21 results on '"Tissandier L"'
Search Results
2. Hafnium solubility determination in soda-lime aluminosilicate glass
- Author
-
Chevreux, P., Laplace, A., Deloule, E., Tissandier, L., and Massoni, N.
- Published
- 2017
- Full Text
- View/download PDF
3. A new heating stage for high Temperature/low fO2 conditions
- Author
-
Tissandier, L., Florentin, L., Lequin, D., Baillot, P., and Faure, F.
- Published
- 2017
- Full Text
- View/download PDF
4. Na 2O solubility in CaO–MgO–SiO 2 melts
- Author
-
Mathieu, R., Libourel, G., Deloule, E., Tissandier, L., Rapin, C., and Podor, R.
- Published
- 2011
- Full Text
- View/download PDF
5. Comparison of Molecular Complexity Between Chondrites, Martian Meteorite and Lunar Soils
- Author
-
Orthous-Daunay, F. -R, Wolters, C., Flandinet, L., Vuitton, V., Beck, P., Bonal, L., Isa, J., Moynier, F., Voisin, D., Moran, S., Horst, S., Gregoire Danger, Vinogradoff, V., Piani, L., Bekaert, D. V., Tissandier, L., Isono, Y., Tachibana, S., Naraoka, H., Remusat, L., Thissen, R., Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), McDonnell Center for Space Sciences, Washington University in St Louis, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), School of Electrical and Computer Engineering - Georgia Insitute of Technology (ECE GeorgiaTech), Georgia Institute of Technology [Atlanta], Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Department of Natural History Sciences, Hokkaido University, Laboratoire de minéralogie du Muséum National d'Histoire Naturelle (LMMNHN), Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique D'Orsay (LCPO), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience; We compare typical polymerization patterns found in chondritic organic mixtures and the features found in martian meteorites and lunar soils.
- Published
- 2019
6. Liquid Chromatography Orbitrap Mass Spectrometry Study of Synthetic and Chondritic Organic Mixtures
- Author
-
Wolters, C., Vuitton, V., Orthous-Daunay, F.-R., Flandinet, L., He, C., Moran, S., Horst, S., Bekaert, D., Tissandier, L., Marty, B., Piani, L., Vuitton, Véronique, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), School of Electrical and Computer Engineering - Georgia Insitute of Technology (ECE GeorgiaTech), Georgia Institute of Technology [Atlanta], Centre de Recherches Pétrographiques et Géochimiques (CRPG), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.ASTR.EP] Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience; Liquid chromatography Orbitrap mass spectrometry is used to compare extraterrestrial and synthetic organic matter. This analytical workflow brings information on the origin of the soluble organic matter present in carbonaceous chondrites.
- Published
- 2019
7. Origin of Na in glass inclusions hosted in olivine from Allende CV3 and Jbilet Winselwan CM2: Implications for chondrule formation
- Author
-
Florentin, L., Faure, F., Deloule, E., Tissandier, L., Gurenko, A., and Lequin, D.
- Published
- 2017
- Full Text
- View/download PDF
8. Synthesis of Extraterrestrial Organic Matter Analogues in the Laboratory: The Plasma Experiment Perspective
- Author
-
Bekaert, D. V., primary, Derenne, S., additional, Tissandier, L., additional, Anquetil, C., additional, and Marty, B., additional
- Published
- 2019
- Full Text
- View/download PDF
9. Magma redox and structural controls on iron isotope variations in Earth's mantle and crust
- Author
-
Dauphas, N., Roskosz, M., Alp, E.E., Neuville, D.R., Hu, M.Y., Sio, C.K., Tissot, F.L.H., Zhao, J., Tissandier, L., Médard, E., and Cordier, C.
- Published
- 2014
- Full Text
- View/download PDF
10. Controls on Iron Isotope Variations in Planetary Magmas
- Author
-
Dauphas, N., Roskosz, M., Alp, E. E., Sio, C. K., Tissot, F. L. H., Neuville, D., Hu, M. Y., Zhao, J., Tissandier, L., and Médard, E.
