Florin Udrea, Neophytos Lophitis, Jan Vobecky, Tobias Wikstroem, Umamaheswara Vemulapati, Munaf Rahimo, U. Badstuebner, Marina Antoniou, Thomas Stiasny, Lophitis, N [0000-0002-0901-0876], Antoniou, M [0000-0002-7544-3784], Vobecky, J [0000-0002-2078-2244], Rahimo, M [0000-0002-4632-5463], Udrea, F [0000-0002-7288-3370], and Apollo - University of Cambridge Repository
The Bi-mode Gate Commutated Thyristor (BGCT) is an advanced reverse conducting device aiming high power applications. Due to the high degree of interdigitation of diode parts and Gate Commutated Thyristor (GCT) parts, it is necessary to investigate how to best separate the two and at the same time, how to maximise the individual power handling capability. This work underpins the latter, for the GCT part. In achieving that, this letter details the optimisation direction, identifies the design parameters that influence the Maximum Controllable Current (MCC) and thereafter introduces a new design attribute, the “p-zone”. This new design not only improves the MCC at high temperature, but also at low temperature, yielding temperature independent current handling capability and at least 1000 A, or 23.5 % of improvement compared to the state-of-the-art. As a result, the proposed design constitutes an enabler for optimally designed bi-mode devices rated at least 5000 A for applications with the highest power requirement.