochot, Céline, Guillemin, François, and Barberi-Heyob, Muriel
- Published
- 2010
- Full Text
- View/download PDF
11. Preliminary Study of New Gallium-68 Radiolabeled Peptide Targeting NRP-1 to Detect Brain Metastases by Positron Emission Tomography
- Author
-
Moussaron, Albert, primary, Jouan-Hureaux, Valérie, additional, Collet, Charlotte, additional, Pierson, Julien, additional, Thomas, Noémie, additional, Choulier, Laurence, additional, Veran, Nicolas, additional, Doyen, Matthieu, additional, Arnoux, Philippe, additional, Maskali, Fatiha, additional, Dumas, Dominique, additional, Acherar, Samir, additional, Barberi-Heyob, Muriel, additional, and Frochot, Céline, additional
- Published
- 2021
- Full Text
- View/download PDF
12. Peptide-conjugated chlorin-type photosensitizer binds neuropilin-1 in vitro and in vivo
- Author
-
Thomas, Noémie, Bechet, Denise, Becuwe, Philippe, Tirand, Loraine, Vanderesse, Régis, Frochot, Céline, Guillemin, François, and Barberi-Heyob, Muriel
- Published
- 2009
- Full Text
- View/download PDF
13. Functional Th1-oriented T follicular helper cells that infiltrate human breast cancer promote effective adaptive immunity
- Author
-
Noël, Grégory, primary, Fontsa, Mireille Langouo, additional, Garaud, Soizic, additional, De Silva, Pushpamali, additional, de Wind, Alexandre, additional, Van den Eynden, Gert G., additional, Salgado, Roberto, additional, Boisson, Anaïs, additional, Locy, Hanne, additional, Thomas, Noémie, additional, Solinas, Cinzia, additional, Migliori, Edoardo, additional, Naveaux, Céline, additional, Duvillier, Hugues, additional, Lucas, Sophie, additional, Craciun, Ligia, additional, Thielemans, Kris, additional, Larsimont, Denis, additional, and Willard-Gallo, Karen, additional
- Published
- 2021
- Full Text
- View/download PDF
14. Fluorescent Multiplex Immunohistochemistry Coupled With Other State-Of-The-Art Techniques to Systematically Characterize the Tumor Immune Microenvironment
- Author
-
Boisson, Anaïs, primary, Noël, Grégory, additional, Saiselet, Manuel, additional, Rodrigues-Vitória, Joël, additional, Thomas, Noémie, additional, Fontsa, Mireille Langouo, additional, Sofronii, Doïna, additional, Naveaux, Céline, additional, Duvillier, Hugues, additional, Craciun, Ligia, additional, Larsimont, Denis, additional, Awada, Ahmad, additional, Detours, Vincent, additional, Willard-Gallo, Karen, additional, and Garaud, Soizic, additional
- Published
- 2021
- Full Text
- View/download PDF
15. Tissue distribution and pharmacokinetics of an ATWLPPR-conjugated chlorin-type photosensitizer targeting neuropilin-1 in glioma-bearing nude mice
- Author
-
Thomas, Noémie, Tirand, Loraine, Chatelut, Etienne, Plénat, François, Frochot, Céline, Dodeller, Marc, Guillemin, François, and Barberi-Heyob, Muriel
- Published
- 2008
- Full Text
- View/download PDF
16. Multiscale selectivity and in vivo biodistribution of NRP-1-targeted theranostic AGuIX nanoparticles for PDT of glioblastoma
- Author
-
Gries, Mickaël, Thomas, Noémie, Daouk, Joël, Rocchi, Paul, Choulier, Laurence, Jubréaux, Justine, Pierson, Julien, Reinhard, Aurélie, Jouan-Hureaux, Valérie, Chateau, Alicia, Acherar, Samir, Frochot, Céline, Lux, François, Tillement, Olivier, Barberi-Heyob, Muriel, Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Formation, élaboration de nanomatériaux et cristaux (FENNEC), Institut Lumière Matière [Villeurbanne] (ILM), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Biotechnologie et signalisation cellulaire (BSC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut de recherche de l'Ecole de biotechnologie de Strasbourg (IREBS), Laboratoire de Chimie Physique Macromoléculaire (LCPM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), and Laboratoire Réactions et Génie des Procédés (LRGP)
- Subjects
Porphyrins ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,glioblastoma ,Endothelial Cells ,Gadolinium ,vascular photodynamic therapy ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,AGuIX nanoparticle ,radiation therapies ,Neuropilin-1 ,Theranostic Nanomedicine ,peptide ,Rats ,Photochemotherapy ,Animals ,Humans ,Nanoparticles ,NRP-1 ,brain tumors ,Tissue Distribution ,Molecular Targeted Therapy ,Neoplasm Metastasis ,Precision Medicine ,Original Research - Abstract
International audience; Background: Local recurrences of glioblastoma (GBM) after heavy standard treatments remain frequent and lead to a poor prognostic. Major challenges are the infiltrative part of the tumor tissue which is the ultimate cause of recurrence. The therapeutic arsenal faces the difficulty of eradicating this infiltrating part of the tumor tissue while increasing the targeting of tumor and endogenous stromal cells such as angiogenic endothelial cells. In this aim, neuropilin-1 (NRP-1), a transmembrane receptor mainly overexpressed by endothelial cells of the tumor vascular system and associated with malignancy, proliferation and migration of GBM, highlighted to be a relevant molecular target to promote the anti-vascular effect of photodynamic therapy (VTP).Methods: The multiscale selectivity was investigated for KDKPPR peptide moiety targeting NRP-1 and a porphyrin molecule as photosensitizer (PS), both grafted onto original AGuIX design nanoparticle. AGuIX nanoparticle, currently in Phase II clinical trials for the treatment of brain metastases with radiotherapy, allows to achieve a real-time magnetic resonance imaging (MRI) and an accumulation in the tumor area by EPR (enhanced permeability and retention) effect. Using surface-plasmon resonance (SPR), we evaluated the affinities of KDKPPR and scramble free peptides, and also peptides-conjugated AGuIX nanoparticles to recombinant rat and human NRP-1 proteins. For in vivo selectivity, we used a cranial window model and parametric maps obtained from T2*-weighted perfusion MRI analysis.Results: The photophysical characteristics of the PS and KDKPPR molecular affinity for recombinant human NRP-1 proteins were maintained after the functionalization of AGuIX nanoparticle with a dissociation constant of 4.7 μM determined by SPR assays. Cranial window model and parametric maps, both revealed a prolonged retention in the vascular system of human xenotransplanted GBM. Thanks to the fluorescence of porphyrin by non-invasive imaging and the concentration of gadolinium evaluated after extraction of organs, we checked the absence of nanoparticle in the brains of tumor-free animals and highlighted elimination by renal excretion and hepatic metabolism.Conclusion: Post-VTP follow-ups demonstrated promising tumor responses with a prolonged delay in tumor growth accompanied by a decrease in tumor metabolism.
- Published
- 2020
- Full Text
- View/download PDF
17. Fluorescent Multiplex Immunohistochemistry Coupled With Other State-Of-The-Art Techniques to Systematically Characterize the Tumor Immune Microenvironment.
