1. Measurement of Water Drop Sizes Generated by a Dripping Rainfall Simulator with Drippers in the Form of Hypodermic Needles
- Author
-
Vukašin Rončević, Nikola Živanović, John H. van Boxel, Thomas Iserloh, Nevena Antić, Carla Sofia Santos Ferreira, and Marko Spasić
- Subjects
soil research ,rainfall simulator with drippers ,water drop diameter ,dripping speed ,water drop kinetic energy ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Dripping rainfall simulators (DRS) for soil research generate water drops with different types of drippers, but metal tubes are most commonly used, often in the form of hypodermic needles. However, scientific papers using dripping rainfall simulators are often incomplete in terms of data on hypodermic needle characteristics, as well as data on drops produced by hypodermic needles under different water pressures. This study determines which drop sizes and dripping speeds are generated by various hypodermic needles at different water pressures. For the purpose of this study, a dripping rainfall simulator was designed and constructed for laboratory use. Water drops were generated with 11 different needles, ranging in size from 16 G to 32 G (tube gauge number), at different water pressures. Measured water drop sizes ranged from 1.42 to 3.69 mm at a dripping speed between 10 and 360 drops per minute and water head from 14 to over 1970 mm. Measured drop sizes, supplemented with data from previous studies, provided information on the relation between drop sizes and the size of the hypodermic needles. Van Boxel’s numerical model provided estimations of the fall velocity for different drop diameters and their kinetic energy for falling heights up to 11.5 m. The results of this research can be used to design dripping rainfall simulators for soil research.
- Published
- 2024
- Full Text
- View/download PDF