- Abstract
Of all documented planetary bodies such as Mars, Vesta, and the angrite parent-body (APB), Earth is the most oxidized [1]. Understanding how and when Earth's mantle acquired its present redox conditions is a major standing question in planetary sciences. Previsous studies have suggested that iron isotopes could be good tracers of redox conditions during melting [2]. Terrestrial basalts, as well as more felsic rocks, tend to have heavy iron isotopic composition relative to chondrites and Earth’s mantle [2, 3 and references therein]. For example, the average MORB δ^(56)Fe value is ~+0.1 ‰ while chondrites have δ^(56)Fe~+0 ‰ (Fig. 1). In contrast, basalts from Mars and Vesta have Fe isotopic compositions identical to chondrites within uncertainty. Three interpretations have been proposed to explain this feature: (1) during the Moon-forming giant impact, some isotopically light Fe was evaporated, leaving a residue enriched in heavy Fe isotopes [4]; (2) equilibriation between metal and high-pressure phases such as ferropericlase and post-perovskite created iron isotopic fractionation in Earth's mantle [5]; or (3) the isotopic composition measured in crustal rocks from Earth was produced by equilibrium or kinetic isotope fractionation between mantle peridotite and melt [2,6,7]. This poses several critical questions. What aspect of the melting process produces Fe isotopic fractionation? Why does melting on Earth or the APB fractionate Fe isotopes while on Mars and Vesta such fractionation is absent?
- Published
- 2012
11. Contrasted Liquid Lines of Descent Revealed by Olivine-hosted Melt Inclusions and the External Magma
- Author
-
Faure, F., primary and Tissandier, L., additional
- Published
- 2014
- Full Text
- View/download PDF
12. Incorporation of Zn in the destabilization products of muscovite at 1175 C under disequilibrium conditions, and implications for heavy metal sequestration
- Author
-
Devineau, K., primary, Devouard, B., additional, Leroux, H., additional, and Tissandier, L., additional
- Published
- 2013
- Full Text
- View/download PDF
13. Control of alkali-metal oxide activity in molten silicates
- Author
-
Mathieu, R., Khedim, H., Libourel, G., Podor, R., Tissandier, L., Deloule, E., Faure, F., Rapin, C., and Vilasi, M.
- Published
- 2008
- Full Text
- View/download PDF
14. Na2O solubility in CaO–MgO–SiO2 melts
- Author
-
Mathieu, R., primary, Libourel, G., additional, Deloule, E., additional, Tissandier, L., additional, Rapin, C., additional, and Podor, R., additional
- Published
- 2011
- Full Text
- View/download PDF
15. Role of gas-melt interaction during chondrule formation
- Author
-
LIBOUREL, G, primary, KROT, A, additional, and TISSANDIER, L, additional
- Published
- 2006
- Full Text
- View/download PDF
16. TRACE ELEMENT PARTITIONING BETWEEN OLIVINE, ORTHOPYROXENE, SILICATE MELT, METAL AND SULFIDE IN EXPERIMENTAL CHONDRULES EQUILIBRATED WITH NEBULAR GAS.
- Author
-
Llado, L., Cartier, C., Tissandier, L., and Schnuriger, N.
- Subjects
OLIVINE ,CHONDRULES ,TRACE elements ,METAL sulfides ,ORTHOPYROXENE ,LASER ablation inductively coupled plasma mass spectrometry ,CHEMICAL equilibrium - Abstract
Introduction: Chondrules, one of the major components of primitive meteorites consisting of olivine, pyroxene, glassy mesostasis, metal beads and sulfides, are the results of fusion-crystallization of solid precursors in interaction with nebular gases [1,2,3]. Due to their chemical and textural diversity, establishing a general formation model is challenging. Indeed, despite numerous geochemical and experimental studies, there is no consensus about the nature of the solid precursors, the physical (pressure, temperature, thermal history) and chemical (redox, gas composition) conditions that controlled the formation of these complex objects. Trace element partitioning between olivine, orthopyroxene, silicate melt, metal and sulfide have been measured in a variety of chondrules [4-7]. Experimental studies produced partition coefficients in chondrule-like systems [8] that have been useful for inferring chondrule cooling rates [7]. However, these experiments did not include an equilibrium with a gaseous phase, even though it is supposed to have played a major role in the formation of chondrules. In this study, we experimentally reproduced chondrules, at equilibrium with a gaseous