- Author
-
Boisson, Anaïs, Noël, Grégory, Saiselet, Manuel, Rodrigues Vitória, Joel, Thomas, Noémie, Fontsa, Mireille Langouo, Sofronii, Doina, Naveaux, Céline, Duvillier, Hugues, Ruscas-Craciun, Ligia Ioana, Larsimont, Denis, Awada, Ahmad, Detours, Vincent, Willard-Gallo, Karen, Garaud, Soizic, Boisson, Anaïs, Noël, Grégory, Saiselet, Manuel, Rodrigues Vitória, Joel, Thomas, Noémie, Fontsa, Mireille Langouo, Sofronii, Doina, Naveaux, Céline, Duvillier, Hugues, Ruscas-Craciun, Ligia Ioana, Larsimont, Denis, Awada, Ahmad, Detours, Vincent, Willard-Gallo, Karen, and Garaud, Soizic
- Abstract
Our expanding knowledge of the interactions between tumor cells and their microenvironment has helped to revolutionize cancer treatments, including the more recent development of immunotherapies. Immune cells are an important component of the tumor microenvironment that influence progression and treatment responses, particularly to the new immunotherapies. Technological advances that help to decipher the complexity and diversity of the tumor immune microenvironment (TIME) are increasingly used in translational research and biomarker studies. Current techniques that facilitate TIME evaluation include flow cytometry, multiplex bead-based immunoassays, chromogenic immunohistochemistry (IHC), fluorescent multiplex IHC, immunofluorescence, and spatial transcriptomics. This article offers an overview of our representative data, discusses the application of each approach to studies of the TIME, including their advantages and challenges, and reviews the potential clinical applications. Flow cytometry and chromogenic and fluorescent multiplex IHC were used to immune profile a HER2+ breast cancer, illustrating some points. Spatial transcriptomic analysis of a luminal B breast tumor demonstrated that important additional insight can be gained from this new technique. Finally, the development of a multiplex panel to identify proliferating B cells, Tfh, and Tfr cells on the same tissue section demonstrates their co-localization in tertiary lymphoid structures., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2021
18. A peptide competing with VEGF 165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells
- Author
-
Tirand, Loraine, Frochot, Céline, Vanderesse, Régis, Thomas, Noémie, Trinquet, Eric, Pinel, Sophie, Viriot, Marie-Laure, Guillemin, François, and Barberi-Heyob, Muriel
- Published
- 2006
- Full Text
- View/download PDF
19. A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells
- Author
-
Tirand, Loraine, Frochot, Céline, Vanderesse, Régis, Thomas, Noémie, Trinquet, Eric, Pinel, Sophie, Viriot, Marie-Laure, Guillemin, François, and Barberi-Heyob, Muriel
- Published
- 2006
- Full Text
- View/download PDF
20. Les nanoparticules multifonctionnelles pour le traitement du glioblastome
- Author
-
Thomas, Noémie, Jouan-Hureaux, Valérie, Barberi-Heyob, Muriel, Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Thomas, Noémie, and Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.CAN] Life Sciences [q-bio]/Cancer ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
- Published
- 2017
21. Identification de la période de « normalisation » vasculaire induite par le bevacizumab, in vivo, à l’aide d’un algorithme de traitement d’images
- Author
-
El Alaoui-Lasmaili, Karima, Djermoune, El-Hadi, Tylcz, Jean-Baptiste, Meng, Dominique, Plénat, François, Thomas, Noémie, Faivre, Béatrice, Thomas, Noémie, Centre de Recherche en Automatique de Nancy (CRAN), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Cancéropôle du Grand Est, and Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)
- Subjects
[SDV.CAN] Life Sciences [q-bio]/Cancer ,[SDV.CAN]Life Sciences [q-bio]/Cancer - Abstract
Présentation Poster; International audience; Les agents anti-angiogènes sont largement utilisés dans la thérapie anti-cancéreuse, en association avec la chimiothérapieou la radiothérapie, pour leurs effets vasculaires. Ils sont supposés induire des modifications morphologiqueset fonctionnelles au sein du réseau vasculaire tumoral qui permettraient d’accroitre l’efficacité de ces thérapies grâceà l’amélioration de la distribution de la chimiothérapie au sein de la tumeur et à l’amélioration de l’oxygénation tumorale.Cependant, il reste difficile de trouver la séquence de traitements permettant d’avoir une efficacité thérapeutique optimalecar il n’y a à ce jour aucun consensus dans la littérature définissant quand le réseau vasculaire est amélioré et pendantcombien de temps.Nous avons développé un algorithme de traitement d’images capable d’analyser les structures vasculaires observéessur des images en microscopie optique du réseau vasculaire et nous avons suivi leurs modifications, in vivo, au coursdu temps, à l’aide du modèle de la chambre dorsale. L’algorithme a été appliqué pour suivre l’évolution de paramètresvasculaires (surface vasculaire, embranchements, bourgeons, longueur) en réponse ou non au bevacizumab (anti-VEGF,10 mg/kg/jour) pour déterminer une période de « normalisation » du réseau vasculaires par comparaison à des réseauxvasculaires sains.Les résultats présentés ici démontrent que le choix de la région d’intérêt au sein du réseau vasculaire doit se faire en dehors des régions présentant une hiérarchie artériole-capillaire-veinule afin de pouvoir déterminer la période de « normalisation » vasculaire. L’analyse à l’aide de l’algorithme de traitement d’images a permit de définir que la période de « normalisation » se situait entre 8 et 12 jours de traitement par bevacizumab et a été confirmé par analyses immunohistochimiques et évaluation de la fonctionnalité vasculaire (perméabilité, perfusion).Mots clés : thérapie anti-angiogène, normalisation vasculaire, quantification algorithmique, imagerie intravitale.
- Published
- 2017
22. AGuIX theranostics nanoparticles for vascular-targeted interstitial photodynamic therapy for glioblastoma : in vitro and in vivo approaches
- Author
-
Thomas, Noémie, Thomas, Noémie, Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), ILM, Lyon 1, and Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.CAN] Life Sciences [q-bio]/Cancer ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2017
23. Characterization of the effects of bevacizumab on the tumor vascular dynamics to optimize the association anti-VEGF / radiation therapy
- Author
-
El Alaoui-Lasmaili, Karima, Tylcz, Jean-Baptiste, Djermoune, El-Hadi, Thomas, Noémie, Faivre, Béatrice, Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Christophe Letellier, CORIA, Université de Rouen, Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), and Thomas, Noémie
- Subjects
[SDV.CAN] Life Sciences [q-bio]/Cancer ,[SDV.CAN]Life Sciences [q-bio]/Cancer - Abstract
National audience; Glioblastoma is a highly angiogenic type of tumor and glioblastoma patients have a low survival rate in spite of all the therapeutic procedures unleashed (surgical resection, radio- and chemotherapy). According to the literature, anti-angiogenic therapies such as the anti-VEGF bevacizumab (Avastin®), can temporarily induce changes in the tumor vasculature that result in improved tissue oxygenation which is crucial to the success of oxygen-dependent radiation therapy.Combining bevacizumab and radiation therapy seems to be a prospective way to improve patient survival. However, finding the best treatment sequence is not an easy task to achieve and no consensus has yet been established because of the lack of knowledge regarding the time and duration of the increased oxygenation window provided by bevacizumab. Hence it is indispensable to define the morphological and functional effects of bevacizumab on the tumor vascular network that impact on the oxygenation to find the perfect timing for its association with radiation therapy.To achieve this aim, we used the skinfold chamber model on nude mice which allows us to observe the evolution of the vascularization of a glioblastoma tumor fragment for at most 5 to 6 weeks. To analyze the effects of bevacizumab on the vascular network, we combined the use of a mathematical tool created by our research team that characterizes morphologically the tumor blood vessels to an immunohistochemical morphological analysis of the tumor vasculature. To seek bevacizumab’s effects on the ability of the tumor blood vessels to deliver blood charged with nutrients and oxygen to the tumor, we evaluated the vascular permeability and the capacity of the blood vessels to perfuse the tumor tissue throughout treatment.Additionally, we used some of the in vivo data of the tumor vascular network obtained with intravital microscopy to develop a mathematical model of the tumor response to the anti-angiogenic and hope to adapt it to clinically relevant data in order to optimize the treatment schedule [1].[1] J.-B. Tylcz, K. El Alaoui-Lasmaili, E.-H. Djermoune, N. Thomas, B. Faivre, & T. Bastogne, Data-driven modeling and characterization of anti-angiogenic molecule effects on tumoral vascular density, Biomedical Signal Processing & Control, 20, 52-60, 2015
- Published
- 2015
24. Optimization of the use of anti-angiogenics in glioblastoma using mathematical modeling
- Author
-
El Alaoui-Lasmaili, Karima, Tylcz, Jean-Baptiste, Djermoune, El-Hadi, Thomas, Noémie, Faivre, Béatrice, Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), and Thomas, Noémie
- Subjects
[SDV.CAN] Life Sciences [q-bio]/Cancer ,[SDV.CAN]Life Sciences [q-bio]/Cancer - Abstract
National audience; Glioblastoma is a highly angiogenic type of tumor and glioblastoma patients have a low survival rate in spite of all the therapeutic procedures unleashed (surgical resection, radio- and chemotherapy). According to the literature, anti-angiogenic therapies such as the anti-VEGF bevacizumab, can temporarily induce changes in the tumor vasculature that result in improved tissue oxygenation which is crucial to the success of oxygen-dependent radiation therapy. Combining bevacizumab and radiation therapy seems to be a prospective way to improve patient survival. However, finding the best treatment sequence is not an easy task to achieve and no consensus has yet been established because of the lack of knowledge regarding the time and duration of the increased oxygenation window provided by bevacizumab. Hence it is indispensable to define the morphological and functional effects of bevacizumab on the tumor vascular network that impact on the oxygenation to find the perfect timing for its association with radiation therapy. To provide clinicians with tools to determine the best time to treat with radiation after bevacizumab, our research team is developing mathematical models of the tumor vascularization using in vivo data of the tumor vascular network obtained with non-invasive imaging.Glioblastoma tumor fragments were implanted in skinfold chambers borne by nude mice. The evolution of the vascular network in tumors treated or not with bevacizumab at 10 mg/kg/day was observed using intravital microscopy and analyzed with mathematical algorithms created by our research team to quantify daily the effects of bevacizumab on the vascular network. We showed a significate drop in the vascular density and the apparition of a vascular stabilization in the bevacizumab group that was comforted by immunostaining the blood vessels in formalin-fixed tumors. The vascular density data obtained allowed us to create a prototype behavioral-model of the tumor response that shows a perfect simulation of the experimental data both in the control and treated group (Figure 1). Using our biological data, we present here an original approach to characterize and analyze the anti-angiogenic response with a behavioral-model that will in the future help us predict the therapeutic outcome.
