The arsenic and iron environments in different growth stages have been studied with EXAFS and XANES using Brookhaven Synchrotron Light Source. Collard Greens plants were grown and tissue samples were harvested. The project studied the EXAFS and XANES of tissue samples using As and Fe K-edges. The Fe absorption and the Fourier transform bond length information were used as a control comparison. The Fourier transform of the XAFS data revealed the coexistence of As (III) and As (V) in the As bonding environment inside the studied plant tissue samples, although the soil only had As (III). The data suggests that Collard Greens has a novel pathway to handle arsenic absorption in soil., {"references":["P. L. Smedley and D. G. Kinniburgh, Appl. Geochem. 17, 517-568\n(2002).","World Health Organization, Arsenic in Drinking Water. Fact Sheet No.\n210, Revised May 2001. (http://www.who.int/inf-fs/en/fact210.html)","P. J. Potts, M. H. Ramsey, J. Carlisle, Portable X-ray fluorescence in the\ncharacterization of Arsenic contamination associated with industrial\nbuildings at a heritage Arsenic works near Redruth, Cornwall, UK. J.\nEnviron. Monit, 4, 1017-1024, 2002.","Canche-Tello J, Vargas MC, Hérnandez-Cobos J, Ortega-Blake I,\nLeclercq A, Solari PL, Den Auwer C, Mustre de Leon J. Interpretation\nof X-ray absorption spectra of As(III) in solution using Monte Carlo\nsimulations. J Phys Chem A. 2014 Nov 20; 118(46):10967-73.","Canche-Tello J, Vargas MC, Hérnandez-Cobos J, Ortega-Blake I,\nLeclercq A, Solari PL, Lezama-Pacheco J, Den Auwer C, Mustre de\nLeon X-ray Accelerated Photo-Oxidation of As(III) in Solution. J Phys\nChem A. 2015 Mar 17. (Epub ahead of print)\nhttp://www.ncbi.nlm.nih.gov/pubmed/ 25730736","Zhang G, Liu F, Liu H, Qu J, Liu R. Respective role of Fe and Mn oxide\ncontents for arsenic sorption in iron and manganese binary oxide: an Xray\nabsorption spectroscopy investigation Environ Sci Technol. 2014\nSep 2; 48(17):10316-22.","Zhao Z, Wang X, Zhang Z, Zhang H, Liu H, Zhu X, Li H, Chi X, Yin Z,\nGao J. Real-Time Monitoring of Arsenic Trioxide Release and Delivery\nby Activatable T1 Imaging. ACS Nano. 2015 Feb 18. (Epub ahead of\nprint) http://www.ncbi.nlm.nih.gov/pubmed/25688714","Kahlon TS, Chiu MC, Chapman MH. Steam cooking significantly\nimproves in vitro bile acid binding of collard greens, kale, mustard\ngreens, broccoli, green bell pepper, and cabbage. Nutr Res. 2008 Jun;\n28(6):351-7.","Lin LZ, Harnly JM. Identification of the phenolic components of collard\ngreens, kale, and Chinese broccoli. J Agric Food Chem. 2009 Aug\n26;57(16):7401-8\n[10] Santos J, Oliveira MB, Ibáñez E, Herrero M. Phenolic profile evolution\nof different ready-to-eat baby-leaf vegetables during storage. J\nChromatogr A. 2014 Jan 31;1327:118-31\n[11] M. Azizur Rahman, H. Hasegawa, K. Ueda, T. Maki, M. Mahfuzur\nRahman. Influence of phosphate and iron ions in selective uptake of\narsenic species by water fern (Salvinia natans L.). Chemical\nEngineering Journal Volume 145, Issue 2, 15 December 2008, Pages\n179–184\n[12] United States Department of Agriculture Agricultural Research Service\nNational Nutrient Database for Standard Reference Release 27\nhttp://ndb.nal.usda.gov/ndb/foods (Brassica oleracea)\n[13] Newcomb M, Halgrimson JA, Horner JH, Wasinger EC, Chen LX,\nSligar SG. (2008) X-ray absorption spectroscopic characterization of a\ncytochrome P450 compound II derivative. Proc Natl Acad Sci U S A.\nJun 17; 105(24):8179-84.\n[14] Schlebusch CM, Gattepaille LM, Engström K, Vahter M, Jakobsson M,\nBroberg K. Human Adaptation to Arsenic-Rich Environments.. Mol\nBiol Evol. 2015 Mar 3. pii: msv046.\nhttp://www.ncbi.nlm.nih.gov/pubmed/25739736\n[15] http://www.uniprot.org/uniprot/Q9HBK9\n[16] http://www.uniprot.org/uniprot/B0RA90\n[17] Kumar S, Dubey RS, Tripathi RD, Chakrabarty D, Trivedi PK. Omics\nand biotechnology of arsenic stress and detoxification in plants: current\nupdates and prospective. Environ Int. 2015 Jan; 74:221-30..\nhttp://www.ncbi.nlm.nih.gov/pubmed/25454239\n[18] Zhang J, Zhou W, Liu B, He J, Shen Q, Zhao FJ. Anaerobic arsenite\noxidation by an autotrophic arsenite-oxidizing bacterium from an\narsenic-contaminated paddy soil. Environ Sci Technol. 2015 Apr 2\nhttp://www.ncbi.nlm.nih.gov/pubmed/25905768\n[19] Tong D, Ortega J, Kim C, Huang J, Gu L, Li GM. Arsenic Inhibits DNA\nMismatch Repair by Promoting EGFR Expression and PCNA\nPhosphorylation. J Biol Chem. 2015 Apr 23.\nhttp://www.ncbi.nlm.nih.gov/pubmed/25907674\n[20] Li X & Sun WJ. The clinical activity of arsenic trioxide, ascorbic acid,\nifosfamide and prednisone combination therapy in patients with\nrelapsed and refractory multiple myeloma.. Onco Targets Ther. 2015\nApr 9; 8:775-81. http://www.ncbi.nlm.nih.gov/pubmed/25914547\n[21] Yunxian Liu, Leena Hilakivi-Clarke, Yukun Zhang, Xiao Wang, Yuan-\nXiang Pan, Jianhua Xuan, Stefanie C. Fleck, Daniel R. Doerge and\nWilliam G. Helferich. Isoflavones in soy flour diet have different effects\non whole-genome expression patterns than purified isoflavone mix in\nhuman MCF-7 breast tumors in ovariectomized athymic nude mice.\nMolecular Nutrition & Food Research, forth coming in press.\nhttp://onlinelibrary.wiley.com/doi/10.1002/mnfr.201500028/abstract.\n[22] Juan E. Andrade, Young H. Ju, Chandra Baker, Daniel R. Doerge and\nWilliam G. Helferich. Long-term exposure to dietary sources of\ngenistein induces estrogen-independence in the human breast cancer\n(MCF-7) xenograft model. Molecular Nutrition & Food Research\nVolume 59, Issue 3, pages 413–423, March 2015.\nhttp://onlinelibrary.wiley.com/doi/10.1002/mnfr.201300780/abstract\n[23] Salvo A, Cicero N, Vadalà R, Mottese AF, Bua D, Mallamace D,\nGiannetto C, Dugo G. Toxic and essential metals determination in\ncommercial seafood: Paracentrotus lividus by ICP-MS. Nat Prod Res.\n2015 Apr 28:1-8 http://www.ncbi.nlm.nih.gov/pubmed/25919907"]}