phase, and at various oxygen fugacities (fO2). We obtained partition coefficients in order to interpret chondrule data, and ultimately better understand the processes (condensation versus magmatic processes) and conditions (temperature, fO2) of their formation. Materials and method: We performed 25 experiments in evacuated silica tubes at temperatures ranging from 1150°C to 1450°C, with two different starting compositions: the carbonaceous chondrite NWA11345 (CM2) and the ordinary chondrite Tamdakht (H5). The [volume of starting powder]/[volume of the tube] ratio was minimized to favor evaporation at high temperature. Experiment duration was between 2 and 72 hours to ensure vapor/sample equilibration. The samples were weighed before and after experiment to calculate the evaporated masses, which range between 1 and 67%. The redox conditions were mostly buffered by the graphite-CO equilibrium, resulting in fO2 ranging from IW-6.1 to IW-3, in agreement with fO2 measured in type I chondrules [9]. High-resolution images and multi-elemental X-ray maps were acquired using SEM on the experimental samples to characterize their mineral phases. Major and minor element concentrations of the various phases were measured by EPMA, and trace elements were acquired in-situ by laser ablation ICP-MS. Partition coefficients were then calculated. Results and Discussion: The experimental samples are composed of silicate glass, forsterite, enstatite, kamacite and sulfides (troilite and sometimes keilite, alabandite) in variable proportions and compositions according to fo2 and temperature. One sample contains anorthite. These mineralogies are equivalent to the reduced mineral assemblages of type I chondrules in carbonaceous, ordinary and enstatite chondrites. Whisker crystals, condensed from the vapor phase during the quench, were also observed in most tubes. We therefore obtained enstatite/melt, forsterite/melt, enstatite/melt, sulfide/melt and metal/melt trace element partition coefficients (Ds) and most of them are strongly correlated with fO
2 (e.g. ...). The Ds of redox-sensitive elements can therefore be used as oxybarometers in type I chondrules. Enstatite/melt and forsterite/melt Ds plotted in Onuma diagrams prove crystal-melt chemical equilibrium in the experiments, but some elements, in particular V, display anomalously high Ds, similar to natural chondrule data [4]. As Ds obtained in similar systems and redox conditions, but without an interaction with gas, do not display these anomalies [10], we hypothesize that extremely high V Ds result from the interaction between the melt and the gas phase. The data obtained in this study will allow us to infer the conditions of formation of type I chondrules and discuss the influence of magmatic and nebular processes on their geochemistry. [ABSTRACT FROM AUTHOR]- Published
- 2022
17. COMPARISON OF MOLECULAR COMPLEXITY BETWEEN CHONDRITES, MARTIAN METEORITE AND LUNAR SOILS.
- Author
-
Orthous-Daunay, F.-R., Wolters, C., Flandinet, L., Vuitton, V., Beck, P., Bonal, L., Isa, J., Moynier, F., Voisin, D., Moran, S., Horst, S., Danger, G., Vinogradoff, V., Piani, L., Bekaert, D. V., Tissandier, L., Isono, Y., Tachibana, S., Naraoka, H., and Remusat, L.
- Subjects
LUNAR soil ,METEORITES ,CHONDRITES ,MARTIAN meteorites ,SPACE environment ,MASS spectrometry ,MARTIAN atmosphere ,SOLAR system - Published
- 2021
18. Comparison of Molecular Complexity Between Chondrites, Martian Meteorite and Lunar Soils
- Author
-
R Orthous-Daunay, F., Wolters, C., Flandinet, L., Vuitton, V., Beck, P., Bonal, L., Isa, J., Moynier, F., Voisin, D., Moran, S., Horst, S., Gregoire Danger, Vinogradoff, V., Piani, L., Bekaert, D. V., Tissandier, L., Isono, Y., Tachibana, S., Naraoka, H., Thissen, R., Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Johns Hopkins University (JHU), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Hokkaido University [Sapporo, Japan], The University of Tokyo (UTokyo), Kyushu University, Laboratoire de Chimie Physique D'Orsay (LCPO), Université Paris-Sud - Paris 11 (UP11)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Kyushu University [Fukuoka]
- Subjects
[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience; We compare typical polymerization patterns found in chondritic organic mixtures and the features found in martian meteorites and lunar soils.