- Published
- 2015
25. Approaches to physical stimulation of metallic nanoparticles for glioblastoma treatment
- Author
-
Pinel, Sophie, primary, Thomas, Noémie, additional, Boura, Cédric, additional, and Barberi-Heyob, Muriel, additional
- Published
- 2019
- Full Text
- View/download PDF
26. Geppetto e Frankenstein: creatori o padri? La relazione tra creatura artificiale e creatore e il suo influsso sul comportamento della creatura in due romanzi europei dell’Ottocento
- Author
-
Thomas, Noémie, UCL - Faculté de philosophie, arts et lettres, and Maeder, Costantino
- Subjects
creatore ,carlo collodi ,pinocchio ,creator ,creatura ,frankenstein ,father ,ottocento ,creature ,padre ,artificial creation ,mary shelley ,creazione artificiale - Abstract
Questa tesi verte sulle figure della creatura artificiale e del suo creatore in due romanzi della scena europea dell’Ottocento: "Frankenstein, or the modern Prometheus" di Mary Shelley (1818) e "Le avventure di Pinocchio: storia di un burattino" di Carlo Collodi (1883). In questo corpus, il lettore è capace di osservare la relazione tra il creatore, cioè Victor Frankenstein o Geppetto, e la sua creatura artificiale, ossia il mostro di Frankenstein o Pinocchio. La nostra prima questione di ricerca prova a determinare il tipo di relazione che condividono e a giudicarla positiva o negativa. La nostra seconda domanda, che costituisce la problematica principale del nostro lavoro, si interroga sull’esistenza di un rapporto tra questa relazione e il comportamento dell’essere artificiale attraverso il romanzo. La nostra ipotesi presuppone l’esistere di una tale correlazione: presumiamo che il creatore, e soprattutto la relazione che intrattiene con la sua creatura, influenzano le azioni di quest’ultima. Abbordiamo la problematica con una metodologia che si basa su diversi campi di studio, tra i quali le scienze cognitive e la psicologia che favoriscono il paragonare la creatura artificiale a bambini che crescono, aiutandoci così a elaborare un modello per spiegare il suo comportamento. Ci basiamo anche per analizzare il nostro corpus sulla semantica e su ricerche critiche che rilevano della disciplina letteraria. Tutti questi concetti teorici legati a un’analisi in profondità dei testi ci permetta di rispondere alle nostre domande iniziali. Rispetto alla prima, mostriamo che mentre Geppetto e Pinocchio godono di una relazione piena d’affezione che si avvicina a quella di un padre con suo figlio, Frankenstein e la sua creatura intrattengono una relazione oltremodo negativa. Le nostre ricerche ci hanno poi rivelato l’evoluzione della creatura rispetto al suo comportamento: Pinocchio che evolve positivamente si oppone alla creatura di Frankenstein le cui azioni diventano sempre più negative. Infine, giudichiamo del ruolo del creatore in quest’evoluzione. Concludiamo che la nostra ipotesi per la seconda questione di ricerca non si prova interamente vera nei due libri: mentre dimostriamo l’influsso negativo che Frankenstein e la sua cattiva relazione con la sua creatura hanno sul comportamento di questa, non possiamo certificare che l’evoluzione positiva del burattino sia dovuta alla presenza di Geppetto. Argomentiamo però che la sua relazione affettuosa e quasi paterna con Pinocchio possiede probabilmente un certo influsso sulle motivazioni di quest’ultimo ad evolvere favorevolmente. This thesis deals with the figures of the artificial creature and its creator in two European novels from the nineteenth century: Mary Shelley’s "Frankenstein, or the modern Prometheus" (1818) and Carlo Collodi’s "Le avventure di Pinocchio: Storia di un burattino" (1883). In this corpus, the reader is able to observe the relationship between the creator, that is, Victor Frankenstein or Geppetto, and the creature, i.e. Frankenstein’s monster or Pinocchio. Our first research question tries to determine the type of relationship that they share and to judge it positive or negative. Our second question, which constitutes the main issue of our paper, investigates the existence of a link between this relationship and the behaviour of the artificial being during the novel. Our hypothesis conjectures the existence of such a correlation: we assume that the creator, and especially the relationship that he shares with his creature, influence the actions of the latter. We broach the argument with a methodology that is based on various fields of study, among which cognitive sciences and psychology. These two fields stimulate the comparison between the artificial creature and children that grow up, helping us to elaborate a model to explain the creature’s behaviour. To consider our corpus, we also base ourselves on semantics and on literary critical research. All these theoretical concepts associated with a thorough analysis of the texts allow us to answer our initial questions. Concerning the first one, we show that while Geppetto and Pinocchio enjoy a relationship full of affection that resembles the one of a father and his child, Frankenstein and his creature share an extremely negative relationship. Our research has then revealed the evolution of the creature with regard to its behaviour: Pinocchio positively evolves while the actions of Frankenstein’s artificial creature become more and more negative. Finally, we evaluate the role of the creator in this evolution. We conclude that our hypothesis for the second question is not proved entirely correct in both novels: while we demonstrate the negative influence that Frankenstein and his bad relationship with his creature have on the behaviour of the latter, we cannot certify that Pinocchio’s positive evolution is due to the presence of Geppetto. We argue however that his affectionate and almost paternal relationship with the puppet have some influence on the motivations of Pinocchio to evolve favourably. Master [120] en langues et lettres modernes, orientation générale, Université catholique de Louvain, 2017
- Published
- 2017
27. Gadolinium-based nanoparticles for the treatment of glioblastoma by MRI-guided photodynamic therapy
- Author
-
Thomas, Eloise, Toussaint, Magali, Colombeau, Ludovic, Gries, Mickaël, Peterlini, Thibaut, Thomas, Noémie, Régis, Vanderesse, Frochot, Céline, Barberi-Heyob, Muriel, Lux, François, Tillement, Olivier, Thomas, Eloise, Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique Macromoléculaire (LCPM), and Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Fonctionalisation ,Radiotherapy ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,Magnetic Resonnance Imaging ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,[SDV.SP]Life Sciences [q-bio]/Pharmaceutical sciences ,Imaging ,[SDV.SP] Life Sciences [q-bio]/Pharmaceutical sciences ,Nanoparticle ,[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/Imaging ,PDT ,Theranostic ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,Photodynamic Therapy ,[CHIM] Chemical Sciences ,[CHIM]Chemical Sciences ,Glioblastoma ,ComputingMilieux_MISCELLANEOUS ,Cancer ,MRI - Abstract
International audience
- Published
- 2017
28. AGuIX® theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of brain tumors
- Author
-
Colombeau, Ludovic, Thomas, Eloise, Thomas, Noémie, Barberi-Heyob, Muriel, Lux, François, Tillement, Olivier, Frochot, Céline, Vanderesse, Régis, Acherar, Samir, Thomas, Eloise, Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Laboratoire de Chimie Physique Macromoléculaire (LCPM), and Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Radiotherapy ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,[SDV]Life Sciences [q-bio] ,Magnetic Resonnance Imaging ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Gadolinium ,[SDV.SP]Life Sciences [q-bio]/Pharmaceutical sciences ,Functionalisation ,Imaging ,[SDV.SP] Life Sciences [q-bio]/Pharmaceutical sciences ,[SDV] Life Sciences [q-bio] ,Nanoparticle ,[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/Imaging ,PDT ,Theranostic ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,Photodynamic Therapy ,[CHIM] Chemical Sciences ,[CHIM]Chemical Sciences ,Glioblastoma ,ComputingMilieux_MISCELLANEOUS ,MRI ,Cancer ,Vascular-targeted interstitial photodynamic therapy - Abstract
International audience
- Published
- 2017
29. Characterization of the anti-angiogenic and anti-vascular effects of bevacizumab using mathematical tools: an effective way to determine the normalization window?
- Author
-
EL ALAOUI LASMAILI, Karima, Tylcz, Jean-Baptiste, Djermoune, El-Hadi, Thomas, Noémie, Faivre, Béatrice, Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Thomas, Noémie, and Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.CAN] Life Sciences [q-bio]/Cancer ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,ComputingMethodologies_GENERAL ,ComputingMilieux_MISCELLANEOUS - Abstract
Présentation Poster; National audience
- Published
- 2014
30. Ultrasmall AGuIX theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of glioblastoma
- Author
-
Thomas, Eloïse, primary, Colombeau, Ludovic, additional, Gries, Mickaël, additional, Peterlini, Thibaut, additional, Mathieu, Clélia, additional, Thomas, Noémie, additional, Boura, Cédric, additional, Frochot, Céline, additional, Vanderesse, Régis, additional, Lux, François, additional, Barberi-Heyob, Muriel, additional, and Tillement, Olivier, additional
- Published
- 2017
- Full Text
- View/download PDF
31. A new algorithm for a better characterization and timing of the anti-VEGF vascular effect named “normalization”
- Author
-
El Alaoui-Lasmaili, Karima, primary, Djermoune, El-Hadi, additional, Tylcz, Jean-Baptiste, additional, Meng, Dominique, additional, Plénat, François, additional, Thomas, Noémie, additional, and Faivre, Béatrice, additional
- Published
- 2016
- Full Text
- View/download PDF
32. Thérapie photodynamique ciblant la neuropiline-1 : intérêt des pseudopeptides biologiquement plus stables
- Author
-
Pernot, Marlène, Thomas, Noémie, Vanderesse, Régis, Becuwe, Philippe, Kamarulzaman, Ezatul-Ezleen, Da Silva, David, François, Aurélie, Frochot, Céline, Guillemin, François, Barberi-Heyob, Muriel, Centre de Recherche en Automatique de Nancy (CRAN), Université Henri Poincaré - Nancy 1 (UHP)-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Centre Alexis Vautrin (CAV), Laboratoire de Chimie Physique Macromoléculaire (LCPM), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Signalisation, Génomique et Recherche Translationnelle en Oncologie (SIGRETO), Université Henri Poincaré - Nancy 1 (UHP), Laboratoire de Spectrométrie de Masse et de Chimie Laser (LSMCL), Université Paul Verlaine - Metz (UPVM), Médicaments Photoactivables - Photochimiothérapie (PHOTOMED), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), and Wolf, Didier
- Subjects
[SDV.IB] Life Sciences [q-bio]/Bioengineering ,[SDV.IB]Life Sciences [q-bio]/Bioengineering - Published
- 2010
33. Photodynamic therapy targeting neruropilin-1: interest of pseudopeptides
- Author
-
Kamarulzaman, Ezatul-Ezleen, Thomas, Noémie, Pernot, Marlène, Couleaud, Pierre, Frochot, Céline, Barberi-Heyob, Muriel, Vanderesse, Régis, Laboratoire de Chimie Physique Macromoléculaire (LCPM), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Automatique de Nancy (CRAN), Université Henri Poincaré - Nancy 1 (UHP)-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Centre Alexis Vautrin (CAV), Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Médicaments Photoactivables - Photochimiothérapie (PHOTOMED), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Wolf, Didier
- Subjects
[SDV.IB] Life Sciences [q-bio]/Bioengineering ,education ,[SDV.IB]Life Sciences [q-bio]/Bioengineering ,human activities ,health care economics and organizations - Abstract
Présentation Poster. Journées organisées par le Groupe Français des Peptides et Protéines (GFPP) and the Protein and Peptide Science Group
- Published
- 2010
34. Response surface methodology: an extensive potential to optimize in vivo photodynamic therapy
- Author
-
Tirand, Loraine, Bastogne, Thierry, Bechet, Denise, Linder, Michel, Thomas, Noémie, Frochot, Céline, Guillemin, François, Barberi-Heyob, Muriel, Centre de Recherche en Automatique de Nancy (CRAN), Université Henri Poincaré - Nancy 1 (UHP)-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Centre Alexis Vautrin (CAV), Laboratoire de Science et Génie Alimentaires (LSGA), Institut National Polytechnique de Lorraine (INPL), Département de Chimie Physique des Réactions (DCPR), and Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Doehlert experimental design ,Response surface methodology ,Dosimetry ,In vivo ,[SDV.IB]Life Sciences [q-bio]/Bioengineering ,Photodynamic therapy - Abstract
International audience; Purpose: Photodynamic therapy (PDT) is based on the interaction of a photosensitizing (PS) agent, light, and oxygen. Few new PS agents are being developed to the in vivo stage, partly because of the difficulty in finding the right treatment conditions. Response surface methodology, an empirical modeling approach based on data resulting from a set of designed experiments, was suggested as a rational solution with which to select in vivo PDT conditions by using a new peptide-conjugated PS targeting agent, neuropilin-1. Methods and Materials: A Doehlert experimental design was selected to model effects and interactions of the PS dose, fluence, and fluence rate on the growth of U87 human malignant glioma cell xenografts in nude mice, using a fixed drug-light interval. All experimental results were computed by Nemrod-W software and Matlab. Results: Intrinsic diameter growth rate, a tumor growth parameter independent of the initial volume of the tumor, was selected as the response variable and was compared to tumor growth delay and relative tumor volumes. With only 13 experimental conditions tested, an optimal PDT condition was selected (PS agent dose, 2.80 mg/kg; fluence, 120 J/cm2; fluence rate, 85 mW/cm2). Treatment of glioma-bearing mice with the peptide-conjugated PS agent, followed by the optimized PDT condition showed a statistically significant improvement in delaying tumor growth compared with animals who received the PDT with the nonconjugated PS agent. Conclusions: Response surface methodology appears to be a useful experimental approach for rapid testing of different treatment conditions and determination of optimal values of PDT factors for any PS agent
- Published
- 2009
- Full Text
- View/download PDF
35. Thérapie photodynamique ciblant la vascularisation tumorale par l'adressage du co-récepteur neuropiline-1 : Vers l'élaboration de peptides biologiquement plus stables
- Author
-
Thomas, Noémie, Centre de Recherche en Automatique de Nancy (CRAN), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université Henri Poincaré - Nancy 1, Muriel Barberi-Heyob, UL, Thèses, and Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)
- Subjects
Tumeurs Vaisseaux sanguins ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,neuropiline-1 ,pseudopeptides ,adressage vasculaire ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Thérapie photodynamique ,Médicaments Récepteurs ,[SDV.BC] Life Sciences [q-bio]/Cellular Biology ,Cancer-Photochimiothérapie ,Peptides Analogues ,[SDV.BIO] Life Sciences [q-bio]/Biotechnology ,ARN interférence - Abstract
Photodynamic therapy (PDT) is a treatment modality against small localized tumors, based on the combined action of a photosensitizer (PS), light and oxygen. A new method of PDT, the VTP (vascular targeted photodynamic therapy) was studied. The purpose of our strategy is to promote the anti-vascular effect of PDT by targeting the tumor vasculature. We studied the behaviour of the tetraphenylchlorine (TPC) conjugated, via the Ahx spacer, to a VEGF co-receptor (neuropilin-1) specific heptapeptide (ATWLPPR), in vitro and in vivo. A comparative study of TPC versus the conjugated PS, TPC-Ahx-ATWLPPR, allowed us to identify in vitro, using a technique of RNA interference-mediated silencing of NRP-1, a receptor-dependent uptake of the conjugate. In vivo, a preferential accumulation of TPC-Ahx-ATWLPPR in endothelial cells and its anti-vascular effect were demonstrated. A study of stability in vitro and in vivo of the conjugate was conducted. In vivo, the peptide sequence was degraded 4 h after intra-venous injection. Pharmacokinetics and tissue biodistribution studies of TPC-Ahx-ATWLPPR and its main degradation product, TPC-Ahx-A, was performed in bearing nude mice. The degradation process of the peptide is important in the organs of the reticulo-endothelial system, where the accumulation of the conjugate is majority. In order to improve in vivo stability of the targeting-peptide, new peptides were design and tested. The pseudopeptide A[psi] [CH2NH] TWLPPR bound NRP-1, and after coupling with the PS, no degradation is observed in plasma in vivo 4 h after intra-venous injection., La thérapie photodynamique (PDT) est une modalité de traitement des petites tumeurs localisées, reposant sur l?action conjuguée d'un photosensibilisateur (PS), de la lumière et de l'oxygène. Dans le cadre d'un nouveau mode de PDT, la VTP (vascular targeted photodynamic therapy), notre stratégie a consisté à favoriser l?effet anti-vasculaire du traitement par ciblage de la néo-vascularisation tumorale. Pour cela, nous avons étudié in vitro et in vivo un PS de type chlorine (TPC) couplé, via le bras espaceur (Ahx), à un heptapeptide (ATWLPPR) spécifique d?un co-récepteur du VEGF, la neuropiline-1 (NRP-1). Une étude comparative de la TPC versus le PS conjugué (TPC-Ahx-ATWLPPR), a permis de mettre en évidence in vitro, grâce à une technique d'ARN interférence visant à éteindre l'expression de NRP-1, une incorporation cellulaire récepteur-dépendante du conjugué. In vivo, l'accumulation préférentielle de la TPC-Ahx-ATWLPPR au niveau de l'endothélium vasculaire de la tumeur ainsi que son effet anti-vasculaire après PDT ont été mises en évidence. Une étude de stabilité in vitro et in vivo du conjugué a été réalisée. In vivo, la séquence peptidique est dégradée 4 h après injection par voie intra-veineuse. Des études de pharmacocinétique et de biodistribution tissulaire de la TPC-Ahx-ATWLPPR et de son principal produit de dégradation, TPC-Ahx-A ont été réalisées chez la souris nude xénogreffée. La dégradation de la partie peptidique est majoritaire dans les organes du système réticulo-endothélial où l'accumulation du conjugué est la plus importante. Dans le but d'augmenter la stabilité in vivo du peptide adresseur, de nouveaux peptides ont été synthétisés, puis couplés à la TPC et testés. Le pseudopeptide A[psi] [CH2NH]TWLPPR est prometteur car il reste affin vis-à-vis de NRP-1 et après couplage au PS, il ne subit aucune dégradation dans le 8plasma in vivo 4 h après injection par voie intra-veineuse.