19. Experimental Germanium isotopic fractionation under HT, fO2-controlled conditions of core formation and accretion
- Author
-
Luais, B., Phelipeau, A., Toplis, M., Cividini, D., Tissandier, L., Florin, G., Olivier ALARD, Centre de Recherches Pétrographiques et Géochimiques (CRPG), Université de Lorraine (UL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Macquarie University, Géosciences Montpellier, Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Université des Antilles (UA)-Centre National de la Recherche Scientifique (CNRS), and PNP INSU
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry - Abstract
International audience; Terrestrial planets and the Moon underwent metal-silicatedifferentiation in their earliest history under reducingconditions. This process partly explained the depletion insiderophile (iron-loving) and volatile elements with respect tothe solar composition (i.e. CI chondrites) in their silicatereservoir. Metal-silicate experiments and models of pressure,temperature, and increasingly oxidized conditions pertinent tothe end of accretion fail to reproduce the Earth’s mantlegermanium (Ge) concentration, a moderately siderophile andvolatile element, unless unrealistically high amounts ofchondritic “late veneer” is added to the silicate reservoir [1].In order to understand the specific behaviour ofgermanium and its isotopes under the T, fO2 conditions ofcore formation and accretion processes, we have undertaken aseries of metal-silicate experiments. The silicate phase of 1baranorthite - diopside eutectic doped with ~4000 ppm of Ge-Aldrich standard is placed in pure Ni capsules at 1 atm in avertical drop quench furnace, at T= 1355°C for 2 to 60 hoursover a range of ƒO2 from 4 log units below, to 2.5 log unitsabove, the IW buffer [2]. Ge isotope data on metal phase weregiven in [2]. New Ge isotopic analyses of the final low-Gesilicate have been performed using hydride generator systemcoupled to the NeptunePlus MC-ICPMS (CRPG-Nancy) [3].At very low ƒO2, Ge diffusion in the metal was observed(δ74/70Gemetal slightly lower that Ge-CMAS starting material).Under increasingly oxidizing conditions, competition wasseen between diffusivity and volatility (strong increase inδ74/70Ge in metal and silicate associated to a decrease in Gecontents). With time, it is shown an inversion of Δ74/70Gemetalsilicate, from negative to positive. These results are consistentwith the sense of Ge isotopic fractionation as seen in metaland silicate phases of pallasites and chondrites [4, 5], andbetween Fe-meteorites and the silicate Earth [3].[1] Siebert et al. (2011). GCA 75, 1451. [2] Luais et al.(2007). Eos Trans. AGU88(5), V51E-0833. [3] Luais et al.(2012) Chem. Geol. 334, 295. [4] Luais et al. (2017) Goldsch.Abst. 2474. [5] Florin et al. (2018) MetSoc LPI Contrib. 2067.
20. Influence of glass composition on secondary ion mass spectrometry instrumental mass fractionation for Si and Ca isotopic analyses.
- Author
-
Tissandier L and Rollion-Bard C
- Abstract
Rationale: In situ secondary ion mass spectrometry (SIMS) analysis requires the use of standards to unravel the instrumental mass fractionation (IMF) induced by the analytical procedures. Part of this IMF might be caused by the nature of the sample and the differences in composition and structure between the sample and the standards. This "matrix effect" has been tentatively corrected for by using standards with chemical compositions equivalent to the samples, or by the empirical use of chemical parameters. However, these corrections can only be applied to a narrow compositional range and fail to take proper account of the matrix effect when a wider chemical field is tested., Methods: We synthesized a series of glasses whose compositions span a very large part of the NCMAS (Na
2 O-CaO-MgO-Al2 O3 -SiO2 ) system. Si and Ca isotopic analyses were performed on two ion microprobes (Cameca IMS-1270 and IMS-1280)., Results: The matrix effect observed may reach 20‰ between extreme compositions and cannot be accounted for by the previously used "chemical" parameters (e.g. SiO2 , SiO2 /(SiO2 + Al2 O3 )) nor by the NBO/T parameter. It therefore appears necessary to consider not only the structure of the glasses, but also the nature of the different atoms. Consequently, we assessed the use of another concept, the optical basicity, based on the electronegativities of the constitutive elements of glass., Conclusions: We show that this parameter significantly improves the efficiency of the matrix-effect correction and that it can be applied across the entire NCMAS compositional range studied here. Furthermore, the use of optical basicity reduces the number of glass standards required for a reliable isotopic study, and it can also be used to probe the structure of the glass. Copyright © 2016 John Wiley & Sons, Ltd., (Copyright © 2016 John Wiley & Sons, Ltd.)- Published
- 2017
- Full Text
- View/download PDF
21. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.
- Author
-
Kuga M, Marty B, Marrocchi Y, and Tissandier L
- Abstract
In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.