- Published
- 2009
36. Photodynamic therapy targeting tumor vasculature via neuropilin-1 co-receptor. Design of peptides more stable
- Author
-
Thomas, Noémie, Maquin, Didier, Centre de Recherche en Automatique de Nancy (CRAN), Université Henri Poincaré - Nancy 1 (UHP)-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Université Henri Poincaré - Nancy I, and Muriel Barberi-Heyob(m.barberi@nancy.fnclcc.fr)
- Subjects
neuropilin-1 ,RNA interference ,neuropiline-1 ,pseudopeptides ,adressage vasculaire ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Thérapie photodynamique ,[SDV.BC] Life Sciences [q-bio]/Cellular Biology ,Photodynamic therapy ,vascular targeting ,ARN interférence - Abstract
Photodynamic therapy (PDT) is a treatment modality against small localized tumors, based on the combined action of a photosensitizer (PS), light and oxygen. A new method of PDT, the VTP (vascular targeted photodynamic therapy) was studied. The purpose of our strategy is to promote the anti-vascular effect of PDT by targeting the tumor vasculature. We studied the behaviour of the tetraphenylchlorine (TPC) conjugated, via the Ahx spacer, to a VEGF co-receptor (neuropilin-1) specific heptapeptide (ATWLPPR), in vitro and in vivo. A comparative study of TPC versus the conjugated PS, TPC-Ahx-ATWLPPR, allowed us to identify in vitro, using a technique of RNA interference-mediated silencing of NRP-1, a receptordependent uptake of the conjugate. In vivo, a preferential accumulation of TPC-Ahx-ATWLPPR in endothelial cells and its anti-vascular effect were demonstrated. A study of stability in vitro and in vivo of the conjugate was conducted. In vivo, the peptide sequence was degraded 4 h after intra-venous injection. Pharmacokinetics and tissue biodistribution studies of TPC-Ahx ATWLPPR and its main degradation product, TPC-Ahx-A, was performed in bearing nude mice. The degradation process of the peptide is important in the organs of the reticuloendothelial system, where the accumulation of the conjugate is majority. In order to improve in vivo stability of the targeting-peptide, new peptides were design and tested. The pseudopeptide Aψ[CH2NH] TWLPPR bound NRP-1, and after coupling with the PS, no degradation is observed in plasma in vivo 4 h after intra-venous injection., La thérapie photodynamique (PDT) est une modalité de traitement des petites tumeurs localisées, reposant sur l'action conjuguée d'un photosensibilisateur (PS), de la lumière et de l'oxygène. Dans le cadre d'un nouveau mode de PDT, la VTP (vascular targeted photodynamic therapy), notre stratégie a consisté à favoriser l'effet anti-vasculaire du traitement par ciblage de la néo-vascularisation tumorale. Pour cela, nous avons étudié in vitro et in vivo un PS de type chlorine (TPC) couplé, via le bras espaceur (Ahx), à un heptapeptide (ATWLPPR) spécifique d'un corécepteur du VEGF, la neuropiline-1 (NRP-1). Une étude comparative de la TPC versus le PS conjugué (TPC-Ahx-ATWLPPR), a permis de mettre en évidence in vitro, grâce à une technique d'ARN interférence visant à éteindre l'expression de NRP-1, une incorporation cellulaire récepteur dépendante du conjugué. In vivo, l'accumulation préférentielle de la TPC-Ahx-ATWLPPR au niveau de l'endothélium vasculaire de la tumeur ainsi que son effet anti-vasculaire après PDT ont été mises en évidence. Une étude de stabilité in vitro et in vivo du conjugué a été réalisée. In vivo, la séquence peptidique est dégradée 4 h après injection par voie intra-veineuse. Des études de pharmacocinétique et de biodistribution tissulaire de la TPC-Ahx-ATWLPPR et de son principal produit de dégradation, TPC-Ahx-A ont été réalisées chez la souris nude xénogreffée. La dégradation de la partie peptidique est majoritaire dans les organes du système réticulo-endothélial où l'accumulation du conjugué est la plus importante. Dans le but d'augmenter la stabilité in vivo du peptide adresseur, de nouveaux peptides ont été synthétisés, puis couplés à la TPC et testés. Le pseudopeptide Aψ[CH2NH]TWLPPR est prometteur car il reste affin vis-à-vis de NRP-1 et après couplage au PS, il ne subit aucune dégradation dans le 8plasma in vivo 4 h après injection par voie intra-veineuse.
- Published
- 2009
37. Metabolic profile of a peptide-conjugated chlorin-type photosensitizer targeting neuropilin-1: an in vivo and in vitro study
- Author
-
Thomas, Noémie, Tirand, Loraine, Frochot, Céline, Guillemin, François, Barberi-Heyob, Muriel, Centre de Recherche en Automatique de Nancy (CRAN), Université Henri Poincaré - Nancy 1 (UHP)-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Centre Alexis Vautrin (CAV), Département de Chimie Physique des Réactions (DCPR), Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), and D'Hallewin, Marie Ange
- Subjects
[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,[SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics - Abstract
Since angiogenic endothelial cells of the tumor vasculature represent an interesting target to potentiate the vascular effect of photodynamic therapy, we recently described the conjugation of a photosensitizer (5-(4-carboxyphenyl)-10,15,20-triphenylchlorin,TPC), via a spacer (6-aminohexanoic acid, Ahx), to a VEGF receptor-specific heptapeptide (ATWLPPR), and demonstrated that TPC-Ahx-ATWLPPR binds to neuropilin-1. TPC-Ahx-ATWLPPR was stable in vitro in human and mouse plasma for at least 24 h at 37 ◦C but, following intravenous injection in glioma-bearing nude mice, was degraded in vivo to various rates, depending on the organ considered. TPC-Ahx-A was identified as the main metabolic product and pharmacokinetic studies suggested that its appearance in plasma mainly resulted from the degradation of the peptidic moiety into organs of the reticuloendothelial system. According to in vitro cell culture experiments, TPC-Ahx-ATWLPPR was also significantly degraded after incorporation in human umbilical vein endothelial cells. As we demonstrated that TPC-Ahx-ATWLPPR mostly localized into lysosomes, HUVEC were treated with the lysosomal enzymes inhibitor ammonium chloride, which resulted in a significant decrease of the peptide degradation. But, taken together, our results suggest that the low levels of degradation observed in plasma, tumor and skin, are not likely to have a negative impact on our tumor-targeting photosensitizer strategy.
- Published
- 2008
38. Des peptides adresseurs de photosensibilisants pour des applications en thérapie photodynamique anti-cancéreuse
- Author
-
Vanderesse, Régis, Frochot, Céline, Tirand, Loraine, Thomas, Noémie, Di Stasio, Benoît, Barberi-Heyob, Muriel, Laboratoire de Chimie Physique Macromoléculaire (LCPM), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Département de Chimie Physique des Réactions (DCPR), Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Automatique de Nancy (CRAN), Université Henri Poincaré - Nancy 1 (UHP)-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Epidémiologie, Démographie et Sciences Sociales: santé reproductive, sexualité et infection à VIH (Inserm U569), Epidémiologie, sciences sociales, santé publique (IFR 69), Université Panthéon-Sorbonne (UP1)-Université Paris-Sud - Paris 11 (UP11)-École des hautes études en sciences sociales (EHESS)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Panthéon-Sorbonne (UP1)-Université Paris-Sud - Paris 11 (UP11)-École des hautes études en sciences sociales (EHESS)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut national d'études démographiques (INED), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), and Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Sud - Paris 11 (UP11)-École des hautes études en sciences sociales (EHESS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Sud - Paris 11 (UP11)-École des hautes études en sciences sociales (EHESS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d'études démographiques (INED)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] - Published
- 2007
39. Etude de l'affinité de pseudopeptides vis-à-vis des récepteurs au VEGF : Vers l'élaboration de médicaments photo-activables conjugués plus stables pour des applications en thérapie photodynamique anticancéreuse
- Author
-
Thomas, Noémie, Tirand, Loraine, Vanderesse, Régis, Frochot, Céline, Guillemin, François, Barberi-Heyob, Muriel, Centre de Recherche en Automatique de Nancy (CRAN), Université Henri Poincaré - Nancy 1 (UHP)-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique Macromoléculaire (LCPM), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Département de Chimie Physique des Réactions (DCPR), Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Centre Alexis Vautrin (CAV), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), and Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] - Abstract
La thérapie photodynamique (PDT) est une méthode proposée pour le traitement de certains cancers. Cette thérapie est basée sur une activation par la lumière de médicaments dits photo?activables appelés photosensibilisateurs. Les cellules endothéliales tumorales angiogéniques sont des cibles intéressantes pour promouvoir l'effet anti-vasculaire de la PDT. Nous avons récemment décrit (Schneider et al., 2006 ; Tirand et al., 2006) le couplage d'un photosensibilisateur de type chlorine (chlorine 5-(4-carboxyphényl)-10,15,20-triphényl, TPC), via un bras espaceur (6-acide aminohexanoïque, Ahx), à un heptapeptide (ATWLPPR), ciblant neuropiline-1 (NRP-1), un co-récepteur du VEGF (Vascular Endothelial Growth Factor) surexprimé dans les cellules endothéliales angiogéniques. TPC-Ahx-ATWLPPR s'est révélé stable dans du plasma in vitro à 37°C pendant 48h. In vivo, une dégradation peptidique apparaît progressivement dès 2h p.i. aboutissant principalement à la formation du composé TPC-Ahx-A (Tirand et al., 2007). Ce produit de dégradation a été mis en évidence majoritairement dans les organes du système réticulo-endothélial. Afin de stabiliser l'heptapeptide vis-à-vis des peptidases tissulaires (Adessi and Soto, 2002) et d'éviter toute accumulation non sélective du produit de dégradation, ce photosensibilisateur a été couplé à des pseudopeptides (aTWLPPR, rpplwta et Ay[CH2NH]TWLPPR) sur support solide. Nous avons, dans un premier temps, étudié l'affinité de ces pseudopeptides vis-à-vis des différents récepteurs au VEGF165 (NRP-1, NRP-2, Flt-1 et KDR) par compétition en utilisant du VEGF165 biotinylé. Les concentrations efficaces en peptides pour lesquelles la fixation du VEGF165 a été déplacée de 50 % (EC50) ont été comparées. Les récepteurs NRP-1 et NRP-2 sont reconnus par aTWLPPR (EC50=13µM et 7,6 µM) et Ay[CH2NH]TWLPPR (EC50=22µM et 8,9 µM) sans modification d'affinité par comparaison à ATWLPPR (EC50=13,2µM et 7,4 µM) alors que le peptide rétro-inverso n'est pas affin vis-à-vis de ces récepteurs. Ces peptides seront ensuite couplés à la TPC afin d'évaluer leur affinité après couplage à la molécule photoactivable et surtout, leur stabilité in vivo.
- Published
- 2007
40. Targeted photodynamic therapy
- Author
-
Frochot, Céline, Tirand, Loraine, Gravier, Julien, Schneider, Raphaël, Thomas, Noémie, Vanderesse, Régis, Dumas, Dominique, Viriot, Marie-Laure, Guillemin, François, Barberi-Heyob, Muriel, Département de Chimie Physique des Réactions (DCPR), Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Automatique de Nancy (CRAN), Université Henri Poincaré - Nancy 1 (UHP)-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Centre Alexis Vautrin (CAV), Laboratoire de Chimie Physique Macromoléculaire (LCPM), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA ), and Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics - Published
- 2006
41. Intracellular localization and in vitro stability of a photosensitizer conjugated to the NRP-1 receptor-binding ATWLPPR peptide
- Author
-
Tirand, Loraine, Frochot, Céline, Dodeller, Marc, Dumas, Dominique, Bastogne, Thierry, Thomas, Noémie, Müller, Jean-François, Barberi-Heyob, Muriel, Centre de Recherche en Automatique de Nancy (CRAN), Université Henri Poincaré - Nancy 1 (UHP)-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Centre Alexis Vautrin (CAV), Département de Chimie Physique des Réactions (DCPR), Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Spectrométrie de Masse et de Chimie Laser (LSMCL), Université Paul Verlaine - Metz (UPVM), Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA ), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), and D'Hallewin, Marie Ange
- Subjects
[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,[SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2006
42. A chlorin-ATWLPPR conjugate as new neuropilin-1-targeting photosensitizer designed to potentiate the vascular effect of PDT : pharmacokinetic and biodistribution analysis
- Author
-
Thomas, Noémie, Tirand, Loraine, Chatelut, Etienne, Frochot, Céline, Guillemin, François, Barberi-Heyob, Muriel, D'Hallewin, Marie Ange, Centre de Recherche en Automatique de Nancy (CRAN), Université Henri Poincaré - Nancy 1 (UHP)-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Centre Alexis Vautrin (CAV), Laboratoire de pharmacocinétique, Institut Claudius Regaud, Département de Chimie Physique des Réactions (DCPR), and Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,[SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics - Published
- 2006
43. Ultrasmall AG uIX theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of glioblastoma.
- Author
-
Thomas, Eloïse, Colombeau, Ludovic, Gries, Mickaël, Peterlini, Thibaut, Mathieu, Clélia, Thomas, Noémie, Boura, Cédric, Frochot, Céline, Vanderesse, Régis, Lux, François, Barberi-Heyob, Muriel, and Tillement, Olivier
- Published
- 2017
- Full Text
- View/download PDF
44. Metabolic Profile of a Peptide-Conjugated Chlorin-Type Photosensitizer Targeting Neuropilin-1: An in Vivo and in Vitro Study
- Author
-
Tirand, Loraine, primary, Thomas, Noémie, additional, Dodeller, Marc, additional, Dumas, Dominique, additional, Frochot, Céline, additional, Maunit, Benoît, additional, Guillemin, François, additional, and Barberi-Heyob, Muriel, additional
- Published
- 2007
- Full Text
- View/download PDF
45. Fighting Hypoxia to Improve PDT.
- Author
-
Larue, Ludivine, Myrzakhmetov, Bauyrzhan, Ben-Mihoub, Amina, Moussaron, Albert, Thomas, Noémie, Arnoux, Philippe, Baros, Francis, Vanderesse, Régis, Acherar, Samir, and Frochot, Céline
- Subjects
DRUG side effects ,HYPOXEMIA ,PHOTODYNAMIC therapy ,DRUG resistance - Abstract
Photodynamic therapy (PDT) has drawn great interest in recent years mainly due to its low side effects and few drug resistances. Nevertheless, one of the issues of PDT is the need for oxygen to induce a photodynamic effect. Tumours often have low oxygen concentrations, related to the abnormal structure of the microvessels leading to an ineffective blood distribution. Moreover, PDT consumes O
2 . In order to improve the oxygenation of tumour or decrease hypoxia, different strategies are developed and are described in this review: (1) The use of O2 vehicle; (2) the modification of the tumour microenvironment (TME); (3) combining other therapies with PDT; (4) hypoxia-independent PDT; (5) hypoxia-dependent PDT and (6) fractional PDT. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
46. Preliminary study of new gallium-68 radiolabeled peptide targeting NRP-1 to detect brain metastases by positron emission tomography
- Author
-
Nicolas Veran, Matthieu Doyen, Muriel Barberi-Heyob, Céline Frochot, Julien Pierson, Noémie Thomas, Laurence Choulier, Albert Moussaron, Samir Acherar, Valérie Jouan-Hureaux, Dominique Dumas, Fatiha Maskali, Philippe Arnoux, Charlotte Collet, Laboratoire Réactions et Génie des Procédés (LRGP), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Centre de Recherche en Automatique de Nancy (CRAN), Nancyclotep- Experimental Imaging Platform = Plate-forme d'imagerie moléculaire, Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)-Université de Lorraine (UL), Imagerie Adaptative Diagnostique et Interventionnelle (IADI), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lorraine (UL), Laboratoire de Bioimagerie et Pathologies (LBP), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique Macromoléculaire (LCPM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), and Thomas, Noémie
- Subjects
Pharmaceutical Science ,Organic chemistry ,Analytical Chemistry ,Metastasis ,0302 clinical medicine ,QD241-441 ,Cerebellum ,brain metastases ,Drug Discovery ,Cytotoxicity ,Receptor ,0303 health sciences ,medicine.diagnostic_test ,Chemistry ,Brain Neoplasms ,Recombinant Proteins ,peptide ,3. Good health ,radiolabeling ,fluorescence ,NRP-1 ,targeting ,Chemistry (miscellaneous) ,Positron emission tomography ,Cell Tracking ,030220 oncology & carcinogenesis ,Molecular Medicine ,Female ,Protein Binding ,Gallium Radioisotopes ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Article ,03 medical and health sciences ,Rats, Nude ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,In vivo ,Cell Line, Tumor ,medicine ,Human Umbilical Vein Endothelial Cells ,Animals ,Humans ,Physical and Theoretical Chemistry ,030304 developmental biology ,Cell Proliferation ,Water ,Surface Plasmon Resonance ,medicine.disease ,In vitro ,Neuropilin-1 ,Positron-Emission Tomography ,Cancer cell ,Cancer research ,Molecular imaging ,Radiopharmaceuticals ,Peptides - Abstract
Due to their very poor prognosis and a fatal outcome, secondary brain tumors are one of the biggest challenges in oncology today. From the point of view of the early diagnosis of these brain micro- and macro-tumors, the sensitivity and specificity of the diagnostic tools constitute an obstacle. Molecular imaging, such as Positron Emission Tomography (PET), is a promising technique but remains limited in the search for cerebral localizations, given the commercially available radiotracers. Indeed, the [18F]FDG PET remains constrained by the physiological fixation of the cerebral cortex, which hinders the visualization of cerebral metastases. Tumor angiogenesis is recognized as a crucial phenomenon in the progression of malignant tumors and is correlated with overexpression of the neuropilin-1 (NRP-1) receptor. Here, we describe the synthesis and the photophysical properties of the new gallium-68 radiolabeled peptide to target NRP-1. The KDKPPR peptide was coupled with gallium-68 anchored into a bifunctional NODAGA chelating agent, as well as Cy5 for fluorescence detection. The Cy5 absorbance spectra did not change, whereas the molar extinction coefficient (ε) decreased drastically. An enhancement of the fluorescence quantum yield (φF) could be observed due to the better water solubility of Cy5. [68Ga]Ga-NODAGA-K(Cy5)DKPPR was radiosynthesized efficiently, presented hydrophilic properties (log D = −1.86), and had high in vitro stability (>120 min). The molecular affinity and the cytotoxicity of this new chelated radiotracer were evaluated in vitro on endothelial cells (HUVEC) and MDA-MB-231 cancer cells (hormone-independent and triple-negative line) and in vivo on a brain model of metastasis in a nude rat using the MDA-MB-231 cell line. No in vitro toxicity has been observed. The in vivo preliminary experiments showed promising results, with a high contrast between the healthy brain and metastatic foci for [68Ga]Ga-NODAGA-K(Cy5)DKPPR.
- Published
- 2021
- Full Text
- View/download PDF
47. The detrimental invasiveness of glioma cells controlled by gadolinium chelate-coated gold nanoparticles
- Author
-
Durand, Maxime, Chateau, Alicia, Chastagner, Pascal, Devy, Jérôme, Pinel, Sophie, Centre de Recherche en Automatique de Nancy (CRAN), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Matrice extracellulaire et dynamique cellulaire - UMR 7369 (MEDyC), SFR CAP Santé (Champagne-Ardenne Picardie Santé), Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), and Thomas, Noémie
- Subjects
[SDV.CAN] Life Sciences [q-bio]/Cancer ,[SDV.CAN]Life Sciences [q-bio]/Cancer - Abstract
International audience; Nanoparticles based on gold and gadolinium chelates (Au@DTDTPA(Gd)), developed at the UTINAM Institute (CNRS - UMR 6213), have been studied for theranostic purposes in the management of brain tumors, such as aiding MRI imaging and amplifying the micro-dose deposits delivered in radiotherapy. These nanoparticles have also been shown to be particularly interesting in reducing the ability of glial tumor cells to invade the extracellular matrix. Despite the absence of direct cytotoxicity and effect on the proteolytic abilities of glioma cells, gold and gadolinium nanoparticles affected the abilities of glioma cells to migrate individually and collectively. In addition, morphological studies of glioma cells exposed to nanoparticles revealed changes in the architecture of the actin cytoskeleton and a decrease in the number of protrusions required for cell movement. These alterations by gold and gadolinium nanoparticles are associated with a disruption of the biomechanical capacities of glioma cells with an increase in cell stiffness and traction forces at the level of protrusions. Considering the major role of invasive capacities of cancer cells in tumor recurrence and therapeutic failures, these results provide an additional argument on the interest of using gold nanoparticles in cancerology. Supported by the Cancéropôle Est and financed by the Grand Est and Bourgogne-Franche-Comté regions, the realization of this work was possible thanks to (i) the close collaboration between 6 laboratories combining their fields of expertise and know-how in chemistry, cell and animal biology, imaging and digital sciences and (ii) the privileged access to the technological platforms of the Interregion Est.
- Published
- 2021
48. AGuIX® from bench to bedside-Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine
- Author
-
Camille Verry, Awatef Allouch, Carolyn J. Anderson, Olivier Tillement, Cyrus Chargari, Nathalie Mignet, Benoit Larrat, Marc Janier, Jacqueline Sidi-Boumedine, Kevin M. Prise, Peter Fries, Bich-Thuy Doan, Erika Porcel, Fabien Rossetti, Jacques Balosso, Marie-Caline Abadjian, Dominique Ardail, Frédéric Boschetti, Yannick Crémillieux, Alexandre Detappe, Claire Rodriguez-Lafrasse, Ross Berbeco, Marie-Thérèse Aloy, Sébastien Mériaux, Vu Long Tran, Emmanuel L. Barbier, Sandrine Lacombe, Sandrine Dufort, Matteo Martini, Andreas Müller, Eric Deutsch, Karl T. Butterworth, Emmanuelle Canet-Soulas, Géraldine Le Duc, Franck Denat, Goran Angelovski, Guillaume Bort, Céline Frochot, Jean-Luc Perfettini, Eloise Thomas, Stéphane Roux, Tristan Doussineau, Muriel Barberi-Heyob, Michael J. Evans, François Lux, Charles Truillet, Stephen J. McMahon, Penelope Bouziotis, Thomas, Noémie, Formation, élaboration de nanomatériaux et cristaux (FENNEC), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), NH TherAguix SA [Meylan], Nano-H SAS, Imagerie Moléculaire in Vivo (IMIV - U1023 - ERL9218), Service Hospitalier Frédéric Joliot (SHFJ), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire de l'Université de Bourgogne [Dijon] (ICMUB), Université de Bourgogne (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), CheMatech - Macrocycle Design Technologies, Max Planck Institute for Biological Cybernetics, Max-Planck-Gesellschaft, Dana-Farber Cancer Institute [Boston], Centre de résonance magnétique des systèmes biologiques (CRMSB), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS - UM 4 (UMR 8258 / U1022)), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Paris Descartes - Paris 5 (UPD5), Université Sorbonne Paris Cité (USPC), Université Paris sciences et lettres (PSL), Service NEUROSPIN (NEUROSPIN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Neuro-imagerie fonctionnelle et métabolique (ANTE-INSERM U836, équipe 5), Grenoble Institut des Neurosciences (GIN), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, University of Pittsburgh (PITT), Pennsylvania Commonwealth System of Higher Education (PCSHE), Cardiovasculaire, métabolisme, diabétologie et nutrition (CarMeN), Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM), National Center for Scientific Research 'Demokritos' (NCSR), Centre de Recherche en Automatique de Nancy (CRAN), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Réactions et Génie des Procédés (LRGP), Rayonnement synchrotron et Recherche Médicale, [GIN] Grenoble Institut des Neurosciences (GIN), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes (UGA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes (UGA), University of California [San Francisco] (UC San Francisco), University of California (UC), Université de Lyon, Centre for Cancer Research and Cell Biology, Queen's University [Belfast] (QUB), PRISME (PRISME), Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Radiothérapie moléculaire (UMR 1030), Université Paris-Sud - Paris 11 (UP11)-Institut Gustave Roussy (IGR)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Sud - Paris 11 - Faculté de médecine (UP11 UFR Médecine), Université Paris-Sud - Paris 11 (UP11), Curiethérapie, Département de radiothérapie [Gustave Roussy], Institut Gustave Roussy (IGR)-Institut Gustave Roussy (IGR), Institut Gustave Roussy (IGR), Institut de Recherche Biomédicale des Armées (IRBA), French Military Health Service Academy, École du Val de Grâce (EVDG), Service de Santé des Armées-Service de Santé des Armées, Institut de Recherche Biomédicale des Armées [Brétigny-sur-Orge] (IRBA), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), University of California [San Francisco] (UCSF), University of California, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Gustave Roussy (IGR)-Université Paris-Sud - Paris 11 (UP11), NH Theraguix, Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Service Hospitalier Frédéric Joliot (SHFJ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Résonance magnétique des systèmes biologiques (RMSB), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP), Paris Sciences et Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Grenoble-Université Joseph Fourier - Grenoble 1 (UJF), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Hospices Civils de Lyon (HCL), Equipe 6 : Rayonnement synchrotron et Recherche Médicale, Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-[GIN] Grenoble Institut des Neurosciences, Université Paris-Sud 11 - Faculté de médecine (UP11 UFR Médecine), Ecole du Val-de-Grâce, UM Biochimie des Cancers et Biothérapies, CHU Grenoble-Institut de Biologie et Pathologie, Institut Européen des membranes (IEM), Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS), Institut Galien Paris-Sud (IGPS), Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Imagerie et de Spectroscopie (LRMN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Grenoble-Université Joseph Fourier - Grenoble 1 (UJF), Laboratoire de Mécanique et Technologie (LMT), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), Institute of Computer Science VI, Université Henri Poincaré - Nancy 1 (UHP)-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Rhône-Alpes Research Program on Hadrontherapy, National French Hadrontherapy Centre - Etoile, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Neurorestoration Group, King‘s College London-Wolfson Centre for Age-related Diseases, Ciblage thérapeutique en Oncologie (EA3738), Unité Médicale d'Oncologie Moléculaire et Transfert (UMOMT), Hospices Civils de Lyon (HCL), Laboratoire des collisions atomiques et moléculaires (LCAM), Service d'oncologie-radiothérapie, Hôpital d'Instruction des Armées du Val de Grâce, Service de Santé des Armées, and European Synchrotron Radiation Facility (ESRF)
- Subjects
Radiation-Sensitizing Agents ,Gadolinium ,medicine.medical_treatment ,02 engineering and technology ,Review Article ,Pharmacology ,Theranostic Nanomedicine ,Mice ,0302 clinical medicine ,Melanoma ,Brain Neoplasms ,General Medicine ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SDV.SP]Life Sciences [q-bio]/Pharmaceutical sciences ,021001 nanoscience & nanotechnology ,3. Good health ,[SDV.SP] Life Sciences [q-bio]/Pharmaceutical sciences ,Nuclear Medicine & Medical Imaging ,Radiology Nuclear Medicine and imaging ,Head and Neck Neoplasms ,030220 oncology & carcinogenesis ,Toxicity ,[SDV.IB]Life Sciences [q-bio]/Bioengineering ,0210 nano-technology ,Clinical Sciences ,chemistry.chemical_element ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Enhanced permeability and retention effect ,03 medical and health sciences ,SDG 3 - Good Health and Well-being ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,In vivo ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,medicine ,Animals ,Humans ,Radiology, Nuclear Medicine and imaging ,[SDV.IB] Life Sciences [q-bio]/Bioengineering ,business.industry ,Cancer ,medicine.disease ,Radiation therapy ,Clinical trial ,chemistry ,Nanoparticles ,business ,Forecasting - Abstract
International audience; AGuIX® are sub-5 nm nanoparticles made of a polysiloxane matrix and gadolinium chelates. This nanoparticle has been recently accepted in clinical trials in association with radiotherapy. This review will summarize the principal preclinical results that have led to first in man administration. No evidence of toxicity has been observed during regulatory toxicity tests on two animal species (rodents and monkeys). Biodistributions on different animal models have shown passive uptake in tumours due to enhanced permeability and retention effect combined with renal elimination of the nanoparticles after intravenous administration. High radiosensitizing effect has been observed with different types of irradiations in vitro and in vivo on a large number of cancer types (brain, lung, melanoma, head and neck…). The review concludes with the second generation of AGuIX nanoparticles and the first preliminary results on human.
- Published
- 2019
- Full Text
- View/download PDF
49. Ultrasmall AGuIX theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of glioblastoma
- Author
-
François Lux, Cédric Boura, Mickaël Gries, Noémie Thomas, Thibaut Peterlini, Régis Vanderesse, Olivier Tillement, Céline Frochot, Ludovic Colombeau, Eloise Thomas, Muriel Barberi-Heyob, Clélia Mathieu, Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Laboratoire Réactions et Génie des Procédés (LRGP), Institut Lumière Matière [Villeurbanne] (ILM), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Laboratoire de Chimie Physique Macromoléculaire (LCPM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ANR-14-ENM2-0001,PhotoBrain,AGuIX® theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of brain tumors(2014), and Thomas, Noémie
- Subjects
medicine.medical_treatment ,[SDV]Life Sciences [q-bio] ,Contrast Media ,Pharmaceutical Science ,Peptide ,Photodynamic therapy ,02 engineering and technology ,01 natural sciences ,Theranostic Nanomedicine ,Umbilical vein ,Mice ,International Journal of Nanomedicine ,Drug Discovery ,Neuropilin 1 ,Photosensitizer ,Receptor ,Cytotoxicity ,Original Research ,chemistry.chemical_classification ,Photosensitizing Agents ,Cell Death ,peptide ligand ,General Medicine ,021001 nanoscience & nanotechnology ,Magnetic Resonance Imaging ,3. Good health ,0210 nano-technology ,vascular targeting strategy ,brain tumor ,MRI ,Biophysics ,Bioengineering ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,010402 general chemistry ,Biomaterials ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,PDT ,In vivo ,Cell Line, Tumor ,Human Umbilical Vein Endothelial Cells ,medicine ,Animals ,Humans ,NRP-1 ,[CHIM]Chemical Sciences ,Particle Size ,Organic Chemistry ,Neuropilin-1 ,0104 chemical sciences ,Photochemotherapy ,chemistry ,Cancer research ,nanoparticles ,Glioblastoma ,Peptides ,[CHIM.OTHE]Chemical Sciences/Other - Abstract
Eloïse Thomas,1 Ludovic Colombeau,2 Mickaël Gries,3,4 Thibaut Peterlini,3,4 Clélia Mathieu,1 Noémie Thomas,3,4 Cédric Boura,3,4 Céline Frochot,2 Régis Vanderesse,5 François Lux,1 Muriel Barberi-Heyob,3,4 Olivier Tillement1 1Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut Lumière Matière, Lyon, 2Laboratoire Réactions et Génie des Procédés, Université de Lorraine-CNRS, Nancy, 3Université de Lorraine, Research Center for Automatic Control of Nancy (CRAN), 4CNRS, CRAN, Vandœuvre-lès-Nancy, 5Laboratoire de Chimie Physique Macromoléculaire, Université de Lorraine-CNRS, Nancy, France Abstract: Despite combined treatments, glioblastoma outcome remains poor with frequent local recurrences, indicating that a more efficient and local therapy is needed. In this way, vascular-targeted photodynamic therapy (VTP) could help tumor eradication by destroying its neovessels. In this study, we designed a polysiloxane-based nanoparticle (NP) combining a magnetic resonance imaging (MRI) contrast agent, a photosensitizer (PS) and a new ligand peptide motif (KDKPPR) targeting neuropilin-1 (NRP-1), a receptor overexpressed by angiogenic endothelial cells of the tumor vasculature. This structure achieves the detection of the tumor tissue and its proliferating part by MRI analysis, followed by its treatment by VTP. The photophysical properties of the PS and the peptide affinity for NRP-1 recombinant protein were preserved after the functionalization of NPs. Cellular uptake of NPs by human umbilical vein endothelial cells (HUVEC) was increased twice compared to NPs without the KDKPPR peptide moiety or conjugated with a scramble peptide. NPs induced no cytotoxicity without light exposure but conferred a photocytotoxic effect to cells after photodynamic therapy (PDT). The invivo selectivity, evaluated using a skinfold chamber model in mice, confirms that the functionalized NPs with KDKPPR peptide moiety were localized in the tumor vessel wall. Keywords: nanoparticles, PDT, vascular targeting strategy, brain tumor, NRP-1, peptide ligand, MRI
- Published
- 2018
- Full Text
- View/download PDF
50. Intérêt des nanoparticules multifonctionnelles pour les thérapies par rayonnements appliquées aux tumeurs cérébrales de haut-grade
- Author
-
Barberi-Heyob, Muriel, Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Thomas, Noémie, and Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.CAN] Life Sciences [q-bio]/Cancer ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.